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Informational completeness of continuous-variable measurements
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We justify that homodyne tomography turns out to be informationally complete when the number of
independent quadrature measurements is equal to the dimension of the density matrix in the Fock representation.
Using this as our thread, we examine the completeness of other schemes when continuous-variable observations
are truncated to discrete finite-dimensional subspaces.
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I. INTRODUCTION

Measurement lies at the very heart of quantum information.
It is an indispensable tool for identifying how well one can
prepare or can create a particular quantum state. Such an
assessment is achieved by performing suitable measurements
on a sequence of identically prepared systems. A set of
measurements, whose outcome probabilities are sufficient to
determine an arbitrary quantum state, is called informationally
complete (IC) [1], whereas, the process of reconstructing the
state itself is broadly called quantum tomography [2].

Investigations on IC measurements have been extensively
carried out for discrete Hilbert spaces [3]. For continuous
variables, the archetypical example is homodyne tomography,
first suggested in the seminal paper of Vogel and Risken [4] and
implemented by Smithey et al. [5]. Still, the reconstruction of
the measured state is inexorably accomplished in some finite
subspace chosen by an educated guess.

In many experimental situations, one has some additional
prior information that can be efficiently used for reducing
the number of relevant unknown parameters, making the
reconstruction much simpler. For example, the knowledge
about the Gaussian character of the state reduces the problem to
the evaluation of its 2 × 2 covariance matrix, which is formally
analogous to the estimation of a spin 1/2 [6]. In the same vein,
if the system can be represented (say, in the Fock basis) by a
finite density matrix, the number of quadratures needed for an
accurate reconstruction in homodyne tomography is precisely
equal to the dimension of that matrix [7]. Note, in passing, that
this is indeed very closely related to the quantum version of
the sampling theorem [8].

With the advent of powerful nonlinear estimation tech-
niques that offer amazing performance and robustness in most
applications, matching the signal space used for coding the
information in an experimental setup is more relevant than
ever. This is, in fact, a dual problem: One is interested not
only in what can be reconstructed from a particular scheme,
but also in identifying the best option for a given signal.
Any measurement is represented by an operator, and what
matters for tomography is the number of linearly independent
operators required for the reconstruction. Keeping in mind the
lesson from homodyne detection, the question of how to select
those operators appears far from trivial.

In this paper, we examine the informational completeness of
various schemes. We derive a surprisingly simple connection

between the different measurement settings and the number
of linearly independent elements induced by them. In addi-
tion, the analysis displays the information provided by each
acquired piece. Such knowledge is certainly of great interest
both for the optimization of feasible tomographic protocols
and for the design of new ones.

II. PRELIMINARIES

A d-dimensional quantum system is represented by a
positive semidefinite d × d density matrix that requires d2 − 1
independent real numbers for its specification. A von Neumann
measurement fixes at most d − 1 real parameters, so d + 1
tests have to be performed to reconstruct the state. This means
that d2 + d histograms have to be recorded: The approach is,
thus, suboptimal for this number is higher than the number of
parameters in the density matrix. The von Neumann strategy
can be further optimized regarding this redundancy when the
bases in which the measurements are performed are mutually
unbiased [9].

Besides, it is known that more general measurements exist.
Such generalized measurements appeared as positive operator-
valued measures (POVMs) in the quantum theory of detection
in the early 1970s. It was soon realized that, for numerous
reasons, they provided greater efficiency [10–14].

In short, a POVM is described by a set of linear operators
{Ên} furnishing the correct probabilities in any experiment (we
assume, for simplicity, discrete outcomes) through the Born
rule,

pn = Tr(ρ̂Ên) (1)

for any state described by the density operator ρ̂. Here, Tr
denotes the trace of a complex matrix. Compatibility with the
properties of ordinary probability imposes the requirements of
positivity, Hermiticity, and resolution of the identity,

Ên � 0, Ên = Ê†
n,

∑
n

Ên = 1̂. (2)

The case of the projective von Neumann test is recovered when
all the operators in set {Ên} commute.

A quite general way of implementing a POVM is to
properly combine the system to be tested with an auxiliary
system whose initial state is known and then to perform a von
Neumann test on the combined system [15]. When the coupling
with the auxiliar system and the von Neumann measurement
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are judiciously chosen, one can get IC POVMs, which, in
addition, are optimal in the sense that minimize the number
of independent detections that must be obtained during the
tomographic process [16]. Below, we will exploit a similar
idea to perform IC measurements from incomplete ones by
cutting the dimensionality of the signal space [17].

III. QUADRATURE MEASUREMENT

To get the backbone of our proposal, we start with states
that can be written as a finite sum in the Fock basis. We wish
to characterize a d-dimensional subspace 1̂d = ∑d−1

n=0 |n〉〈n|
from projections onto the quadrature eigenstates |xθ 〉, which
can be expressed as

〈n|xθ 〉 ∝ Hn(x)e−x2/2einθ . (3)

Our task is to find out how many different phase settings θ (also
referred to as cuts) are needed to make the scheme complete.
It is clear that the complex argument of 〈n|xθ 〉 is independent
of x, so one quadrature can never generate a complete
POVM. For example, the three states (|0〉〈0| + |1〉〈1|)/2
and (|0〉 ± i|1〉)/√2 have the same position distribution, and
hence, the position measurement (θ = 0) cannot discriminate
among them. Obviously, since 〈n|xθ=0〉 is real for all x, such
projections fail to generate the σy component. This difficulty
persists in higher dimensions.

Fortunately enough, this topic can be fully analyzed in
a closed form. Indeed, the probability distribution of the
homodyne detection can be written, up to a normalization
factor, as

p(x,θ ) ∝
d−1∑

k,�=0

ρk�Hk(x)H�(x)e−x2
ei(k−�)θ , (4)

where x is the measured amplitude. Let us take all matrix
elements ρk� to be nonzero and calculate the number N of
linearly independent combinations of the density matrix (4)
that can be generated from different choices of x and θ . For
every polynomial term with a maximum power xn, we have
the following different combinations of Hermite polynomials
[omitting, for brevity, the associated factor ei(k−�)θ ]:

x0: H0H0,

x1: H0H1,H1H0,

x2: H0H2,H2H0,H1H1,

x3: H0H3,H3H0,H1H2,H2H1,

. . .

x2d−4: Hd−2Hd−2,Hd−1Hd−3,Hd−3Hd−1,

x2d−3: Hd−2Hd−1,Hd−1Hd−2,

x2d−2: Hd−1Hd−1.

(5)

For a single quadrature θ1, the number N1 is determined
by the term Hd−1Hd−1 with the highest polynomial power
and is equal to N1 = 2d − 1 (the total number of first
elements HkH� in all rows of the above array). Since we
have all the polynomial powers from 0 up to 2d − 2, there
are no more linearly independent elements. The second value
θ2 additionally gives us N2 = 2d − 3 linearly independent
combinations of ρk� (the total number of second elements
HkH� in all rows), the third value θ3 gives N3 = 2d − 5, and
so on.

TABLE I. The number of linearly independent POVM elements
induced by m different quadrature measurements in a d-dimensional
Fock subspace. The bold font indicates IC POVMs.

d m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
2 3 4 4 4 4 4
3 5 8 9 9 9 9
4 7 12 15 16 16 16
5 9 16 21 24 25 25
6 11 20 27 32 35 36
7 13 24 33 40 45 48
8 15 28 39 48 55 60

An alternative way to get the same result is by noticing
that, after measuring the first quadrature, 2d − 1 linear
combinations of ρk� are fixed, and there remain d2 − 1 −
(2d − 1) = (d − 1)2 − 1 free parameters entering the prob-
ability (4). This effectively lowers the dimension of the
problem by one. Thus, N2 = 2(d − 1) − 1 = 2d − 3, N3 =
2(d − 2) − 1 = 2d − 5, etc. The procedure can be repeated
until the number of cuts m equals d when N reaches its
maximum value of d2. One can draw an important conclusion
from this discussion: By measuring each new quadrature, the
prior information is updated in such a way that the dimension
of the unknown part of the system becomes one unity less.

In consequence, m different phase settings induce N =∑m
k=1 Nk linearly independent POVM elements; that is,

N =
⎧⎨
⎩

m(2d − m), m < d,

d2, m � d,

(6)

which can be conveniently summarized as in Table I. This
relation is the main achievement of this paper as it provides a
full description of the IC for the problem at hand.

As we can see, to fully characterize a d-dimensional Fock
subspace, one needs d different quadratures. For a fixed m, the
number N scales quadratically with d until d = m due to the
completeness of the generated POVMs. For d > m, the size of
the POVM grows only linearly, hence, in the asymptotic case
of sufficiently large dimensionality, the measurement becomes
more and more incomplete.

In this respect, we wish to highlight that our results
do not rely on a particular reconstruction scheme as in
Ref. [7], but rather, they emerge from the properties of the
measurement itself and pervade all the continuous-variable
detection schemes.

IV. PHYSICAL DISCUSSION

The analysis presented so far has significant consequences;
some of which are explored here. Notice that the IC quadrature
operators with d phases approximate the structure of mutually
unbiased measurements. Without the Hilbert-space truncation,
the projectors with the same phase setting are orthogonal,
whereas, for different phases, they overlap. These comple-
mentary properties become modified in a finite-dimensional
subspace, although they approach their continuous-variable
counterpart as long as the cutoff d is sufficiently large.

Loosely speaking, the orthogonal measurements always
bring a completely new bit of information, whereas, the
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overlapping ones verify the previously acquired information
and add a new piece thereof. This is the essence of the
tomography where afterwards, all the space is covered by
an “operator” mesh. Since the homodyne detection on finite-
dimensional subspaces is feasible, this gives an excellent
opportunity to investigate the information gained in the process
of the measurement.

We emphasize that even a single quadrature actually
generates IC POVMs, provided that the signal space is
properly matched to such a detection. For example, Table I
shows that, in a five-dimensional Fock subspace, a single
quadrature generates nine independent POVM elements. These
are IC in a suitably chosen three-dimensional subspace. Put
differently, a single quadrature provides characterization of
a qutrit in a five-dimensional space or two entangled qubits
in a nine-dimensional space. Similarly, all Pauli matrices are
induced by just two quadratures (say, x and p). Such kinds
of prior knowledge about the signal space can significantly
reduce the number of measurements required for the complete
state reconstruction. A particularly natural situation is the case
of symmetric and antisymmetric subspaces [18]: A complete
characterization of an arbitrary two-qutrit state requires nine
different quadratures, whereas, an antisymmetric two-qutrit
state can be inferred with just one quadrature measurement.

The previous results can be simplified in some cases where
prior information is available. For instance, some elements of
the density matrix can be known to vanish, and we can reach
the complete POVM with less settings. Let us consider an
analog of a squeezed vacuum of the form

|�〉 = c0|0〉 + c1|4〉 + c2|8〉 + · · · + ck|4k〉 + · · · . (7)

The coefficients ck gradually decrease with k, which makes
setting them to zero at some threshold value ck = 0 for k � d

possible. The resulting state lives in a d-dimensional subspace,
so one may think that m = d phase settings would be needed to
characterize that subspace. Surprisingly, the prior information
about photons being generated in quadruples modifies the
structure of the induced POVM, and the number of linearly
independent measurements is found to be different from that
calculated before. Let us take a look at the case d = 3.
The coefficients in Eq. (4) contain polynomial powers up to
4(d − 1) × 4(d − 1) = 16,

x0: H0H0,

x4: H0H4,H4H0,

x8: H4H4,H0H8,H8H0

x12: H4H8,H8H4,

x16: H8H8.

(8)

By explicitly writing the power expansion of the coef-
ficients H0H8 = 256x8 − 3584x6 + 13 440x4 − 13 440x2 +
1680 and H4H4 = (16x4 − 48x2 + 12)2, we see that they
are linearly independent. Indeed, H0H8 cannot be written
as a linear combination of H0H0, H0H4, and H4H4 due
to the lack of all needed polynomial powers in contrast
to the general case. Hence, the number of linearly in-
dependent POVM elements is much higher now: Instead
of N1 = 2d − 1, N2 = 2d − 3, N3 = 2d − 5, etc., we have
the modified expressions N∗

1 = N1 + N3 + N5 + · · · , N∗
2 =

N2, N∗
3 = N4, N∗

4 = N6, . . . . The number of different phase
settings for the scheme to be complete is m∗ = [d/2] + 1,

where [ ] denotes the integer part. Hence, the family of states
(7) can be characterized with roughly half as many quadratures
that would be required for a truncated Fock subspace of the
same dimension.

As our last contention, we insist that proper matching
conditions are essential [19]. Particularly, without a deeper
understanding, too dense binning of quadratures may be
useless, whereas, the quadrature phase may easily become
undersampled. In other words, the number of quadrature
bins multiplied by the number of phase settings does not, in
general, equal the number of free parameters in the homodyne
detection.

V. PHOTON-NUMBER RESOLVING DETECTION

To obtain our main result (6), we have essentially relied on
the polynomial representation of the quadrature (3), namely,
that the probability distribution (4) can be written with the help
of polynomials up to a certain power, defined by dimensional-
ity of the quantum state. This property also holds for many
other situations; indeed, almost any physical measurement
satisfies this property [12]. For example, an approximation
of coherent state |α〉 = e−|α|2/2 ∑∞

n=0 αn/
√

n!|n〉 by a finite
sum, neglecting tiny contributions of sufficiently high n, is
essentially the same situation as above: Linearly independent
POVM elements can be obtained from projections of a finite-
dimensional state onto a properly matched basis.

In the simplest scenario, the strategy can be photon-number-
resolving detection. In fact, instead of (4), we now have

p(α,n) = |〈n|α〉|2 = e−|α|2 |α|2n

n!
. (9)

An obvious drawback of this choice is phase insensitivity
since coherent states with the same amplitude and different
phases give identical statistics. To avoid this degeneracy,
the photon-number detection can be preceded by a suitable
displacement [20] or even more complicated “steering” oper-
ation. A detailed examination of this point is out of the scope
of the present paper.

VI. CONCLUDING REMARKS

We have addressed the fundamental question of how many
independent measurements can be generated by a given ex-
perimental setup. The analysis clarifies the issue of necessary
and sufficient complexity for tomographical schemes. It turns
out that the effective size of quantum tomography for any
finite-dimensional system can be related to the number of
different quadratures observed, which illustrates an exciting
link between discrete and continuous-variable systems. We
stress that such a reconstruction cannot be accomplished
without the appropriate delimitation of the reconstruction
space since the space touched by the observation then exceeds
the amount of available data.

Our central result indicates that for a d-dimensional system
a single quandrature can be discretized up to 2d − 1 bins.
This appears to be very similar to the classical Nyquist
frequency in the Kotelnikov-Shannon coding theorem. By
finding a simple analytical rule, we have provided a full
characterization of informational completeness for a wide class
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of continuous-variable measurements and made a step towards
a better understanding of quantum resources in quantum optics
and quantum information processing.

The analysis is applicable for arbitrary dimensionality
and, thus, serves as a good alternative to other traditional
approaches based, e.g., on mutually unbiased bases and
symmetric IC POVMs.

Finally, note that only data-acquisition issues have been
addressed here: The subsequent reconstruction must be ca-
pable of dealing with generic nonequivalent detections. The
mathematical method best suited for this purpose is the
maximum likelihood estimation; however, even in this case,
the continuous data are discretized due to the very nature

of the measurement and the finite amount of memory and
computational time available. We believe that our theory
can be helpful in future optimizations of continuous-variable
measurements.
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J. Řeháček, Lecture Notes in Physics Vol. 649 (Springer, Berlin,
2004).

[3] G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, J. Opt. B 6, S487
(2004); S. T. Flammia, A. Silberfarb, and C. M. Caves, Found.
Phys. 35, 1985 (2005); S. Weigert, Int. J. Mod. Phys. B 20, 1942
(2006); T. Durt, Open Syst. Inf. Dyn. 13, 403 (2006).

[4] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[5] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys.

Rev. Lett. 70, 1244 (1993).
[6] J. Řeháček, S. Olivares, D. Mogilevtsev, Z. Hradil, M. G. A.

Paris, S. Fornaro, V. D’Auria, A. Porzio, and S. Solimeno, Phys.
Rev. A 79, 032111 (2009).

[7] U. Leonhardt and M. Munroe, Phys. Rev. A 54, 3682 (1996);
U. Leonhardt, J. Mod. Opt. 44, 2271 (1997).

[8] A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and
Systems, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 2010).

[9] J. Schwinger, Proc. Natl. Acad. Sci. USA 46, 570 (1960);
W. K. Wootters and B. D. Fields, Ann. Phys. 191, 363 (1989);
A. B. Klimov, J. L. Romero, G. Björk, and L. L. Sánchez-Soto,
J. Phys. A: Math. Theor. 40, 3987 (2007); A. B. Klimov, D. Sych,
L. L. Sánchez-Soto, and G. Leuchs, Phys. Rev. A 79, 052101
(2009); T. Durt, B.-G. Englert, I. Bengtsson, and K. Zyczkowski,
Int. J. Quantum Inf. 8, 533 (2010).

[10] R. L. Stratonovich, J. Stochastics 1, 87 (1973).
[11] B. A. Grishanin, Tekn. Kibernetika 11, 127 (1973) [arXiv:

quant-ph/0301159v1].
[12] C. W. Helstrom, Quantum Detection and Estimation Theory

(Academic, New York, 1976).
[13] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum

Theory, 2nd ed. (North-Holland, Amsterdam, 2003).
[14] V. B. Braginski and F. Y. Khalili, Quantum Measurement

(Oxford University Press, Oxford, 1992).
[15] C. W. Helstrom, J. W. S. Liu, and J. P. Gordon, Proc. IEEE 58,

1578 (1970).
[16] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M.

Caves, J. Math. Phys. 45, 2171 (2004); D. M. Appleby, S. T.
Flammia, and C. A. Fuchs, ibid. 52, 022202 (2011); R. Salazar,
D. Goyeneche, A. Delgado, and C. Saavedra, Phys. Lett. A 376,
325 (2012).
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