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Geometries for universal quantum computation with matchgates
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Matchgates are a group of two-qubit gates associated with free fermions. They are classically simulatable
if restricted to act between nearest neighbors on a one-dimensional chain, but become universal for quantum
computation with longer-range interactions. We describe various alternative geometries with nearest-neighbor
interactions that result in universal quantum computation with matchgates only, including subtle departures from
the chain. Our results pave the way for new quantum computer architectures that rely solely on the simple
interactions associated with matchgates.
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I. INTRODUCTION

There is an ongoing research effort to identify the quan-
tum features responsible for the computational advantage of
quantum over classical computers. One way of doing that is to
propose restricted quantum scenarios which can be efficiently
simulated on a classical computer and then add further re-
sources that provably enable universal quantum computation.
This classical-to-quantum transition in computational power
happens, for example, when we add entangling gates to the
set of all single-qubit unitaries or when we add a generic
gate to the Clifford group of unitaries. Another motivation
for this approach is the possibility of identifying alternative
implementations of quantum computers, which may be more
practical, versatile, or especially suited to a given physical
system.

Here we investigate the transition from classical to quantum
computational power in the context of matchgates, a group of
two-qubit gates that was proposed in graph-theoretical terms
by Valiant in 2002 [1]. Matchgates acting only on nearest
neighbors on a one-dimensional (1D) chain of qubits are
classically simulatable, a fact that was traced back to their
equivalence to a system of noninteracting fermions via the
Jordan-Wigner transformation [2]. Interestingly, they allow
for universal quantum computation if next-nearest-neighbor
matchgate interactions are possible or by the equivalent use of
the SWAP gate [3] or other nonmatchgate unitaries [4].

In this paper we ask what happens when matchgates
act on nearest-neighboring qubits arranged in geometries
other than the linear chain. We prove that there are many
possible interaction geometries which enable matchgates to
do universal quantum computation, ranging from near-trivial
modifications of the chain to quite different graph families,
such as star graphs and binary trees. This also partially
answers the question of whether the classical simulatability
of nearest-neighbor matchgates holds beyond the linear chain,
an open question up until now (due, in part, to the fact that the
Jordan-Wigner transformation cannot be trivially generalized
to nonlinear geometries).
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Matchgates arise naturally from interactions in various
physical systems, especially in the form of the much studied
anisotropic Heisenberg (or XY ) interaction [5–7], which
indicates that the geometrical arrangements we propose may be
suitable for practical implementations of quantum computers.

II. QUANTUM COMPUTATION WITH MATCHGATES

Let G(A,B) denote the two-qubit gate that acts as unitaries
A and B, respectively, on the even and odd parity subspaces
of the two-qubit Hilbert space:

G(A,B) =

⎛
⎜⎜⎜⎝

A11 0 0 A12

0 B11 B12 0

0 B21 B22 0

A21 0 0 A22

⎞
⎟⎟⎟⎠ . (1)

If it satisfies the additional constraint that detA = detB,
G(A,B) is a matchgate.

Valiant introduced matchgates in graph-theoretical terms
and provided an explicit algorithm for efficiently simulating
matchgates between nearest-neighboring qubits on a linear
chain [1]. Curiously, this theoretical construction was later
shown to be exactly equivalent to the simulation of nonin-
teracting fermions; one problem is mapped onto the other
via the Jordan-Wigner transformation [2]. In 2008 Jozsa
and Miyake complemented this simulatability result with the
missing element for universal quantum computation: the SWAP

gate, or alternatively the possibility of acting with matchgates
between next-nearest neighbors on the linear chain [3]. While
their main result required encoding each logical qubit into four
physical qubits, a more economical 2-to-1 encoding was also
presented, but which required matchgate interactions between
third-nearest neighbors.

These results can alternatively be stated in terms of the
geometrical arrangement of the qubits. For instance, nearest
and next-nearest neighbors of the 1D chain can be mapped
into nearest-neighbors in the “triangular ladder” graph of
Fig. 1. Thus, as was already implicit in previous works [7], the
computational power of nearest-neighbor matchgates jumps
from (sub-)classical [8] to quantum universal by rearranging
the qubits of the linear chain to form a triangular ladder.
In what follows we identify many other graph families that
also allow for universal computation with matchgates acting
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FIG. 1. In the “triangular ladder” array, qubits have a one-to-one
correspondence to qubits in a linear array such that nearest neighbors
on the former correspond to nearest and next-nearest neighbors on
the latter.

only between nearest neighbors, including much simpler
alternatives to the triangular ladder. We need first to develop a
couple of tools.

III. THE “HAIR COMB” GRAPH

The SWAP gate [=G(I,X)] is parity-preserving but is not
a matchgate, as it does not satisfy the determinant condition.
This is why the connectivity restrictions are so important;
quantum information is not free to move around if all we have
is matchgates. There is, however, a matchgate which is similar
to the SWAP, which is the fermionic SWAP (f-SWAP):

f-SWAP = G(Z,X) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠ . (2)

It cannot be used to swap the states of two arbitrary qubits,
as the minus sign induced in the |11〉 state can have an
entangling effect (the f-SWAP is actually a perfect entangler
[4]). If, however, we know for certain that one of the input
qubits is in the |0〉 state, then the f-SWAP acts exactly as the
SWAP, a trick which was exploited in [3] with this exact pur-
pose. Given the simulatability of nearest-neighbor matchgates
on the 1D chain, this f-SWAP trick clearly cannot be used
to replace next-nearest-neighbor interactions. However, if we
modify the geometry by introducing a T structure on the chain
[see Fig. 2(a)], we can initialize the appended ancilla in the
|0〉 state and use it to circumvent the need for next-nearest-
neighbor interactions. To implement any matchgate G between
qubits i − 1 and i + 1 of Fig. 2(a), we can apply the sequence

Ii ⊗ G[i−1,i+1] ⊗ Ia = F[a,i]F[i,i−1]G[i,i+1]F[i,i−1]F[a,i], (3)

where F is a shorthand for the f-SWAP and subscripts represent
the pair of qubits on which the gate acts, as labeled in Fig. 2(a).
We see that the f-SWAP and |0〉 ancilla effectively simulate a
next-nearest-neighbor interaction by temporarily “hiding” the

FIG. 2. The T structure. (a) The f-SWAP gadget simulates a next-
nearest neighbor interaction between qubits i − 1 and i + 1 using
f-SWAP gates and a |0〉 ancilla. (b) The H gadget implements an H

gate on qubit i using a matchgate G(H,H ) between i and a |+〉
ancilla.

FIG. 3. Hair-comb graph. By repeating the f-SWAP gadget
throughout the line we can simulate interactions between any pair
of next-nearest neighbors, enabling universal computation.

information of qubit i in the appended qubit. We dub this use
of the f-SWAP trick on the T structure a “f-SWAP gadget.”

If the states of all qubits can be selectively “hidden”
in ancillas, all next-nearest-neighbor interactions become
possible and we achieve universal quantum computation with
matchgates only by the result of Jozsa and Miyake [3]. This
can be done by introducing multiple T structures on the chain,
resulting in the “hair-comb” graph of Fig. 3. Furthermore,
a trivial extension of the sequence of Eq. (3) enables us to
interact qubits which were originally third-nearest neighbors,
which means we can use the more economical 2-to-1 encoding
of [3]. This is our first result of a graph for universal quantum
computation with matchgates. A quick resource count shows
that the protocol described enables universal computation
using four additional f-SWAPs for each SWAP and the same
number of qubits as the encoded quantum circuit of [3], in a
simpler graph than the triangular ladder of Fig. 1.

An interesting alternative demonstration of this result can
be given as follows. A standard universal set for quantum
computing consists of single-qubit Z rotations, the Hadamard
(H ) gate, and any two-qubit entangling gate [9]. As noted
in [4], matchgates include all single-qubit Z rotations and
many perfect entanglers, which means that matchgates become
universal when supplemented by H . We now propose a scheme
to implement the Hadamard H gate with matchgates only,
based on a simple observation:

G(H,H )(|ψ〉 |+〉) = (H |ψ〉) |+〉 . (4)

Since G(H,H ) is a matchgate, this means that initializing
ancilla qubits in the |+〉 state can replace the need for H gates.
This clearly cannot be used for universal computation on the
1D chain, as in this geometry we cannot arrange the required
|+〉 ancillas so as to apply H wherever necessary. However,
as shown in Fig. 2(b), we can again modify the geometry and
introduce T structures where appended |+〉 ancillas effectively
apply a H gate using the matchgate sequence of Eq. (4).
We dub this use of the G(H,H ) gate on the T structure
an “H gadget” [see Fig. 2(b)]. By repeating this structure
at every chain qubit we can implement the H gate on any
of them, again enabling universal quantum computation with
nearest-neighbor matchgates on the hair-comb graph of Fig. 3.
Resourcewise, this scheme requires as many gates as the
original quantum circuit and twice as many qubits and does
not require encoding as the f-SWAP gadget scheme does.

We can extend these results by noticing that, in both cases,
the ancilla’s state is left unaltered by the gadgets [cf. Eqs. (3)
and (4)]. Physically, this means that some computational qubits
can share the same ancilla, going as far as the wheel graph,
where a single ancilla is connected to every qubit on the cycle
[see Fig. 4(f)]. Note that the ancillas used in H gadgets never
get entangled with other qubits and so can be prepared, used,
and discarded on the fly if necessary.

052307-2



GEOMETRIES FOR UNIVERSAL QUANTUM COMPUTATION . . . PHYSICAL REVIEW A 86, 052307 (2012)

FIG. 4. Several geometries for nearest-neighbor matchgate inter-
actions which are universal for quantum computation. White circles
and circles with crosses represent one possible placement of the
|0〉 and |+〉 ancillas, respectively, which makes the universality of
the graphs explicit by the arguments in the main text. The graphs
illustrated here are (a) square lattice, (b) cycle with appended vertex,
(c) a 3-regular graph, (d) chain with appended vertex, (e) star graph
and (f) wheel graph.

IV. GENERAL GRAPHS

As we have seen, the hair-comb and wheel graphs allow
efficient schemes for universal computation using matchgates
only. A large number of graphs which arise naturally in phys-
ical systems can be trivially shown to contain those graphs as
subgraphs, such as all 2D regular lattices common in solid-state
physics and all demi-, semi-, and regular tessellations [10].

However, as we show now, there are strikingly simpler
graphs which are also universal for quantum computation if we
allow for a larger (but still polynomial) overhead in resources.
Consider first a modification of the cycle graph of n vertices
Cn, where a single additional vertex is appended to any chosen
vertex i of the cycle [see Fig. 4(b)]. Locally, this appended
vertex is equivalent to the T structure of Fig. 2, which means
we can use the H gadget on it, as before. Notice also that if we
assign one qubit of the cycle as a |0〉 ancilla, we can use the
f-SWAP trick to move it freely around the cycle. Each complete
clockwise cycle of the ancilla shifts the state of all other qubits
by one step in the counterclockwise direction (and vice versa).
By f-SWAP-ing the ancilla around a sufficient number of times,
we can place any qubit on position i, where it can undergo an
H gate via our H gadget. As before, this allows for universal
computation, since the overhead in resources amounts to two
additional qubits and at most n2/2 f-SWAP gates for every H

gate in the original circuit. This also proves the universality
of any graph family with a sufficiently large cycle (i.e., one
that grows polynomially with the size of the graph), with the
obvious exception of the cycle graph itself.

Together with the previous results concerning the T
structure, this cycle result provides a powerful toolbox for
demonstrating the universality of more general families of
graphs. For instance, it is easy to show that any graph which
contains a polynomially long path where every vertex has
degree greater than 2 is universal. This becomes clear by
recognizing that every vertex in this long path is either part
of a cycle or part of a T structure, and our previous results can
be combined to provide a universal scheme. Notice that these
tools may not be sufficient to decide whether an arbitrary graph
is universal, as finding the longest path or cycle in a graph is
known to be computationally hard [11]. Nevertheless, they
still contemplate any graph family which is known to have a
polynomially long path.

Let us now consider a very slight deviation from the linear
chain: We connect a single extra vertex to the central chain
vertex, as in Fig. 4(d). We can assign the first half of the
vertices of the chain as computational, the rest of the chain as
|0〉 states and the appended vertex as a |+〉 state so as to apply
the H gadget on the central qubit. By using the f-SWAP trick we
can move the state of the computational qubits back and forth,
placing any chosen qubit state at the H gadget site. This results
in universal quantum computation with an overhead of at most
n2 f-SWAPs per H gate. The scheme, as described, works as
long as the extra vertex is sufficiently far away from the end
points of the chain. If the vertex is logarithmically close to
one of the end points, the number of qubit states that can be
placed at the H gadget site is logarithmic and thus insufficient.
However, in the Appendix we show an alternative universal
scheme that works with the extra vertex placed at any point
(with the natural exception of the end points), at the cost of
using a 2-to-1 encoding for the logical qubits.

It is surprising that such small deviations from the linear
chain already result in universal quantum computation. Start-
ing with the chain, it is sufficient to either add a single edge
(creating a cycle) or append a single ancilla qubit, which can
even be just one vertex away from the end point. This is similar
in spirit to a result in the context of quantum control theory
[12], where it is shown that, if all neighboring qubits in the
linear chain interact with each other via a specific background
(hence uncontrollable) two-qubit interaction, it suffices to have
full control of only the two first qubits of the chain. Fast,
arbitrary gates on the first two qubits are enough to control the
state of the whole chain, driving it to do universal computation.

All graph families we have proven so far to be universal
for matchgate quantum computation use a long path as a
“backbone” for the computation, and consist of progressively
small deviations from the linear chain. Our tools can also be
used to prove similar results for a number of graph families
which differ significantly from the chain. Take the complete
binary tree [13] with n leaves, for which the longest path is
of size log n. By assigning the leaves as computational qubits
and filling the branches with |0〉 ancillas, we can use f-SWAP to
move the states of any pair of computational qubits together,
interact them, and return to the original configuration. This
scheme implements each computational matchgate at a cost
of a logarithmic number of f-SWAP gates. It is clear that any
graph family where a polynomial-sized set of vertices can
be connected to all other vertices in the set by a path of
|0〉 ancilla qubits will be universal for matchgate quantum
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computation. An interesting, extremal example is the star
graph [see Fig. 4(e)], where the only edges are those between
a central vertex and all others.

Figure 4 displays various qualitatively different examples
of graph families we have proven to be universal for quantum
computation using nearest-neighbor matchgates only. In each
of these graphs we mark some vertices as |0〉 or |+〉 ancillas to
highlight one possible universal scheme. For what follows it
is important to point out that, while we used the H gadget
in several cases in the interest of displaying economical
protocols, it is not strictly necessary in order to demonstrate
universality in any situation we have considered. The f-SWAP

gadget can replace the H gadget on any geometry with only a
polynomial overhead in space and time due respectively to the
use of encoding and additional f-SWAP gates.

V. PHYSICAL IMPLEMENTATIONS

Our results will be experimentally relevant in any situation
where matchgate interactions arise naturally. As is well
known, the group of matchgates is generated by the set of
two-qubit Hamiltonians: {XX,YY,XY,YX,IZ,ZI } [2]. As a
practical example, let us consider the much-studied anisotropic
Heisenberg Hamiltonian XX + YY [5,7]. It was proven in
[7] that the matchgates generated by this Hamiltonian are
universal for quantum computation when allowed to act on
next-nearest neighbors on the chain, or equivalently between
nearest neighbors on the triangular ladder of Fig. 1.

Now let us write the f-SWAP gate in a form that explicates
the underlying interactions:

f-SWAP = exp

[
i
π

4
(IZ + ZI )

]
exp

[
i
π

4
(XX + YY )

]
.

We see that besides the XX + YY interaction, the f-SWAP gate
also requires single-qubit Z rotations. This is a possibility
in a number of quantum computer implementations, such
as cavity QED with atoms [14] or quantum dots [15], and
electrons in liquid helium [16]. Given the result of [7], our
work suggests multiple choices of interaction geometries that
may simplify the design of universal quantum computers using
these systems.

We have also described an alternative matchgate quantum
computing scheme that uses H gadgets instead of the f-SWAP

trick. One advantage of this alternative is that the required |+〉
ancillas never get entangled with the other qubits and so can be
replaced at will between uses or may even consist of a single,
recyclable moving ancillary qubit. We note that the G(H,H )
gate cannot be decomposed in terms of the same interactions
as the f-SWAP; it would be interesting to identify a physical
implementation where it occurs naturally.

VI. OPEN QUESTIONS

In summary, we have proven that nearest-neighbor match-
gates are universal for quantum computation in very diverse
geometrical settings: on a graph with a large enough cycle, on
the star graph, and on a chain with a single appended vertex,
for example. The difference between this last case and the
simulatable linear chain is minimal, as the single extra qubit
may remain in the |+〉 state during the computation, never
entangling with the chain qubits.

As a consequence, now we know that it is not possible to
efficiently simulate matchgates between nearest-neighbors in
all these graph families. It would be interesting if one could find
graph families where matchgates are neither simulatable nor
universal for quantum computation, an intermediate case of
computing power that has drawn much recent interest [17,18].

As we have seen, useful sets of matchgates can be generated
with the XX + YY Hamiltonian supplemented with single-
qubit Z rotations, present naturally in systems such as cavity
QED with quantum dots and atoms, and electrons in liquid
helium. Our results then suggest different architectures that
could enable universal quantum computation in these systems.
We leave as an open question whether our tools can be adapted
to obtain new architectures where only a single interaction is
used (as in [7,19]).

Finally, we point out that, by applying the Jordan-Wigner
transformation on the 1D chain, one can show that nearest-
neighbor matchgates correspond to noninteracting fermions,
while matchgates between more distant qubits translate into
fermionic interactions [3]. As our results show the need for
only very small deviations from the linear chain, it would be
interesting to investigate the implications for proposals for
quantum computation with fermions [2,20,21].
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APPENDIX

In this Appendix we show how to use codification and the
f-SWAP gate to achieve universal computation with matchgates
on the chain with an appended vertex of Fig. 4(d), even if
the appended vertex is placed near the chain end points. For
this, we need to encode each logical qubit into the even parity
subspace of two physical qubits as done in [3,4]:

|0〉L = |00〉 , |1〉L = |11〉, (A1)

where subscript L denotes a logical qubit. Let |ψ〉 and |φ〉L
represent the arbitrary states of a physical and a logical qubit,
respectively. Then, it is easy to check that

F[1,2]F[2,3] |ψ〉 |φ〉L = |φ〉L |ψ〉 , (A2)

where F[i,j ] denotes the f-SWAP acting on qubits i and j . That
is, consecutive applications of the f-SWAP can move the state
of an arbitrary qubit “through” a logical qubit. This works only
if a complete logical qubit is traversed at a time. The reason
behind this is that the f-SWAP gate will either act as the SWAP

(if the logical qubit is in the |00〉 state) or, if it induces a minus
sign, it does so twice (if the logical qubit is in the |11〉 state).
Thus, the f-SWAP can be used to move blocks of two physical
qubits around, as long as they comprise the same logical
qubit.

Now consider the universal set constructed in [3,4]. A
logical single-qubit gate A is implemented by the matchgate
G(A,A) acting on the two physical qubits that form a logical
qubit. A logical entangling gate can be implemented by the
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FIG. 5. Scheme for universal computation on the 1D chain and
one extra qubit appended at the second vertex. The shaded rectangles
delimit the (initial positions of) logical qubits. A combination of
f-SWAP gates and the H gadget enables us to implement a CZ gate
between these logical qubits (see main text for the explicit sequence
of operations).

sequence

CZ23 = G(H,H )G(X,X) SWAP G(H,H ), (A3)

where the first logical qubit is encoded in physical qubits 1 and
2, and the second logical qubit is encoded in physical qubits
3 and 4. All gates in the above equation are between qubits
2 and 3, and this CZ[2,3] gate induces an effective CZ gate
between the encoded qubits. This cannot be implemented in
the linear chain with only matchgates because of the SWAP

gate in Eq. (A3). However, as mentioned in Sec. IV of [4],
this SWAP gate can be decomposed in terms of matchgates and
Hadamard gates on both qubit 2 and qubit 3.

It is clear that we can adapt this result to our context using
the tools developed in the main text. Suppose that the qubits
are aligned on a linear chain, ordered such that every pair
(2i − 1,2i) comprises logical qubit i. Since logical single-
qubit gates are easy to implement with matchgates, all that is
necessary is to implement a logical CZ gate between the two
logical qubits at the chain’s end, which involve only physical
qubits 1 to 4. If the computation being performed requires a
CZ gate between another pair of logical qubits, we simply use
the trick of Eq. (A2) to SWAP their state to the end point.

As shown in [3], the logical CZ can be implemented by
a physical CZ between any pair consisting of one physical

qubit from each logical qubit. By the previous discussion
and Sec. IV of [4], this reduces to implementing the H

gate on both these physical qubits. To achieve that, consider
the configuration of Fig. 5, where we appended two ancilla
qubits, one in the |0〉 and one in the |+〉 state, to the end
point of the chain. Assume without loss of generality that the
logical qubits we wish to act with the CZ on already occupy
positions (1,2) and (3,4), labeled as in Fig. 5. The scheme to
implement the CZ proceeds as follows.

Using two consecutive f-SWAPs, swap the state of physical
qubit 3 across the first logical qubit (i.e., to position 1). At this
point, positions 1 and 2 are each occupied by one component
of a different logical qubit. Now use the f-SWAP trick described
in the main text first to swap pair (α,1) and then pair (β,1). This
places the |+〉 ancilla adjacent to the two qubits we wish to
apply the H on. Thus, by repeating this process back and forth
we can alternatively implement a matchgate between these two
physical qubits or a H gate on each of them. Consequently,
by the result of [4], this effectively allows us to implement
an entangling gate between the two logical qubits. Notice that,
after application of the H gate, the physical qubits temporarily
leave the encoded space. At this point Eq. (A2) no longer
applies, and any swapping must be made with the aid of the
|0〉 ancilla, as done throughout the main text. Only at the end
of the sequence of Eq. (A3) do the qubits return to the encoded
space and the trick of Eq. (A2) can be used to return the logical
qubits to their original positions.

The scheme described above allows us to implement a
logical entangling gate between the first two logical qubits and,
by extension, between any pair of logical qubits throughout
the circuit. This shows that the 1D chain with a single
vertex appended to the second chain vertex is universal for
quantum computation with matchgates. In fact, by the previous
reasoning it is easy to see that this extra vertex can be appended
absolutely anywhere, with the exception of the chain end
points, completing the demonstration for the claim made in
the main text.
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