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Scattering-induced spatial superpositions in multiparticle localization
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We describe how quasiclassical relative positions of particles emerge in an initially delocalized quantum system
as scattering of a probe beam is observed. We show that in the multiparticle case this localization in position space
occurs via intermediate states that are quantum superpositions of spatial configurations. These superpositions are
robust to consecutive scattering events, and scattering alone does not lead to their decoherence. Instead the free
evolution of the system combines with scattering to destroy these superpositions, leading the particles to adopt
classical-like positions relative to one another.
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I. INTRODUCTION

We take for granted in our everyday experience that the
distances between the objects around us are well defined
and single valued in time. We can then formulate classical
descriptions of how these objects and their relative positions
behave when forces are applied to them. We know, however,
that on the microscopic level systems follow the laws of
quantum mechanics, laws that allow the relative positions
of particles to exist in superpositions of different values.
In this article we describe a route from the quantum to
the classical as the positions of particles are localized by
consecutive scattering of probe particles. In particular we
see that the transition happens via an intermediate phase that
retains features of both the quantum and classical worlds.

The reduction of quantum superpositions to classical states
is often explained using decoherence theory [1], where inter-
actions between the system being studied and its environment
lead to superposition states of the system being converted to
mixtures of classical-like states. A fundamental way in which
a system can interact with its environment is to scatter particles
from the environment, which for a single-particle system
reduces interference fringes at the output of an interferometer
[2–9]. For a pair of particles, prepared in a delocalized quantum
state, scattering from the system leads to localization of the
particles relative to one another [10–13], where each scattering
event transfers information about the relative position to the
environment. However, this mechanism by itself is not enough
to localize systems of more than two particles.

Here we show, for a more general multiparticle case, how
relative position is established by scattering probe particles
and measuring the scattering angle. Each measurement of a
scattering event leads to more information about the relative
position of the system particles being transferred to the
environment, and the system’s many-body state becomes
localized in relative position space. However, as we will
see, the measured scattering pattern does not distinguish
between two spatially distinct configurations and the system
forms a coherent spatial superposition. These superpositions
form when scattering is fast compared with free evolution
of the many-body system and they are robust against further
scattering and could be detected. On longer time scales we
show that the superpositions are eventually destroyed through
a combination of scattering and momentum evolution, thus
establishing a model of how the classical-like behavior we

are familiar with originates from the underlying quantum
mechanics.

II. SCATTERING FROM MULTIPLE PARTICLES

We examine the effect on the many-body state of consec-
utive coherent scattering and detection events by looking at
the scattering problem from a general perspective that allows
us to ignore the details of the interaction potential involved.
We consider a system of identical particles with associated
field creation and annihilation operators �̂†(r) and �̂(r). The
probe particles are assumed to be approximately in plane-wave
form with associated wave vector ki . Coherent scattering of the
probe by the system is then associated with a momentum trans-
fer to the system of h̄k = h̄(ki − kf ), where kf is the probe
wave vector after scattering, as shown in Fig. 1(a). Measure-
ment of the final probe wave vector, for example by imaging
in the far field, then transforms the system state according to

|ψ〉 −→
∫

dr�̂†(r)�̂(r)eik·r|ψ〉. (1)

For an initial N -particle state |ψ〉 = ∫
dRφ(R)|R〉, where

R = {r1, . . . ,rN } gives the coordinates of the N particles, the
associated probability of observing a scattered probe wave
vector of kf is

P (kf ) = g2

4π

∫
dR

∣∣∣∣∣φ(R)
N∑

j=1

eik·rj

∣∣∣∣∣
2

. (2)

The factor g is determined by the strength of the probe-system
interaction and is assumed to be small so that multiple
scattering of an individual probe particle is negligible. For
simplicity we assume g is independent of kf , which is the
case when energy conservation restricts scattering so that
|kf | ∼ |ki | and the probe-system interaction is isotropic [14].
This type of scattering can be realized in systems of ultracold
atoms where isotropic s-wave scattering dominates other
scattering processes [15]. Anisotropic scattering, such as the
dipole pattern in light scattering, can be taken into account by
straightforward generalization.

The transformation of the state in Eq. (1) projects the
system’s state toward configurations with higher probability
of scattering in the measured direction. The probability of
scattering increases as the particles’ relative positions become
localized, and observing a scattering event projects the state
toward greater localization of the particles. The scattering
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FIG. 1. (Color online) (a) Scattering from the system of particles
leads to a change of probe wave vector from ki to kf with associated
scattering angle θ . A typical scattering probability distribution is
shown on the right. (b) For a one-dimensional system of parti-
cles, scattering leads to superpositions of particle positions of the
type shown, where the two configurations both have the same
set of interparticle distances. (c) Similarly, scattering from a two-
dimensional system leads to superpositions of configurations where
the positions are rotated by 180◦.

distribution depends on |∑N
j=1 eik·rj |2, which is completely

determined by the relative positions of pairs of particles.
The information gained from a measurement of the scattering
distribution is therefore limited to relative position and the
measurement will then preserve superpositions of configu-
rations that have the same set of relative position vectors.
Examples of this type of superposition are shown in Figs. 1(b)
and 1(c) for a three-particle system. Each configuration in
such a superposition will give the same scattering pattern,
and consecutive scattering measurements can push the system
towards this type of superposition. A similar effect is observed
in arrays of Bose-Einstein condensates, where measurement of
atoms coupled out of the condensates results in superpositions
of relative phase [16].

Apart from scattering we must also consider the situation
when the probe does not scatter from the system. Rather than
leaving the system in the same state, the measurement of a
nonscattering event also leads to a change in the state [10]. This
is because nonscattering is more likely from certain particle
distributions and detecting a nonscattering event projects the
wave function of the system toward these configurations. For
a position eigenstate |R〉 the probability of nonscattering is
determined by the conservation of probe particles, that is, the
probe particles must either be scattered or not scattered, giving

PNS(R) = A(R)2 = 1 − g2

4π

∫
d�kf

∣∣∣∣∣
N∑

j=1

eik·rj

∣∣∣∣∣
2

, (3)

where the integration is over all scattering angles. Detect-
ing a nonscattering event then transforms the system state
according to

|ψ〉 −→
∫

dRA(R)φ(R)|R〉, (4)

and occurs with total probability
∫

dR|A(R)φ(R)|2.

Consecutive scattering and nonscattering events lead to
a dynamic evolution of the many-body state. The dynamic
scattering process can be simulated by the following quantum
jump procedure [17,18]. Taking the initial state, we calculate
the probability distribution for scattering and nonscattering.
Using this distribution we randomly “detect” an event, and
apply either the projection Eq. (4) following detection of
nonscattering or the projection Eq. (1) for scattering detected
at a particular angle. In either case the many-body state is
then normalized and becomes the input state and the process
repeats. In between each scattering event we evolve the system
according to the free-space Hamiltonian H0 = ∑

j p2
j /2m. For

simplicity we assume the scattering events are equally spaced
in time and the system evolves for time dt between each event.

III. THREE PARTICLE LOCALIZATION

We now consider an example calculation for a three-particle
system. To make the simulations tractable we assume the parti-
cles are confined to one dimension [19] and that the scattering
of probe particles is confined to a two-dimensional plane with
angle θ as shown in Fig. 1(a). We assume that the initial wave
function φ(r1,r2,r3) can be decomposed into �(X)φ(x1,x2)
where X = (r1 + r2 + r3)/3 is the center of mass and x1 =
r2 − r1 and x2 = r3 − r1 are relative coordinates with units
1/ki . As the scattering operators affect the center of mass and
the relative positions independently, the system remains sepa-
rable after scattering. The wave function can be expressed sim-
ilarly in wave vector space as �(K)φ(q1,q2) where K = (k1 +
k2 + k3)/3 is the average wave vector of the particles and q1 =
(2k2 − k1 − k3)/3 and q2 = (2k3 − k1 − k2)/3 are relative
wave vectors. The evolution due to H0 then also remains sepa-
rable with �(K,t + dt) = e−3iK2dt�(K,t) and �(q1,q2,t +
dt) = e−2i(q2

1 +q2
2 +q1q2)dt�(q1,q2,t), where our times are ex-

pressed in units of 2m/(h̄k2
i ). The center of mass then evolves

due to the momentum added or subtracted from the entire
system by the scattering events, while the relative coordinates
evolve independently. We note that the separability of the wave
function is not crucial to our results, and indeed we observe
the same behavior in simulations with nonseparable wave
functions in the full three-dimensional configuration space.

In Fig. 2 we show an example evolution for the three-
particle system starting from an initially delocalized state
with φ(x1,x2) equal to a constant over the simulation region.
Figure 2(a) shows the detection events that occur, the majority
of which are nonscattering events shown as θ = 0. The
resulting localization is shown in Fig. 2(b) and occurs quickly
with only 100 events leading to the well-localized state at
t = 1. Note that the probability density is symmetric in
exchange of x1 and x2 as required for identical particles.
Despite the localization, at t = 1 the system maintains a
superposition of the particles having x1 ∼ 14 and x2 ∼ 35 and
having x1 ∼ 21 and x2 ∼ 35. This is an example of the type
of superposition shown in Fig. 1(b) and forms an intermediate
step in the transition between the delocalized quantum state
and a quasiclassical state with definite relative position.
This superposition can be detected by allowing the particle
wave function to expand under free evolution by turning off
the scattering interaction, where after a suitable period of
time the wave function shows interference fringes, as shown
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FIG. 2. (Color online) Example evolution of a three-particle
system from a delocalized state into a superposition of localized
position states. (a) Scattering events plotted over time. (b) Evolution
of the system’s probability density in relative position space. The
scattering interaction is turned on at t = 0 until t = 1 and the state is
then allowed to expand until t = 4, shown in the last frame.

in the last frame of Fig. 2(b). Although the phase of this
interference varies between each realization, the Bayesian
analysis used in Ref. [13] could be used here to detect the
presence of the scattering induced superpositions. For more
than three particles, superpositions would not necessarily
produce simple interference patterns but would be revealed
in higher-order correlation functions [20].

Localization of the particles happens due to the uncertainty
about which particle scattered the probe. When a scattering
event is detected it implies that the system is then in a superpo-
sition of each of the particles having received momentum kick
k. This widens the relative momentum distribution, leading
to a corresponding narrowing of the spatial distribution. By
the central limit theorem, after N random scattering events we
expect the momentum distribution’s width to scale as

√
Nki

and consequently expect the width of the spatial distribution
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FIG. 3. (Color online) Comparison of localization during scat-
tering with and without H0 evolution of the wave function between
scattering events. (a) Width of one of the localized peaks in the
probability density as a function of time without (solid) and with
(dashed) H0 evolution. (b) Change in value of the probability density
at the two localized peaks of the superposition. Without H0 evolution
the two peaks have equal value (solid), while with H0 evolution one
peak (dashed) begins to dominate over the other (dotted) after an
initial period.

to scale as 1/(
√

Nki). However, this ignores the expansion of
the particles’ wavefunction due to free evolution under H0,
which we expect will counter the localization process [21].
This behavior is shown in Fig. 3(a) for a simulation of the three
particle localization resulting from 5000 detection events with
time spacing dt = 0.0001. Here we compare the case where
there is H0 evolution between scattering events and the case
where free evolution is artificially turned off (equivalent to
dt = 0). Without H0 evolution the particles localize relative
to one another with the expected 1/

√
N scaling. When the

free evolution is included, the localization is initially similar,
but then the free expansion begins to oppose the localization
pressure from scattering and the width of the wavefunction
plateaus.

The free-space evolution also affects the superposition that
results from the initial localization. In Fig. 3(b) we show
the evolution of the local maxima of the peaks in the wave
function associated with the two configurations in the spatial
superposition. Without H0 evolution the two configurations
maintain equal weight throughout the scattering process, while
including free evolution results in one of the configurations
eventually being preferred and the superposition diminishes.
This occurs because the two different particle configurations
in the superposition evolve freely to have different relative
positions, and scattering then projects the state so that one of
the configurations dominates. This process is shown in Fig. 4
where two configurations with identical scattering patterns
evolve into configurations with different scattering patterns,
whereby continued scattering will lead to decoherence of the
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FIG. 4. (Color online) Relative position change caused by H0

evolution after one of the particles scatters a probe particle. The top
and bottom configurations initially have indistinguishable scattering
patterns because they share the same set of interparticle distances
{d1,d2,d3}. After one particle scatters the probe its position changes
in time and the configurations become distinguishable as they acquire
different sets of interparticle distances {d3,d4,d5} �= {d2,d4,d6}.
superposition. Thus the localized quantum superpositions we
saw in Fig. 2 only exist for the intermediate time between
the start of scattering and the natural free evolution time of
the system. For longer time periods, the superpositions are
destroyed by scattering combined with free evolution, and
quasiclassical relative positions are established between the
particles.

IV. DISCUSSION AND CONCLUSION

The scattering interaction we have described above pro-
vides a partial measurement of the relative positions of

particles in a system. Each scattering event then leads to
the system’s environment containing more information about
the position state, and in the limit of an infinite number of
events the measurement is projective onto perfectly localized
states |R〉. The localized states have uniform momentum
distributions and the momentum shift caused by scattering
leaves these states unchanged. The environment can then gain
increasing amounts of information about the localized states
through the scattering interaction without disturbing them
and these states become the basis for classical-like reality.
In the language of quantum Darwinism these states are the
“fittest” because multiple copies of the information about the
state can build up in the environment without altering the
state [22–25].

The interesting consequence of this particular interaction
is that distinctly nonclassical superpositions of the localized
states are preserved by the scattering process. This gives a twist
to the simplest version of quantum Darwinism, which suggests
that the buildup of redundant information in the environment
should support only states of the system that behave classically.
Rather, we see that it is only when the scattering interaction
happens on a time scale that is comparable with the free
evolution of the system that the superposition begins to
decohere. Our model then shows how, as the superposition
is destroyed, the interparticle distances take on the robust,
single values that we are familiar with. In doing so we have
highlighted that the interaction with the environment alone is
not enough to ensure classicality but that the system’s free
evolution also plays an important role.

In conclusion, we have shown how observation of a system
of particles, while eventually leading to a quasiclassical de-
scription, can create and preserve spatial superposition states.
This is a significant observation that needs to be folded into
the overall story of decoherence and the quantum-to-classical
transition.
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