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We present an encoded hybrid quantum repeater scheme using qubit-repetition and Calderbank-Shor-Steane
codes. For the case of repetition codes, we propose an explicit implementation of the quantum error-correction
protocol. Moreover, we analyze the entangled-pair distribution rate for the hybrid quantum repeater with encoding
and we clearly identify trade-offs between the efficiency of the codes, the memory-decoherence time, and the
local gate errors. Finally, we show that in the presence of reasonable imperfections our system can achieve rates
of roughly 24 Hz per memory for 20 km repeater spacing, a final distance of 1280 km, and final fidelity of about
0.95.
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I. INTRODUCTION

In 1982, Wootters, Zurek, and Dieks stated the famous
no-cloning theorem [1,2]. The impossibility of copying an
unknown quantum state implies that common procedures used
in classical communication to combat channel losses, such as
amplification, cannot be used in quantum communication. The
problem of distributing entanglement over long distances was
then solved in principle with the proposal of quantum repeaters
[3,4]. The main idea behind this proposal is to generate
entangled pairs in small segments, avoiding the exponential
decay with distance, and to use entanglement swapping [5]
and entanglement purification [6,7] as some of the building
blocks of the protocol. Nonetheless, considering the typically
probabilistic nature of at least some of these steps (generation,
purification, and swapping), the finite decoherence time of the
currently available quantum memories turns out to drastically
limit the total communication distance. However, according
to Ref. [8], with the help of deterministic quantum error
correction (QEC), the initial entangled pairs can be encoded
so that all the swapping steps may be executed at the same
time. This is different from the original approach of a nested
scheme for the repeater (with multiple-round purification and
swapping), making the protocol much faster than usual.

There are many different proposals for implementing
a quantum repeater, utilizing completely different systems,
including heralding mechanisms based on single-photon de-
tection [9–13] and schemes based on bright multiphoton
signals. Although in the former schemes, generally, high-
fidelity entangled pairs are generated, the latter schemes are
usually more efficient, at least for the initial entanglement
distribution step. In this work, we will concentrate on the
so-called hybrid quantum repeater (HQR) [14–16]. In this
scheme, an entangled pair is initially generated between the
electronic spins of two atoms placed in not-too-distant cavities
through an optical coherent state (the so-called “qubus”).
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The main idea of this paper is to apply QEC to a hybrid
quantum repeater, aiming to improve the scheme against
practical limitations such as finite memory-decoherence times
(relaxing the requirement of perfect memories in our earlier
analysis of the unencoded HQR [17]) and imperfect two-qubit
operations. More specifically, the QEC codes under considera-
tion here are the well-known qubit-repetition and Calderbank-
Shor-Steane (CSS) codes [18]. Due to their transversality
property, entanglement connection and error correction can
be performed with the same set of operations. Our treatment
is not restricted to analyzing the in-principle performance of
QEC codes for the hybrid quantum repeater, but it also shows
how to actually implement an encoded HQR.

In Sec. II, we briefly describe the hybrid quantum repeater.
The errors affecting the system are presented in Sec. III and
the error-correcting protocol is described in more detail in
Sec. IV. In Sec. V, we show how to implement the repetition
codes, starting from the general idea and concluding with
a proposal for a more practical implementation. A protocol
using CSS codes is presented in Sec. VI. A rate analysis of
the hybrid quantum repeater with encoding is presented in
Sec. VII. We conclude in Sec. VIII and give more details of
calculations in the Appendices.

II. HYBRID QUANTUM REPEATER

A dispersive light-matter interaction provides the essence
of the hybrid quantum repeater. This interaction will occur
between an electron spin system (i.e., a two-level system or a
“� system” as an effective two-level system) inside a cavity
and a bright coherent pulse (probe pulse). Although the probe
and the cavity are in resonance, both are detuned from the
transition between the ground state and the excited state of
the atom. More formally, this interaction is described by the
Jaynes-Cummings interaction Hamiltonian in the limit of large
detuning: Hint = h̄χZa†a, where χ is the light-atom coupling
strength, Z is the qubit Pauli-Z operator, and a (a†) is the
annihilation (creation) operator of the electromagnetic field
mode. In practice, this interaction works as a conditional-phase
rotation. Considering the two relevant states of the electronic
spin as |0〉 and |1〉, and a probe pulse in a coherent state |α〉,
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we have U
q
int(θ )[(|0〉 + |1〉)|α〉] = |0〉|αeiθ/2〉 + |1〉|αe−iθ/2〉;

U
q
int(θ ) = ei(θ/2)Za†a is the operator that describes the

interaction between the probe and the qth qubit, and θ

represents an effective interaction time, θ = −2χt .
First the probe (or qubus) interacts with an atomic qubit

A initially prepared in the superposition state (|0〉 + |1〉)/√2
placed in one of the repeater stations, resulting in a qubus-qubit
entangled state [14,16,19]. Then the qubus is sent to a second
qubit B placed in a neighboring repeater station and interacts
with this qubit, also initially prepared in a superposition state,
this time inducing a controlled rotation by −θ/2. By measuring
the qubus (and identifying its state without error; see below),
we are able to conditionally prepare an entangled state between
qubits A and B which has the following form:

F |φ+〉〈φ+| + (1 − F )|φ−〉〈φ−|, (1)

where |φ±〉 = (|00〉 ± |11〉)/√2 and F = [1 +
e−(1−η)α2(1−cos θ)]/2, with α real. A beam splitter transmitting
on average η photons may be used to model the photon
losses in the channel. For a standard telecommunication
fiber, where photon loss is assumed to be 0.17 dB/km,
the transmission parameter will be η(l,Latt) = e−l/Latt ,
where l is the transmission distance of the channel and the
attenuation length is assumed to be Latt = 25.5 km. When
the optical measurement of the probe pulse corresponds
to the quantum-mechanically optimal, unambiguous (and
hence error-free) state discrimination (USD) of phase-rotated
coherent states, an upper bound for the probability of success
to generate an entangled pair can be derived, [16]

Psuccess = 1 − (2F − 1)η/(1−η). (2)

This bound can be attained, for instance, following the protocol
from Ref. [20]. Note that for this type of measurement, there is
a trade-off: for large α and hence F → 1

2 , we have Psuccess →
1, as the coherent states become nearly orthogonal even for
small θ ; whereas for small α � 1 and F → 1, the coherent
states are hard to discriminate, Psuccess → 0.

Entanglement swapping and purification can also be per-
formed utilizing the same interaction as described above. A
two-qubit entangling gate may be employed for both steps. A
measurement-free, deterministic controlled-phase gate can be
achieved with a sequence of four conditional displacements
of a coherent-state probe interacting with the two qubits.
The conditional displacements can be each decomposed into
conditional rotations and unconditional displacements, so that
eventually there is no need for any operations other than those
already introduced above [21]. The controlled-phase rotation,
single-qubit operations, and measurements are then sufficient
tools to implement the standard purification and swapping
protocols [7].

III. ERRORS AND ERROR MODELS

In the previous section, it was described that the photon
losses in the transmission channel cause a random phase-flip
error in the initial entangled state. However, considering a more
realistic scheme, photon losses will also cause local gate errors,
and we should also take into account imperfect memories (i.e.,
memories with finite decoherence times).

According to Ref. [22], dissipation on quantum gates in our
scheme will act in a two-qubit unitary operation Uij as

UijρU
†
ij → Uij {[1 − qg(x)]2ρ + qg(x)[1 − qg(x)](ZiρZi

+ZjρZj ) + q2
g (x)ZiZjρZjZi}U †

ij , (3)

with

qg(x) = 1 − e−x

2
(4)

the probability that each qubit suffers a Z error, where x =
π
2

1−T 2√
T (1+T )

; here T is the local transmission parameter that
incorporates photon losses in the local gates. Note that this
error model is considering a controlled-Z (CZ) gate operation.
For a controlled-NOT (CNOT) gate, Hadamard operations should
be included and Z errors can be transformed into X errors.

The errors resulting from the imperfect memories are
similarly described by a dephasing model, such that the qubit
state ρA of memory A will be mapped, after a decay time t , to


A
t (ρA) = [1 − qm(t/2)]ρA + qm(t/2)ZρAZ, (5)

and an initial two-qubit Bell state between qubits A and B will
be transformed as [23]


A
t ⊗ 
B

t (|φ±
AB〉〈φ±

AB |)
= [1 − qm(t)]|φ±

AB〉〈φ±
AB |+ qm(t)|φ∓

AB〉〈φ∓
AB |, (6)

where qm(t) = (1 − e−t/τc )/2 and τc is the memory decoher-
ence time.

We shall encode our entangled pair in a qubit-repetition
code and in a CSS code. The advantage of these codes is
that, due to their resemblance to classical codes, the logical
operations can simply be understood as the corresponding
operations applied upon each physical qubit individually.
This permits doing the entanglement connection (swapping)
between different repeater stations and the syndrome mea-
surements (for error identification) at the same time, such
that the swappings can all be executed simultaneously [8].
The correction operations will then be performed only on
the initial and the final qubits of the whole protocol. The
encoded quantum repeater protocol operates much faster than
the nonencoded scheme, and, as a result, still performs well
even for rather short memory-decoherence times.

IV. QUANTUM REPEATER WITH ERROR CORRECTION

An n-qubit repetition code encodes one logical qubit using
n physical qubits in the following way: |0̄〉 = |0〉⊗n and |1̄〉 =
|1〉⊗n. These are the simplest QEC codes, correcting only one
type of error (in this case the X error). A more general family
of codes that corrects any kind of errors are the CSS codes.
A CSS code is constructed from two classical linear codes.
Imagine C1 is a linear code that encodes k1 bits in n bits
and C2 a linear code that encodes k2 bits in n bits, such that
C2 ⊂ C1, and C1 and C⊥

2 both correct (d − 1)/2 errors (C⊥
2

is the dual of code C2). The CSS quantum code is defined as
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the code encoding k qubits, k = k1 − k2, in n qubits capable
of correcting (d − 1)/2 errors, and is represented by [n,k,d].1

According to Ref. [8], the complete protocol for a quantum
repeater with encoding should, in principle, work as follows:
First, an encoded Bell pair between two repeater stations
is generated. Second, entanglement connection is performed
between neighboring stations. Imagine we want to connect
the Bell pairs (A,B) and (C,D). We should then realize a
Bell measurement on the qubits B and C. More specifically,
this measurement can be performed using a CNOT operation
between qubits B and C and a projective X measurement for
qubit B and a Z measurement for qubit C. For the encoded
states, we should be able to perform an encoded version of the
Bell measurement. Due to the transversality property of the
codes analyzed here, the encoded version of this operation is
the same as the operation applied individually for each pair
of the 2n physical qubits at every repeater station. Provided
the system were not noisy and the operations perfect, this
would be enough to distribute entanglement over the whole
distance. However, of course, this is not a realistic case. The
remarkable feature of the encoded scheme [8] is now that
when performing the entanglement connections, we are able
to realize the syndrome measurements at the same time, since
we are doing projective measurements on the 2n physical
qubits. After identifying the error, error correction should be
applied and it is guaranteed that the new state is a highly
entangled state. All the entanglement connection operations
will be performed simultaneously. However, it is important to
know exactly which final entangled state is generated. For this
purpose, the measurements at the entanglement connection
steps will determine the Pauli frame of the final entangled
state [8].

The whole protocol, especially a version of it adapted
to the use of repetition codes, can now be divided into the
following steps: (1) generation and distribution of the encoded
entangled states, (2) purification of the encoded entangled
states, (3) encoded entanglement connection, and (4) Pauli
frame determination, as illustrated in Fig. 1. Note that in this
version, we first encode and then purify, unlike the protocol
of Ref. [8]. However, as in Ref. [8], first the codewords are
locally prepared and then, with the help of ancilla states, the
encoded entangled state is generated.

There are some peculiarities regarding the different classes
of codes and schemes. In the scheme of Jiang et al. [8],
first codeword states are locally prepared together with n

purified physical Bell states between two repeater stations.
An encoded entangled pair is eventually obtained through
n pairwise teleportation-based CNOT gates between the local
encoded states and the corresponding halves of the Bell states.
In contrast, our scheme for the repetition code, as described
below, does not require any teleportation-based CNOT gates for
the generation of an encoded entangled pair. Consequently,

1We analyze in this paper only codes with k = 1. Note that the
letter k is used in the rest of the paper for the number of rounds of
purification. Repetition codes in this paper will also be represented
by [n,k,d], or more precisely, by [n,1,n], since one qubit (k = 1)
is encoded in n physical qubits and the error-correcting code will
correct (n − 1)/2 errors.

FIG. 1. (Color online) Schematic repeater protocol with encod-
ing. In step 1 an encoded entangled pair is distributed. First, at each
repeater station there are 2n physical qubits. Here n = 3. In step
1(i), these qubits (n of station 1 and n of station 2) are locally
prepared in the encoded state |0̄〉 + |1̄〉. By sending and measuring an
ancilla qubus state, the state |0̄0̄〉 + |1̄1̄〉 is distributed among the two
neighboring stations in step 1(ii). Two identical copies of the encoded
entangled state are generated, and so applying local operations
between each of the n physical qubits in stations 1 and 2 gives a
purified entangled encoded state. In step 3, the encoded Bell states are
connected, applying Bell measurements individually on each of the
2n physical qubits. The outcomes of the Bell measurements on qubits
ai and bi are used to identify the errors and the operations necessary
to recover the desired Bell state, or to determine the resulting “Pauli
frame” (step 4). Errors are represented by a lightning symbol. Red
color (striped lightning) indicates when memory errors occur for
the first time, orange color (empty lightning) symbolizes imperfect
entangled states due to losses in the transmission channel, and blue
color (filled lightning) corresponds to errors in the two-qubit gates.

neglecting the CNOT gates necessary for the local codeword
generation, while the scheme from Ref. [8] needs in total 4n

CNOT gates to initially generate a purified encoded entangled
pair (for one round of purification), we need CNOT gates only
for the purification step. As a result, we use just 2n CNOT gates
in the preparation of the purified encoded entangled pair. In
principle, even these purifications could be done without the
use of full CNOT gates [24–26]. Even more importantly, our
protocol for the qubit-repetition code uses only a single lossy
channel per encoding block (for any code size n), as opposed
to the n attenuated Bell pairs in Ref. [8]. Nevertheless, for a
version of the protocol based on the CSS codes, as described
in detail in Sec. VI, we shall follow a similar strategy to that of
Ref. [8], by teleporting a logical qubit using already prepared
Bell states.

The effective logical error probability for each encoding
block, after encoding a qubit in an [n,1,d] code and performing
syndrome measurement and correction, is

Qn =
n∑

j=(d+1)/2

(
n

j

)
q

j

eff(1 − qeff)
n−j , (7)

where qeff is the effective error probability per physical qubit
(more details of this will be given below). So the leading order
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of errors occurring with probability qeff is reduced to q
(d+1)/2
eff

through the use of QEC.
Since there are some subtleties regarding the repetition

codes and the CSS codes, the two families of codes are
analyzed separately below.

V. HYBRID QUANTUM REPEATER WITH REPETITION
CODE AGAINST MEMORY ERRORS

Although the repetition code is one of the simplest error-
correcting codes, it is not a full quantum error-correction
code, as it can correct only one type of error. With this
in mind, the qubit-repetition code will be used here to
protect the states against phase-flip (Z) errors originating
from memory imperfections. For this purpose, the gate errors
are considered sufficiently small such that the dominating
error is caused by memory imperfections.2 We produce
an encoded entangled state using a qubit-repetition code
[n,1,d]. For n = 3, |0〉 is encoded in |+̄〉 = |+++〉 and |1〉 is
encoded in |−̄〉 = |−−−〉, where |±〉 = |0〉±|1〉√

2
. The encoded

entangled pairs are connected by applying an encoded Bell
measurement between the two half nodes of the repeater
station. This is done by applying pairwise CNOT gates on
qubits {ai,bi} and by measuring qubits 2a in the logical
basis {|+̄〉,|−̄〉} and qubits 2b in the logical basis {|0̄〉,|1̄〉},
as shown in Fig. 1. The logical computational basis is
defined as |0̄〉 = |+̄〉+|−̄〉√

2
= 1

2 (|000〉 + |011〉 + |101〉 + |110〉)
and |1̄〉 = |+̄〉−|−̄〉√

2
= 1

2 (|111〉 + |100〉 + |010〉 + |001〉), and it
is straightforward to see that by measuring each physical qubit
in the {|0〉,|1〉} basis, if the output is an odd number of |0〉,
the logical qubit is in the state |0̄〉, otherwise, the logical qubit
is in the state |1̄〉. Following this procedure, we will not only
connect the encoded entangled states, but we can also identify
if an error occurred.

Ignoring the two-qubit gate for the moment, the probability
that a logical qubit suffers an error after encoding and applying
error correction is given by Eq. (7), where d = 3 and qeff =
qm(t/2):

Q3 = q3
m(t/2) + 3q2

m(t/2)[1 − qm(t/2)]. (8)

For a two-qubit encoded entangled state, the probability that
no error occurs is then given by3

P3 = (1 − Q3)2 + Q2
3. (9)

2The reason that the Z errors originating from the gate errors are not
included in the error correction is that Z and X errors occur with equal
probability in the imperfect CNOT gates. In this case, the scheme with
the repetition code performs worse than the nonencoded scheme. For
example, for the three-repetition code against X errors, the probability
of no error will be (1 − qz)3(1 − 3q2

x + 2q3
x ). Without encoding, the

probability of no error is (1 − qz)(1 − qx). If qx = qz = q, it is clear
that (1 − q)3(1 − 3q2 + 2q3) � (1 − q)(1 − q).

3Note that this is exactly the same relation that was shown previously
in Eqs. (5) and (6); there [1 − qm(t)] = [1 − qm(t/2)]2 + q2

m(t/2).

The final state after encoding, syndrome measurement, and
correction becomes4

P3[F |φ̄+〉〈φ̄+| + (1 − F )|ψ̄+〉〈ψ̄+|]
+ (1 − P3)[F |φ̄−〉〈φ̄−| + (1 − F )|ψ̄−〉〈ψ̄−|], (10)

where the encoded versions of the Bell states are repre-
sented by |φ̄±〉 = (|0̄〉|0̄〉 ± |1̄〉|1̄〉)/√2 and |ψ̄±〉 = (|0̄〉|1̄〉 ±
|1̄〉|0̄〉)/√2.

Although the encoding protects the original state against
memory imperfections, the same does not necessarily happen
for the two-qubit gate imperfections. In fact, the effect of these
errors may become even stronger in the encoded scheme,
affecting, in particular, the purification and swapping steps.
We should be very careful here, since the resulting state after
the two-qubit interaction will no longer necessarily remain a
mixture of Bell states. By having this in mind and the error
model in Eq. (3), we are able to estimate the probability
of success and the fidelity of the purification and swapping
steps. Before getting into details we should remember that,
assuming perfect two-qubit gates and an initial state of the
form A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|
with |φ±〉 = (|00〉 ± |11〉)/√2 and |ψ±〉 = (|01〉 ± |10〉)/√2,
after purification or swapping, the state still has the same form,
but with new coefficients given as follows [6,7]:

A′
pur = A2 + D2

Ppur
, B ′

pur = 2AD

Ppur
,

(11)

C ′
pur = B2 + C2

Ppur
, D′

pur = 2BC

Ppur
,

Ppur = (A + D)2 + (B + C)2, (12)

A′
swap = A2 + B2 + C2 + D2, B ′

swap = 2(AB + CD),
(13)

C ′
swap = 2(AC + BD), D′

swap = 2(BC + AD),

and we will use [17]

Pswap ≡ 1. (14)

Considering that the final state will be a complicated mixed
state, especially for higher orders of encoding, we include the
gate errors by treating these functions in a worst-case scenario.
According to this, lower bounds for the fidelity and probability
of success of purification and for the fidelity of swapping are
then given by

Ppur,lower(A,B,C,D) = Ppur(A,B,C,D)[1 − qg(x)]4n, (15)

Fpur,lower(A,B,C,D) = A′
pur(A,B,C,D)[1−qg(x)]4n, (16)

Fswap,lower(A,B,C,D) = A′
swap(A,B,C,D)[1 − qg(x)]2n.

(17)

For further details, see Appendix A.
We purify previously encoded states, but, since during the

entanglement distribution the qubits are already subject to

4Note that for the three-qubit phase-flip code, a logical Z̄ = ZZZ

operation on the codewords should be seen as a logical X̄ = XXX

operation on the computational basis.
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errors, we do error correction before purification. For this,
we first apply a Hadamard operation on the qubits, changing
|+〉 back to |0〉, and similarly, |−〉 back to |1〉, and then we
measure the qubits with the aid of an ancilla state, employing
majority voting. In order to do this, we use a qubus interacting
with the atoms in the cavities. The qubus is measured in the x

quadrature and so we can find out if an error occurred which
can be corrected. A similar procedure is performed in the
implementation of the encoded scheme, which will become
clear soon. Since error correction occurs deterministically and
locally at each repeater station, this does not affect the gen-
eration rates. The purification protocol between the encoded
states is very similar to the original version from Ref. [7]. First,
local operations are applied on each physical qubit. At side A,
the 2n physical qubits are subject to the transformation |0〉 →

(|0〉 + i|1〉)/√2 and |1〉 → (i|0〉 + |1〉)/√2. At side B, the
2n physical qubits are transformed as |0〉 → (|0〉 − i|1〉)/√2
and |1〉 → (−i|0〉 + |1〉)/√2. On both sides CNOT operations
are applied transversally on each n physical qubits from the
logical control and target qubits. The physical target qubits are
measured in the computational basis, and the logical qubits
are identified (remember that for the repetition code, an odd
number of 0 corresponds to the logical state |0̄〉 and an even
number of 0 refers to the logical state |1̄〉). When the logical
qubits measured on both sides coincide, we always keep the
resulting state, and this is a purified encoded entangled state.

The final fidelity of the encoded entangled state, after k

rounds of purification and N − 1 connections (swappings), is
given as a lower bound by

Ffinal = A′
swap(· · · A′

swap(︸ ︷︷ ︸
(log2 N) times

A′
pur(· · ·A′

pur︸ ︷︷ ︸
k times

(Aeff(F,tk),Beff(F,tk),Ceff(F,tk),Deff(F,tk)))))[1 − qg(x)]2n[(N−1)+2(2k−1)], (18)

where Aeff(F,t) = Pn(t)F , Beff(F,t) = [1 − Pn(t)]F , Ceff(F,t) = Pn(t)(1 − F ), Deff(F,t) = [1 − Pn(t)](1 − F ), N = L/L0

with L the total distance and L0 the fundamental distance between repeater stations, T0 = 2L0/c is the minimum time it takes to
successfully generate entanglement over L0, and c is the speed of light in an optical fiber (2 × 108 m/s). More details can be found
in Appendix A. We should be careful when defining the dephasing times tk . We make use of as many spatial resources as needed to
minimize the required temporal resources, such that the time considered in Eq. (18), tk = (k/2 + 1)T0, is the minimum time it takes
for the entanglement distribution and k rounds of entanglement purification to succeed. Notice here that Aeff(F,tk) is smaller than
the fidelity that we obtain after entanglement distribution and error correction but before purification, because tk � T0. The prob-
ability of success for one round of purification will be estimated as P1 = Ppur,lower(Aeff(F,t1),Beff(F,t1),Ceff(F,t1),Deff(F,t1)).
In the case of two rounds of purification, the probability of success will be given by

P2 = Ppur(Aeff(F,t2),Beff(F,t2),Ceff(F,t2),Deff(F,t2))Ppur(A
′
pur(Aeff(F,t2),Beff(F,t2),Ceff(F,t2),Deff(F,t2)), . . . ,

D′
pur(Aeff(F,t2),Beff(F,t2),Ceff(F,t2),Deff(F,t2)))[1 − qg(x)]12n.

The time spent for the encoding was neglected here, since
it will be much shorter than the time spent in classical
communication between repeater stations.

How precisely the encoding protocol can be implemented
is explained below.

A. Implementation

The implementation for the repeater with encoding, omit-
ting purification, can be described as follows. In the unencoded
scheme, a probe beam interacts with two qubits at two
neighboring repeater stations. With encoding, it is crucial
to observe (see below) that we may still use only one
probe beam; however, n qubits per half node are needed.
Initially, the qubits are all in the state [(|0〉 + |1〉)/√2]⊗n. It is
important for the encoded scheme that the generation of the
locally created encoded states occurs deterministically,5 since

5This is similar to Ref. [8] where first Greenberger-Horne-Zeilinger
(GHZ) states are produced locally, which are then teleported into
the initially created nonlocal Bell pairs. Note that in Ref. [8], the
purification of these initially distributed Bells pairs is also made

otherwise the whole protocol would again become too slow.
Through interaction of the qubits with a coherent state with
sufficiently large amplitude, β  1 with β real, it is possible
to prepare the n-qubit state (|0〉⊗n + |1〉⊗n)/

√
2, for example,

by employing homodyne measurements. This works because
the interaction between qubits and qubus (probe) functions
as a controlled-phase rotation and we are, in principle, able
to deterministically distinguish between the phase-rotated
components of |β〉 by measuring the x quadrature (that is
perpendicular to the direction of the phase rotation). For
β  1, this can be even achieved in an almost error-free
fashion. By preparing the qubits in this way, the transmitted
qubus beam (between two stations) will interact only with one
qubit pair from the chains of n qubits. More specifically, let
us take a look at the three-qubit repetition code as illustrated
in Fig. 2. The qubits are initiated in the state ( |0〉+|1〉√

2
)⊗3. As

shown in step 2.1, this state interacts with a coherent state |β〉,

near deterministic by using sufficiently many temporal and spatial
resources. We shall follow a similar strategy, but in our case for the
initial distributions; see Sec. VII.
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1. Non-encoded scheme

probe pulse

Deterministic state preparation:

Interaction:

( )111000
2

1 +

 ( ) ( ) ( )θθθ 32 3
int

2
int

1
int −UUU

channel

Probabilistic state preparation:

( )111111000000
2

1 +

 12>>βθ

 1≤θα

2. Encoded scheme
2.1 Preparation of the local codeword states

2.2 Distribution of an encoded pair

FIG. 2. (Color online) Hybrid quantum repeater with repetition
code. The qubits are initiated in the state (|0〉 + |1〉)⊗3; the nor-
malization factor is omitted. Step 2.1: interacting the qubits with
a coherent state |β〉. By measuring |β〉, the state |000〉 + |111〉 is
prepared. Step 2.2: a probe state |α〉 interacts with only one qubit at
each repeater station. By measuring the qubus, the entangled encoded
state |000〉|000〉 + |111〉|111〉 is prepared.

and this interaction is described by

U 1
int(θ )U 2

int(2θ )U 3
int(−3θ )

[( |0〉 + |1〉√
2

)⊗3

|β〉
]

= 1

2
√

2
[(|000〉 + |111〉)|β〉+|001〉|βe3iθ 〉+|010〉|βe−2iθ 〉

+ |100〉|βe−iθ 〉 + |110〉|βe−3iθ 〉 + |101〉|βe2iθ 〉
+ |011〉|βeiθ 〉]. (19)

By measuring the x quadrature of the probe beam, the state
|000〉+|111〉√

2
is deterministically generated up to a known phase

shift [27] and local bit flip operations. In the next step 2.2, a
probe state |α〉 interacts with only one qubit at each repeater
station. This time, after performing a USD measurement on
the qubus, as was explained in Sec. II, the entangled encoded
state

|000〉|000〉 + |111〉|111〉√
2

(20)

is prepared.6 To prepare an encoded entangled state in the
conjugate basis, we just have to apply Hadamard operations
on the physical qubits immediately after the local codeword
state has been produced and the probe beam has interacted with
one of the qubits. We assumed here that the codeword state at
side B is prepared only at the very moment when the probe
qubus arrives at this side, thus avoiding memory dephasing
during the transmission time. For larger codes (n > 3), similar
sequences of interactions can be found. However, considering
the typical size of θ and the number of interactions, it will
be more practical to use more than one local qubus beam for
the preparation of the encoded state. For more details, see
Appendix B.

Although the scheme presented here has a fairly simple
description, its experimental implementation can be techno-
logically challenging. For an almost error-free and determin-
istic scheme, there is the constraint βθ2  1,7 which for
small phase shifts of θ ∼ 10−2 requires bright beams or even
ultrabright beams (i.e., pulses with mean photon number larger
than 108). Notice that the probability of error caused by the
nonorthogonality of the coherent states with finite amplitude
is orders of magnitude smaller than the other errors considered
here (Perror < 10−5 for βθ2 > 9 [27]) and will be neglected in
our analysis. Moreover, in our scheme the main contribution of
losses is through the transmission channel; losses that happen
in the interaction between the qubus state |β〉 and the atomic
qubits are strictly local and hence will be neglected here.8 Note
that prior to entanglement purification, the only remaining
elements which are probabilistic and which contribute to the
infidelity of the encoded pairs are the postselection of the single
qubus beam and its lossy transmission, respectively. The
postselection is then achieved through a USD measurement
[Fig. 2 and Eq. (2)]. In the protocol of Ref. [8], in contrast, first,
all of the N0 > n Bell pairs are subject to fiber attenuations
through their channel transmissions (see Appendix D of
Ref. [8]), prior to their purifications and the encoding steps
(in precisely this order, as opposed to that of our protocol with
first encoding, second, transmission, and third, purification).
As a result, in our scheme, we minimize the effect of the
lossy channel transmissions and the corresponding need for
entanglement purification.

6Note here that there is an important difference between the state
preparation in step 2.1 and in step 2.2. In the first step, the coherent
state |β〉 interacts with cavities that are locally positioned next
to each other, and by using a sufficiently bright beam, β  1,
homodyne measurements in the x quadrature will be enough to
deterministically prepare the state up to a known phase shift and
local bit-flip operations. In the second step, the probe beam interacts
with two cavities spatially separated from each other. In this case, the
effect of photon losses in the channel depends on the amplitude of
the beam, and we cannot make α arbitrarily large. Consequently, the
generation of the entangled state must become nondeterministic.

7If we did allow for an almost error-free but probabilistic scheme,
we would have βθ  1 using p-quadrature measurements.

8Note that unlike these encoding and entangling steps, for the
purification and swapping, local losses will be included, as the latter
require (in the present protocol) full CNOT gates which are most
sensitive to the local losses.
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VI. HYBRID QUANTUM REPEATER WITH CSS CODE
AGAINST MEMORY AND GATE ERRORS

One important property of a CSS code is that the encoded
version of many important gates can be implemented transver-
sally, i.e., the encoded version of the gate is simply the same
gate applied individually to each physical qubit in the code.
For example, the encoded version of the X operation, i.e., the
logical X, is represented by X̄ with X̄ = X⊗n. Not only does
the X operation have a transverse implementation, but so do
any Pauli and Clifford gates such as Y , Z, Hadamard, CNOT,
and CZ gates. These are exactly the operations we will need in
our scheme.9

Moreover, the encoded versions of some measurements
(for instance, in the eigenbasis of X, Y , and Z) have also a
transverse implementation. Consider a measurement in the Z̄

basis on an arbitrary encoded state a|0̄〉 + b|1̄〉. The resulting
state will be with probability |a|2 the state |0̄〉 and with
probability |b|2 the state |1̄〉. Similarly, if we measure all the n

qubits in the Z basis, we obtain the Hamming weight10 of the
state and, consequently, we get the correct result.

Exploring then the possibility of the transverse implemen-
tation of encoded operations and measurements, the protocol
for the quantum repeater with encoding using CSS codes
can be executed similarly to what was explained above. The
main difference now is the order of the encoding and the
purification steps. For the repetition codes, purification occurs
after encoding. The same procedure could be applied for the
CSS codes, but in this case the distance d is usually smaller
than the number of qubits n, and therefore, when more than d−1

2
errors occur, the state is not necessarily defined in the codeword
space anymore. This causes the purification protocol to work
extremely inefficiently. Consequently, for the CSS codes we
follow the same strategy as in Ref. [8]: the encoded entangled
state is prepared by teleporting a logical qubit generated
locally using n already prepared purified Bell states distributed
between the repeater stations.

Assuming that the error probabilities qg , qm, and (1 − F )
are sufficiently small, as in Ref. [8], we estimate an effective
error probability per physical qubit as

qeff = 3qm(t ′k/2) + 2qg(x) + (1 − F ). (21)

If purification occurs, (1 − F ) will be replaced by (1 − Fk).
Here, Fk is the fidelity after k rounds of purification using the
initial state of Eq. (1), the purification protocol from Ref. [7],
and the gate error from Eq. (3); an explicit formula and further
details are presented in Appendix C. We further exploit that
the memory decay time is t ′k = (k + 1)T0/2, assuming that
for the distribution of the entanglement (and for purification)
the qubits suffer memory dephasing just during the time it
takes for classical communication of a successful distribution
(purification) event.

9An example of a gate that cannot be implemented transversally in
a CSS code is the π/8 gate [18], which is a non-Clifford gate.
10In the present context, the Hamming weight is the number of

physical qubits that are different from 0 in a state. The CSS codes
have the nice property that if one of the codewords, for example |0̄〉,
has an even Hamming weight, then the complementary codeword, in
this example |1̄〉, has odd Hamming weight.

The effective logical error probability is given by combining
Eqs. (7) and (21). The final fidelity is given by

Ffinal = (1 − Qn)2N . (22)

Although we do not propose an explicit implementation for
the CSS codes, the generation of the codeword states from
the CSS codes (in the form of cluster states), using weak
nonlinearities similar to those employed in the HQR, was
proposed in Ref. [28]. However, that scheme, in its most
practical manifestation, is probabilistic. This probabilistic
feature will drastically decrease the generation rates and
require longer-lasting memories (suppressing the benefit of
the encoding against memory errors). Instead, in Ref. [29],
the codewords are created in a deterministic fashion using a
similar hybrid system. However, the codeword cluster states
generated in this proposal are in fact photonic states, which
work badly as a memory. Nonetheless, in principle, a similar
approach appears feasible also in the present context of CSS
encoding for the HQR using atomic memories. We leave a
detailed proposal of an explicit implementation of a CSS HQR
for future research.

VII. RATE ANALYSIS

Complementary to our analysis in Ref. [17], the pair-
creation rates will now be calculated, assuming, as in
Refs. [8,23,30,31], that there are sufficiently many initial
resources, such that it is (almost) guaranteed that at least one
entangled pair will be successfully generated between two
neighboring repeater stations. In other words, for instance, for
the repetition codes, we assume s  1, where s is the number
of memory blocks in each half repeater station. In every block
there are n memory qubits, conditionally prepared in the state
|0̄〉+|1̄〉√

2
. To give an example, in Fig. 2, the case of one block, s =

1, and three physical qubits, n = 3, is shown. Assuming that we
have to distribute entanglement only for the top physical qubits
of the blocks, the average number of encoded entangled pairs
generated at time T0 will be sP0, where P0 is the probability of
success in generating an entangled pair, in our case given by
Eq. (2). The rate of generating an encoded entangled pair would
be given then by sP0

T0
. The rate of successfully generating an en-

coded entangled pair per each of the sn memories employed in
every half node of the repeater is then P0

nT0
. Since the swapping

step is taken to be deterministic, this can be considered also as
the rate of successful generation of an encoded entangled pair
over the total distance L (without purification).

For the CSS codes, let us use s ′ as the total number of
physical qubits available at each half node of the repeater
station which are involved in the distribution of the entangled
states. This number of entangled pairs is on average given
by s ′P0. Since for each encoding block we need at least
n entangled pairs to teleport the logical qubits, the average
number of encoded entangled pairs is calculated as s ′P0

n
. The

rate of generation of an encoded pair is then given by s ′P0
nT0

. Note
that we use s ′ for both the “flying” and “stationary” (memory)
qubits, such that the rate of generation of an encoded entangled
pair per memory can be written as P0

nT0
. This is in fact an

overestimation of the number of stationary memories, since
not all physical qubits involved need to be memory qubits.
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FIG. 3. (Color online) Rates for a HQR without purification (solid
line), with one round of purification (dashed line), and two rounds of
purification (dotted line) in the first nesting level with L = 1280 km,
L0 = 20 km, τc = 0.1 s, and 1 − T = 0.1%. Blue curves are the
scheme without encoding, red (thick) curves for the scheme with
encoding in the [3,1,3] code, and black (thin) curves for the scheme
with encoding in the [7,1,3] code. The inset shows that in order to
obtain Ffinal > 0.9, encoding is absolutely necessary.

To summarize, the rate of successful generation of an
entangled pair over a total distance L, divided into segments
L0, per each memory employed in every half node of the
repeater, for both repetition and CSS codes, is given by

Rn = P0

nT0
. (23)

Notice here that for the scheme without purification, the
memory and gate errors will affect the final fidelity of the
entangled state, but will have no direct impact on the rates.

Depending on the application aimed at for the resulting
large-distance entangled pair, purification should be included
in the QEC protocol. The rates including purification are
described by

Rpur,n = P0Pk

n2k(k/2 + 1)T0
, (24)

where Pk is the probability of success for the kth purification
step. For the repetition code, Pk = Ppur,lower,k , defined in
Eq. (A7) in Appendix A. In the case of CSS codes, P1 is
defined using Eq. (C3); for more rounds of purification it
is possible to deduce more general expressions for Pk with
the help of the results from Appendix C. The factor 2k

appears, because for each round of the purification, already
initially twice as many entangled pairs are necessary. The
time it takes to produce an encoded purified entangled pair
is (k/2 + 1)T0; T0 is the time it takes to distribute successfully
the entangled pairs and k/2 is the time spent to communicate
that purification succeeded. Compared to the time spent on
classical communication between repeater stations, the time
needed for the local operations is much shorter, and so these
operation times are neglected here. Since all the swappings
happen at the same time, purification will occur only at the
first nesting level, as in Ref. [17]. Let us now discuss the rates
that we obtained.

First, in Fig. 3, the rates are shown to generate an entangled
pair for a total distance of L = 1280 km, L0 = 20 km, without
purification, and with one and two rounds of purification.
Here we considered an imperfect memory with decoherence
time τc = 0.1 s,11 while the parameter of local losses in the
CNOT gates is 1 − T = 0.1%. We compared the performance
of various schemes, namely, encoding with the three-qubit
repetition code [3,1,3] and with the Steane code [7,1,3], and
without encoding. We will stick in the rest of our analysis
to two rounds of purification, as typically this turned out to
be the best approach; however, as can be seen in Fig. 3, it is
not always the best choice. We find that in order to achieve
Ffinal > 0.9, encoding is absolutely necessary in this parameter
regime, and that a suitable code is the Steane code.

In Fig. 4, we plotted the rates for L = 1280 km, L0 =
20 km, and the following codes: 3-qubit repetition [3,1,3], 7-
qubit repetition [7,1,7], 51-qubit repetition [51,1,51], Steane
[7,1,3], Bacon-Shor [25,1,5], and Golay [23,1,7]; and for
comparison, also the nonencoded scheme. We plotted the rates
for different values of τc and T : 1 − T = 0.1% (top), 1 − T =
0.01% (bottom), τc = 0.01 s (left), τc = 0.1 s (center), and
τc = 1 s (right). As expected, repetition codes (which cannot
correct gate errors) perform better when the gate errors are
sufficiently small (1 − T = 0.01%). We also observe that for
τc � 0.01 s, the CSS codes have a very bad performance.
However, τc = 0.1 s, even with 1 − T = 0.1%, is already
enough to achieve high final fidelities (Ffinal > 0.9) using the
CSS codes. It is interesting to notice that for the parameters
presented here, the [3,1,3] code always performs better than
the other repetition codes. This can be understood by noting
that the bigger the repetition code is, the more susceptible it
is to gate errors. We would like to mention that even if we
allow for decoherence times of the order of τc = 10 s, the
HQR can still not afford gates with loss parameter of the order
of 1 − T = 1%. In addition, a scheme with 1 − T = 0.01%
performs almost identically to a scheme with perfect gates,
1 − T = 0.

It is clear that there are trade-offs between the efficiency
of the codes versus the values of decoherence time and
the local gate error parameter. As usually observed in QEC
schemes, to make the code more complicated and bigger
(i.e., use larger spaces and bigger circuits) would in principle
suppress the errors more effectively; however, all the extra
resources and gates are also subject to errors; so one not
only reduces the existing errors, but also introduces new
sources of errors. Considering Ffinal = 0.95, for τc = 0.01 s
and 1 − T = 0.01%, the three-repetition code (see Fig. 4,
left bottom) achieves a rate of about 24 pairs per second per
employed memory qubit. For τc = 0.1 s and 1 − T = 0.1%,
and the same final fidelity, the [23,1,7] code (see Fig. 4,
center top) can achieve a rate of about six pairs per second
per memory. However, for τc = 1 s and 1 − T = 0.1%, the
[7,1,3] code (see Fig. 4, right top) can achieve rates of
about 14 pairs per second per memory. Note that the final
fidelities presented here are those exactly obtained at the
time when the entangled pair was distributed over the entire

11Currently experimentally available memory times are of the order
of ms for electronic spins and s for nuclear spins.
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FIG. 4. (Color online) Rates for a HQR with two rounds of purification in the first nesting level with L = 1280 km, L0 = 20 km, τc = 0.01 s
(left), τc = 0.1 s (center), τc = 1 s (right), 1 − T = 0.1% (top), and 1 − T = 0.01% (bottom). Blue dot-dashed (thin) line is for non-encoded,
red dashed line for the [3,1,3] code, purple dashed (thin) line for the [7,1,7] code, gray dashed (thick) line for the [51,1,51] code, orange solid
line for the [7,1,3] code, black solid (thin) line for the [23,1,7] code, and green solid (thick) line for the [25,1,5] code.

distance L. Consequently, the dephasing errors due to memory
imperfections will continue to degrade the fidelity whenever
the final pair is not immediately consumed and used in an
application.

VIII. CONCLUSION

We presented here an explicit protocol for a hybrid quantum
repeater including the use of QEC codes in the presence of
imperfect quantum memories and local gate errors. We showed
for the case of repetition codes how encoded states can be
generated utilizing the same interactions as for the unencoded
scheme. Moreover, we calculated the entanglement generation
rates and, to properly compare the different schemes, we
computed here the rates per memory qubit. We showed that
our system, with [23,1,7], with reasonable imperfections,
can achieve rates of six pairs per second per memory with
final fidelities of about F = 0.95 for a repeater spacing of
L0 = 20 km, a final distance of L = 1280 km, local gate errors
of 1 − T = 0.1%, and a decoherence time of τc = 0.1 s. For
comparison, in the scheme of Ref. [30], a rate of 2500 pairs per
second is achieved for L = 1000 km and final fidelities higher
than F = 0.99, requiring around 90 qubits per repeater station.
Roughly, this corresponds to a rate of 55 pairs per second per
memory. However, in that scheme, the fundamental distance
has a different value, L0 = 40 km, and those authors assumed
perfect local gates, making the comparison not completely fair.

The original encoded repeater of Ref. [8] achieves a
generation rate of 100 pairs per second for long distances
(L > 1000 km) with final fidelities of F = 0.9984. However,
the system parameters used in that analysis are quite different
from those presented here. In Ref. [8], the fundamental
distance is L0 = 10 km, the decoherence time is τc ≈ 7 ms, the
effective error parameter is qeff = 0.3%, and approximately 6n

qubits at each station are employed, of which 2n are memory
qubits, and the 4n remaining qubits are employed for the local
operations on the memory qubits for QEC. This leads, for
example, for a three-repetition code, to a rate of approximately
33 pairs per second per memory.

We showed here that the problem of imperfect memories
can be circumvented if we allow for a large number of
initial resources and sufficiently good local gates. We further
demonstrated that there are trade-offs between the code’s
efficiency, the decoherence time, and the local gate errors.
Depending on these values, we conclude that QEC codes will
not always help, and every single code will be efficient in a
different regime. Our HQR with encoding using the Golay
code [23,1,7] can achieve rates of 1000 bits/s over 1280 km
with final fidelities of about F = 0.95 provided we have 166
memory qubits per half node of the repeater station with
decoherence times of 100 ms. This decoherence time has
been already exceeded by one order of magnitude in current
experiments using nuclear spin systems.
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APPENDIX A

Imagine we want to purify an entangled state from two
initial states between repeater stations A and B, ρA1B1 ⊗ ρA2B2 .
Let us consider that the initial states, ρA1B1 and ρA2B2 ,
are of the form A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| +
D|ψ−〉〈ψ−|, where for the present purpose, A, B, C, and
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D are simply constants. Following the purification protocol
from Refs. [6,7] and considering the error model from Eq. (3),
the resulting (unnormalized) state ρc is

ρc = [1 − qg(x)]4[(A2 + D2)|φ+〉〈φ+| + 2AD|φ−〉〈φ−|
+ (B2 + C2)|ψ+〉〈ψ+| + 2BC|ψ−〉〈ψ−|] + · · · .

(A1)

The terms represented by (· · ·) are those where at least one error
occurred in the two-qubit gates. Note that for the case without
encoding, these terms can be easily calculated. However, with
encoding, especially for large codes, the explicit derivation of
these terms is extremely complicated.

The final fidelity and the probability of success of purifica-
tion are given by

Fpur = 〈φ+|ρc|φ+〉
Trρc

, (A2)

Ppur = Trρc. (A3)

Since we do not know the exact form of ρc, we will estimate
these quantities in a worst-case scenario, thus aiming at lower
bounds. For the fidelity, one such bound is obtained when
the denominator of the fraction takes on its maximum value
and the numerator is just given by the corresponding terms
explicitly shown in Eq. (A1), resulting in

Fpur,lower = (A2 + D2)[1 − qg(x)]4

(A + D)2 + (B + C)2
= A′

pur[1 − qg(x)]4.

(A4)

The denominator was calculated, assuming qg � 1, such that
in first order of qg , the trace is written as

Trρc = [1 − 4qg(x)][(A + D)2 + (B + C)2] + 4qg(x)Trρ?

� {(1 − [(A + D)2 + (B + C)2]}4qg(x)

+ [(A + D)2 + (B + C)2], (A5)

where ρ? is the term we do not know in Eq. (A1) up
to coefficients with dominating order 4qg(x)[1 − qg(x)]3 ≈

4qg(x). This corresponds to the probability that one error
occurred in one of the two qubits at side A or B. The inequality
appears assuming Trρ? � 1. We showed that {1 − [(A +
D)2 + (B + C)2]}4qg(x) + [(A + D)2 + (B + C)2] is an up-
per bound for the denominator in first order of qg(x). We ap-
proximate this bound {1 − [(A + D)2 + (B + C)2]}4qg(x) +
[(A + D)2 + (B + C)2] ≈ (A + D)2 + (B + C)2, assuming
that {1 − [(A + D)2 + (B + C)2]} ∼ qg(x) such that the first
term of the sum can again be neglected. Notice also that
the numerical values in our rate analysis are not noticeably
changed by using this approximation whenever 1 − T �
0.1%. Comparing with the exact formula for one round of
purification and imperfect quantum gates in Eq. (C3) in
Appendix C, we can see that this is indeed an upper bound
for Trρc in first order of qg(x).

Similarly, we obtain as a lower bound for the probability of
success for purification:

Ppur,lower = [(A + D)2 + (B + C)2][1 − qg(x)]4. (A6)

Provided that the gate errors are sufficiently small, this bound
represents a good estimate of the exact value.

The argument used for approximating the fidelity for the
swapping is very similar to that given above. However, an
important difference is that the swapping operation is a trace-
preserving operation, such that, including gate errors, we can
guarantee that the probability of success of swapping will
always be 1.

For the encoded state, the number of two-qubit gates
necessary to realize the swapping is equal to the number of
physical qubits per block, n. This is the reason why in Eq. (17)
the fidelity is multiplied by a factor of [1 − qg(x)]2n. The same
explanation applies to the purification step, but in this case, we
obtain a factor of [1 − qg(x)]4n; here a two-qubit gate has to
be applied to each qubit of every entangled pair.

For more rounds of purification, the same pattern is fol-
lowed. Considering sufficiently many initial spatial resources,
for the kth round of purification (k � 1), the lower bound will
be

Ppur,lower,k = (Ppur(A
′
pur( · · ·A′

pur︸ ︷︷ ︸
(k−1) times

(A,B,C,D)))) · · · (Ppur(A,B,C,D))[1 − qg(x)]4n(2k−1), (A7)

using Eqs. (11) and (12). For the total fidelity, after the kth round of purification and N − 1 connections, the lower bound is given
by

A′
swap(· · ·A′

swap(︸ ︷︷ ︸
(log2 N) times

A′
pur(· · · A′

pur︸ ︷︷ ︸
k times

(Aeff(F,tk),Beff(F,tk),Ceff(F,tk),Deff(F,tk)))))[1 − qg(x)]2n[(N−1)+2(2k−1)], (A8)

using Eqs. (11)–(13).

APPENDIX B

Similarly to what was presented for the three-repetition
code in Sec. V, the state |0̄〉+|1̄〉

2 for the five-repetition
code can be deterministically obtained by an interac-
tion of the qubus with the atomic qubits described
by U 1

int(θ )U 2
int(2θ )U 3

int(4θ )U 4
int(8θ )U 5

int(−15θ ) and an x-

quadrature measurement on the qubus. Note that depending
on the measured value of x, a phase shift and local bit-
flip operations may still be applied to change the resulting
state to the desired one. In a more systematic way, for an
n-repetition code, this interaction sequence can be written as∏n−1

j=1 U
j
int(2

j−1θ )Un
int[−(2n−1 − 1)θ ]. Assuming that we want
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to distinguish all the |βe±iθj 〉 rotated components for different
j ’s, (2n−1 − 1) must not be bigger than π . For θ ∼ 10−2,
this requirement is not fulfilled for codes with n � 11, where
already for n = 11, (210 − 1)θ ∼ 3π .

An alternative scheme uses more qubuses for these inter-
actions. Let us start with the three-qubit repetition code again.
The encoded state |0̄〉+|1̄〉

2 is generated as illustrated in Fig. 5.
First, the qubus |β1〉 interacts with the atoms placed in cavities
1 and 2, with interactions described by

U 1
int(θ )U 2

int(−θ )

[( |0〉 + |1〉√
2

)⊗2

|β1〉
]

= 1

2
[(|00〉 + |11〉)|β1〉 + |01〉|β1e

iθ 〉 + |10〉|β1e
−iθ 〉].

(B1)

Then a second qubus |β2〉 interacts with the atoms placed in
cavities 2 and 3 as follows:

β1

β2

1

2

3

FIG. 5. (Color online) Preparing the state |0̄〉 + |1̄〉. The nor-
malization factor is omitted. The qubits are initiated in the state
(|0〉 + |1〉)⊗3. First, a qubus |β1〉 interacts with atomic qubits 1 and 2.
Then a second qubus |β2〉 interacts with qubits 2 and 3. Both qubuses
have their x quadrature measured. All results are valid, since the
generation is deterministic. Depending on the measurement results,
a phase shift and local bit-flip operations should be applied to the
resulting qubit state.

U 2
int(−θ )U 3

int(θ )

[
(|00〉 + |11〉)|β1〉 + |01〉|β1e

iθ 〉 + |10〉|β1e
−iθ 〉

2

( |0〉 + |1〉√
2

)
|β2〉

]

= 1

2
√

2
[(|000〉 + |111〉)|β1,β2〉 + |001〉|β1,β2e

−iθ 〉 + |010〉|β1e
iθ ,β2e

iθ 〉 + |100〉|β1e
−iθ ,β2〉

+ |110〉|β1,β2e
iθ 〉 + |101〉|β1e

−iθ ,β2e
−iθ 〉 + |011〉|β1e

iθ ,β2〉]. (B2)

By measuring the x quadrature separately for each of the two
qubuses (|β1〉 and |β2〉), the encoded state is deterministically
produced. For larger codes, the same procedure can be applied:
always alternate θ/2 rotations with −θ/2 rotations and use
n − 1 qubuses interacting only with one pair of atoms of
the n-qubit chain. Finally, each atom, ignoring the atoms
at the ends of the chain, interacts with two different qubus
states.

Note that, similarly to Ref. [28], the scheme proposed
here could also be used to generate cluster states via weak
nonlinearities. However, in Ref. [28], the cluster states are
obtained through homodyne measurements in the p quadrature
of the qubus, which makes that scheme probabilistic.

APPENDIX C

The effective error probability qeff estimates the probability
that a physical qubit suffers an odd number of Z errors. In fact,
assuming these probabilities sufficiently small [8], it estimates
the probability that each physical qubit suffers one Z error.
The effective error probability depends on the error parameters
[(1 − F ), qg(x), and qm(t)] introduced through Eqs. (1), (3),
and (6). We choose the Z error, because in our scheme it occurs
more frequently than the X error.

Before calculating the effective error probability, we should
examine the effect of a CNOT gate. An error that initially affects
only the target qubit will, after the CNOT operation, also result

in an error on the control qubit, in such a way that these errors
(and their probabilities) will accumulate.

The first step for the CSS-encoding protocol presented here
is the entanglement creation (and eventually purification of the
entangled states). For this, the probability that each physical
qubit suffers a phase flip is given by q1 = (1 − Fk) + qm(t/2),
where k is the number of rounds of purification. For k = 0, F0

is simply the initial fidelity F . After the entangled, possibly
purified, pairs have been created, the logical qubits are locally
prepared and each physical qubit is subject to a Z-error
probability of q2 = qm(t/2). After this, the encoded entangled
state is generated by teleportation-based CNOT gates, and the
errors accumulate, such that the error probabilities are q3,c =
q1 + q2 + qg(x) and q3,t = q2, for control and target qubits,
respectively. After entanglement connections take place, the
accumulated probability for obtaining a wrong output is
q4,c = q3,c + q3,t + qg(x) and q4,t = q2. For simplicity, we
may just use the largest from these two values to estimate
the effective error probability per physical qubit, such that

qeff = 3qm(t/2) + (1 − Fk) + 2qg(x). (C1)

The decay time t is considered to be the time it takes
for classical communication to announce that entanglement
distribution succeeded (T0/2) and the time it takes to announce
that purification succeeded (again T0/2). Hence t = t ′k =
(k + 1)T0/2. Note that t ′k is different from the decay time
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tk for the repetition code by T0/2. The reason for this is
that for the repetition-code protocol, the logical qubits are
already decaying from the very beginning. We should be
careful in defining Fk , because gate errors must be included
here. If we start with two copies of the entangled state

A|φ+〉〈φ+| + B|φ−〉〈φ−| + C|ψ+〉〈ψ+| + D|ψ−〉〈ψ−|, fol-
lowing the purification protocol from Ref. [7] and considering
the gate error model from Eq. (3),the resulting state after one
round of purification is given by A′|φ+〉〈φ+| + B ′|φ−〉〈φ−| +
C ′|ψ+〉〈ψ+| + D′|ψ−〉〈ψ−|, where

A′ = 1

P
imp
pur

(
D2 + A2[1 + 2(−1 + qg)qg]2 − 2A(−1 + qg)qg

[
C + 2D + 2(B − C − 2D)qg + 2(−B + C + 2D)q2

g

]
− 2D(−1 + qg)qg{−2D − 2(C + D)(−1 + qg)qg + B[1 + 2(−1 + qg)qg]}),

B ′ = 1

P
imp
pur

[−2D(−1 + qg)qg

[
C + D − 2(−B + C + D)qg + 2(−B + C + D)q2

g

] + 2A2qg{1 + qg[−3 − 2(−2 + qg)qg]}

+ 2A(D[1 + 2(−1 + qg)qg]2 − (−1 + qg)qg{−2C(−1 + qg)qg + B[1 + 2(−1 + qg)qg]})],
(C2)

C ′ = 1

P
imp
pur

(C2 + B2[1 + 2(−1 + qg)qg]2 − 2C(−1 + qg)qg[−2C − 2(C + D)(−1 + qg)qg + A(1 + 2(−1 + qg)qg)]

− 2B(−1 + qg)qg{−2A(−1 + qg)qg + D[1 + 2(−1 + qg)qg] + C[2 + 4(−1 + qg)qg]}),
D′ = 1

P
imp
pur

[−2C(−1 + qg)qg

{
C + D − 2(−A + C + D)qg + 2(−A + C + D)q2

g

} + 2B2qg{1 + qg[−3 − 2(−2 + qg)qg]}

+ 2B(C[1 + 2(−1 + qg)qg]2 − (−1 + qg)qg{−2D(−1 + qg)qg + A[1 + 2(−1 + qg)qg]})],

and P
imp
pur is the purification probability of success given by

P imp
pur = (B + C)2 + (A + D)2 − 2(A − B − C + D)2qg

+ 2(A − B − C + D)2q2
g . (C3)

For the case of qg = 0, Eqs. (C2) and (C3) are in accordance
with Ref. [7].

The fidelity after the first round of purification, F1, is
given by A′ when A = F , B = 1 − F , and C = D = 0. For
small qg and high initial fidelity, which is the regime under
consideration here, the dominant coefficient (after A′) is B ′.
Note that B ′ ≈ (1 − F1) for qg � 1, and thus the probability
that one physical qubit suffers an error becomes (1 − F1).
For more rounds of purification, a similar procedure can be
performed.

We considered the probability of no error per physi-
cal qubit immediately after one round of purification as
[1 − qm(t/2)]F1, such that the probability of one error is
approximated by (1 − F1) + qm(t/2). The purification pro-
tocol, however, can improve the fidelity against memory

dephasing that happened during the entanglement distri-
bution. This can be computed by calculating F1, sub-
stituting A = F [1 − qm(t/2)] + (1 − F )qm(t/2), B = (1 −
F )[1 − qm(t/2)] + Fqm(t/2), and C = D = 0 in A′, with
t = T0/2. Although this strategy can improve the final fidelity,
the qubits decay further after the purification step, and so, for
simplicity, we shall ignore this fact. Indeed, in this case, the
probability of success for the purification should be smaller;
however, for small probabilities of errors, this difference is so
small and we may neglect it.

We should notice here that Eq. (C1) is not identical, though
it is similar, to the one presented in Appendix A of Ref. [8].
This lies in the fact that, although our protocol was inspired
by the paper of Jiang et al., there are some crucial differences.
To cite one, in our analysis, we do not assume that our purified
entangled pairs are perfect, and the imperfect generation of
an entangled pair is also included as an error. In addition,
the qubits suffer memory dephasing errors already during the
purification step. Finally, our error model is different from that
used in Ref. [8].
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A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895
(1993).

[7] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu,
and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).

[8] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter,
and M. D. Lukin, Phys. Rev. A 79, 032325 (2009).

[9] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

052301-12

http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1016/0375-9601(82)90084-6
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevLett.81.5932
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/PhysRevA.59.169
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1103/PhysRevA.79.032325
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500


HYBRID QUANTUM REPEATER WITH ENCODING PHYSICAL REVIEW A 86, 052301 (2012)

[10] L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
Phys. Rev. A 72, 052330 (2005).

[11] L. I. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
Phys. Rev. Lett. 96, 070504 (2006).

[12] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard,
H. Zbinden, and N. Gisin, Phys. Rev. Lett. 98, 190503 (2007).

[13] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev.
Mod. Phys. 83, 33 (2011).

[14] P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto,
W. J. Munro, and Y. Yamamoto, Phys. Rev. Lett. 96, 240501
(2006).

[15] T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and
Y. Yamamoto, New J. Phys. 8, 184 (2006).

[16] P. van Loock, N. Lütkenhaus, W. J. Munro, and K. Nemoto,
Phys. Rev. A 78, 062319 (2008).

[17] N. K. Bernardes, L. Praxmeyer, and P. van Loock, Phys. Rev. A
83, 012323 (2011).

[18] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
England, 2000).

[19] K. Kreis and P. van Loock, Phys. Rev. A 85, 032307
(2012).

[20] K. Azuma, N. Sota, R. Namiki, Şahil K. Özdemir, T. Yamamoto,
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