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To quantify single-mode nonclassicality, we start from an operational approach. A positive semidefinite
observable is introduced to describe a measurement setup. The quantification is based on the negativity of the
normally ordered version of this observable. Perfect operational quantumness corresponds to the quantum-noise-
free measurement of the chosen observable. Surprisingly, even moderately squeezed states may exhibit perfect
quantumness for a properly designed measurement. The quantification is also considered from an axiomatic
viewpoint, based on the algebraic structure of the quantum states and the quantum superposition principle. Basic
conclusions from both approaches are consistent with this fundamental principle of the quantum world.
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I. INTRODUCTION

Experimental realizations of nonclassical effects of light
opened interesting perspectives for practical applications of
nonclassical quantum states. Consequently, nonclassical states
of light and matter have attracted substantial interest during the
last decades. In this context, the quantitative characterization of
nonclassical effects is an important issue. From an operational
point of view, it is of some interest to connect a quantitative
characterization of quantum effects with its potential appli-
cations. This includes the suppression of quantum noise in
different types of measurements. From the fundamental point
of view, the quantification should be related to fundamental
principles of quantum physics.

There exists a number of attempts to quantify the non-
classicality of a harmonic oscillator quantum system. Among
them, Hillery introduced the concept of the distance between
two quantum states [1]. He defined the distance from the
classical states as a quantitative measure of nonclassicality.
Although this is an intuitive approach, in many cases the
nonclassical distance is hard to calculate. Another measure
of nonclassicality was introduced by Lee [2], the nonclassical
depth of a quantum state. It is defined by the minimum
number of thermal photons admixed to a quantum state, which
is needed to destroy its nonclassical effects. This quantity,
however, is essentially a measure of the fragility of quantum
effects under certain thermal disturbances. Asbóth et al.
consider the amount of entanglement, which can be potentially
generated by splitting a nonclassical state by a beam splitter, as
a measure of nonclassicality [3]. Despite interesting relations
between nonclassicality and entanglement [4,5], this measure
is based on a special class of all quantum effects. Moreover,
an entanglement potential suffers from the difficulty to define
a general entanglement measure (cf., e.g., Refs. [6,7]).

In quantum optics, nonclassicality of a quantum state of
the harmonic oscillator is characterized by negativities of the
Glauber-Sudarshan P function [8–10], which belongs to the
class of quasiprobabilities. Our further studies are based on
this definition of nonclassicality. For many quantum states the
P function not only has negativities, but also can be strongly
singular. Recently the concept of nonclassicality quasiproba-
bilities has been developed. The latter are regularized versions
of the P function, which are accessible in experiments and
completely identify all negativities of the P function [11–13].

Extending the P function to the multimode case, its
negativities also include entanglement as a special nonclassical
effect. Note that negativities of the P function are necessary
for entanglement but not sufficient. For an unambiguous iden-
tification of entanglement, entanglement quasiprobabilities
have been introduced [14,15]. They are also regular functions
and their negativities are necessary and sufficient for the
existence of any kind of entanglement. These two concepts,
nonclassicality and entanglement quasiprobabilities, allow one
to describe both phenomena on a unified footing.

In the present paper we introduce an operational quantifi-
cation of nonclassicality in terms of experimentally accessible
quantities. This leads to conditions which are directly related
to the amount of quantum noise in specific measurement
scenarios. The other way around, based on this definition of
the amount of nonclassicality, one may calculate the structure
of the quantum states which are best suited for the suppression
of quantum noise in a certain experimental setup. We also
consider the quantification of nonclassicality from a more
general, axiomatic point of view and compare it with the
operational approach.

The paper is organized as follows: In Sec. II we introduce
the operational quantification of nonclassicality. Established
examples, such as quadrature squeezing and sub-Poisson num-
ber statistics, are considered in Sec. III from the perspective
of our approach. The practical relevance of our operational
quantification is studied in Sec. IV in the framework of mea-
surements free of quantum noise. In Sec. V the nonclassicality
quantification is studied from a general axiomatic point of
view and the conclusions drawn from this perspective are
compared with the operational approach. A summary and some
conclusions are given in Sec. VI.

II. OPERATIONAL QUANTIFICATION

In this section we introduce operational measures for
nonclassicality or quantumness by starting from the es-
tablished notion of nonclassicality for quantum states of
harmonic oscillators. These measures will be directly based
on observable mean values as they are obtained by a chosen
experimental setup. This is just what an experimenter needs for
a certain application. Either some source of nonclassical states
is given and an optimal measurement technique is sought or,
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the other way around, for a given detection device one may
seek for the quantum state optimizing the system operation.
Our approach yields a systematic method for implementing
quantum-noise-free (QNF) measurement techniques.

Let us start with a reformulated definition of nonclassicality,
which is equivalent to the failure of the P function to be
a probability distribution. It is based on the negativity of
expectation values whose classical counterparts are positive
semidefinite. A quantum state is nonclassical if there exists an
observable f̂ †f̂ , with f̂ ≡ f̂ (â,â†) being an operator function
of the annihilation (creation) operator â (â†), so that [16–18]

〈: f̂ †f̂ :〉 < 0, (1)

where the “: · · · :” symbol denotes normal ordering.
To introduce an operational measure of nonclassicality, let

us consider an experimental setup which is characterized by
an arbitrary but fixed operator f̂ . The resulting quantities f̂ †f̂
and : f̂ †f̂ : are Hermitian operators and hence observables
of the chosen setup. Whereas the first observable is positive
semidefinite, the second one may have negativities in its
spectrum. For the following we assume that the nonclassicality
condition (1) is fulfilled for the chosen operator f̂ and the
quantum state under study. Only in this case is the state
identified as being nonclassical and is the quantification
meaningful.

To quantify the nonclassicality of a given state in a certain
experimental context, we attempt to properly quantify the
negativity that can be attained by the left-hand side (lhs) of
condition (1). Let us consider the difference � between the
normally ordered and the ordinary expectation values of the
chosen observable f̂ †f̂ :

� = 〈: f̂ †f̂ :〉 − 〈f̂ †f̂ 〉. (2)

For a given operator f̂ it is straightforward to derive an explicit
expression of the quantity � by methods of operator ordering,
but this is not needed for the following considerations. Since
〈f̂ †f̂ 〉 � 0, the relation

� � 〈: f̂ †f̂ :〉 < 0 (3)

holds true.
Now we may define the operational relative nonclassicality

R of a given quantum state for a chosen measurement scheme
as

R =
{

〈:f̂ †f̂ :〉
�

for 〈: f̂ †f̂ :〉 < 0

0 otherwise.
(4)

This ratio quantifies the negativity of the lhs of condition (1)
relative to the lower bound set by the condition (3). Based on
this definition, a quantum state exhibits perfect nonclassicality
(i.e., R = 1) if the (negative) value of 〈: f̂ †f̂ :〉 approaches the
corresponding lower bound. Hence, perfect nonclassicality as
defined on this basis is attained for

� = 〈: f̂ †f̂ :〉 ⇐⇒ 〈f̂ †f̂ 〉 = 0. (5)

In addition, we have defined R ≡ 0 for 〈: f̂ †f̂ :〉 � 0.
Due to the equivalence in Eq. (5), perfect quantumness

may also be defined by the condition 〈f̂ †f̂ 〉 = 0. For a
general mixed quantum state, described by the density operator
�̂ = ∑

ψ pψ |ψ〉〈ψ |, with pψ > 0 and
∑

ψ pψ = 1, perfect

quantumness requires that

〈f̂ †f̂ 〉 =
∑
ψ

pψ‖f̂ |ψ〉‖2 = 0. (6)

This condition is fulfilled if and only if

f̂ |ψ〉 = 0 (7)

for all states |ψ〉 contained in �̂. Thus perfect quantumness
is attained for any quantum state composed of eigenstates of
the operator f̂ whose eigenvalues are zero. In such cases the
observable f̂ †f̂ is totally free of quantum noise.

So far a quantum-noise-free observable f̂ †f̂ can only attain
the minimal expectation value of zero. This restriction can
be easily relaxed. In general one can substitute f̂ �→ �f̂ =
f̂ − 〈f̂ 〉. Now the condition

�f̂ |ψ̃〉 = 0 (8)

replaces Eq. (7). Based on this modified condition we arrive at

〈ψ̃ |f̂ †f̂ |ψ̃〉 = |〈ψ̃ |f̂ |ψ̃〉|2, (9)

so that the positive semidefinite operator f̂ †f̂ can attain
nonzero expectation values. Its variance is readily calculated
to be

〈ψ̃ |[�(f̂ †f̂ )]2|ψ̃〉 = 〈ψ̃ |[f̂ ,f̂ †]|ψ̃〉|〈ψ̃ |f̂ |ψ̃〉|2. (10)

Hence, for the choice of a Hermitian operator, f̂ = f̂ †, the
operator f̂ †f̂ has a nonzero mean value and is free of quantum
noise, 〈ψ̃ |[�(f̂ †f̂ )]2|ψ̃〉 = 0.

III. ELEMENTARY QUANTUM EFFECTS

A. Sub-Poisson number statistics

Let us start with a well-known nonclassical effect, the
sub-Poisson statistics of photons. When a radiation field with
sub-Poisson photon statistics is recorded by a photodetector,
the statistics of the photoelectrons also becomes sub-Poisson.
The noise level of the recorded signal can go below the classical
shot-noise limit, which is the lowest noise level for detection
with classical light (see, e.g., Refs. [19,20]). For the first
experimental demonstrations of sub-Poisson light we refer to
Refs. [21,22].

A qualitative characterization of nonclassicality of sub-
Poisson radiation by condition (1) is rather simple. Let us
choose

f̂ ≡ �n̂ = n̂ − 〈n̂〉, (11)

with n̂ = â†â being the photon number operator. Thus the
nonclassicality condition reads

〈: (�n̂)2 :〉 < 0. (12)

The classical counterpart of this condition yields 〈(�n)2〉cl �
0. Applying the fundamental commutation relation, [â,â†] =
1, the condition reads

〈(�n̂)2〉 < 〈n̂〉. (13)

This shows more clearly that the variance of the photon number
is below its value for Poisson statistics. The latter is often
referred to as the shot-noise limit.
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Let us now consider the operational quantification of the
sub-Poisson photon statistics. The relative nonclassicality
defined by Eq. (4) is of the form

R = −〈: (�n̂)2 :〉
〈n̂〉 = 1 − 〈(�n̂)2〉

〈n̂〉 . (14)

This result is again intuitively clear. The nonclassical effect
attains its maximum value of R = 1 if the variance of the
photon number becomes zero, so that the photon number is
precisely defined. This is the case when the quantum system
is prepared in an eigenstate of the photon number operator.
Note that our general approach of operational nonclassicality
quantification leads for this example to R = −Q, which is
the negative value of the Mandel Q parameter [23]. The
latter has been frequently used for the quantification of the
nonclassicality of sub-Poisson light.

B. Quadrature squeezing

Now we consider a homodyne detection device for the
case of perfect detectors. The setup measures the probability
distribution p(x,ϕ), of the phase-sensitive quadrature operator,

x̂ϕ = âeiϕ + â†e−iϕ, (15)

of a given radiation mode (cf., e.g., Refs. [19,20]). By choosing

f̂ ≡ �x̂ϕ = x̂ϕ − 〈x̂ϕ〉, (16)

condition (1) characterizes the effect of quadrature squeezing:

〈: (�x̂ϕ)2 :〉 < 0. (17)

The classical counterpart of the lhs is 〈(�xϕ)2〉cl. It represents
the classical variance of the stochastic variable xϕ , which
is non-negative in general. Quadrature squeezing indicates
a reduction of the noise below the vacuum level. For the
first experimental demonstrations of this effect we refer to
Refs. [24,25].

Let us consider the quantification of the squeezing effect
based on the observable f̂ †f̂ together with the choice of
f̂ given by Eq. (16). For this purpose we consider the
denominator in Eq. (4), which now reads

〈: (�x̂ϕ)2 :〉 − 〈(�x̂ϕ)2〉 = −〈(�x̂ϕ)2〉vac. (18)

Here we have used the fact that the quadrature variance differs
form its normal-ordered value by the quadrature variance in the
vacuum state, 〈(�x̂ϕ)2〉vac. Perfect operational nonclassicality
for a quadrature measurement of squeezing [i.e., R = 1
according to Eq. (4)], requires that

〈: (�x̂ϕ)2 :〉 = −〈(�x̂ϕ)2〉vac ⇐⇒ 〈(�x̂ϕ)2〉 = 0 (19)

[see also Eq. (5)]. This is the well-known situation of perfect
squeezing, representing the perfect suppression of the vacuum
noise for a chosen value of the phase ϕ.

The quantum state realizing the so-defined perfect quan-
tumness is a quadrature eigenstate. Such states, however, are
unphysical since they contain an infinite amount of energy.
Squeezed states have some minimal, nonzero value of the
quadrature variance, 〈(�x̂ϕ)2〉 = 〈(�x̂ϕ)2〉min. Their maximal
relative nonclassicality, Rmax, is

Rmax = 1 − 〈(�x̂ϕ)2〉min

〈(�x̂ϕ)2〉vac
, (20)

in agreement with an intuitive quantification of quadrature
squeezing.

IV. QUANTUM-NOISE-FREE MEASUREMENTS

In this section we relate our operational quantification of
nonclassicality to quantum noise effects in properly designed
measurements. We start with the discussion of the well-known
scenarios of photon number and quadrature measurements.
Furthermore, we show that a squeezed state can be used
to realize noise-free quantum measurements in a particular
measurement scenario. In this operational sense we may
conclude that a squeezed state is perfectly nonclassical, even
for a partial suppression of the quadrature vacuum noise.

Let us consider some physical consequences of perfect
quantumness. We may define perfect quantumness in a given
experimental situation through Eq. (7). A related observable,
f̂ †f̂ , becomes a QNF variable. For this purpose it is sufficient
to prepare the system under study in a pure quantum state
that fulfills condition (7). This opens possibilities to perform
high-precision measurements at the ultimate limit of vanishing
quantum noise. Given an experimental setup and the related
operator f̂ , one may solve Eq. (7) to derive optimal quantum
states for QNF measurements.

A. Noise-free number statistics

Consider the situation for the measurement of the photon
number or the excitation number of a quantum-mechanical
harmonic oscillator. Let us consider the Jaynes-Cummings
(JC) interaction [26] as is realized in cavity QED [27–30].
In the vibronic motion of a laser-driven trapped ion the same
Hamiltonian can be realized in the Lamb-Dicke regime [31].
In general, the dynamics is more rich and can be described by
a nonlinear JC Hamiltonian [32], which has been confirmed in
experiments [33].

The standard JC interaction Hamiltonian is [26]

Ĥint = h̄

2
gâÂ21 + H.c., (21)

where Âij = |i〉〈j | (i,j = 1,2) is the electronic flip operator.
It describes the resonant interaction of an atomic two-level
system with a quantum mechanical harmonic oscillator or
a radiation mode, with coupling strength g. The system is
prepared at t = 0 in the state

�̂(0) = |2〉〈2| ⊗ ρ̂(0), (22)

with �̂ and ρ̂ denoting the full quantum state and that of the
harmonic subsystem, respectively. The atom is observed in the
excited state |2〉 with the probability

p|2〉(t) = 1
2 {1 + Tr[ρ̂(0) cos(gt

√
â†â + 1)]}. (23)

For our problem we choose the operator f̂ in Eq. (11).
According to Eq. (8), the optimal quantum state is

â†â|n〉 = n|n〉, (24)

with n = 〈â†â〉. This is the well-known Fock state, with a fixed
excitation number of the harmonic subsystem. These states
are clearly nonclassical according to condition (12), except
for the ground state, n = 0. It is easily seen that the evolution
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of p|2〉(t) according to Eq. (23) is a purely harmonic one in
such a nonclassical state, the photon number being determined
by the oscillation frequency. This is the typical situation for
the QNF measurements under study. Any broadening of the
number statistics leads to a nonharmonic dynamics; see the
corresponding experiments [30,33].

B. Noise-free quadrature statistics

Let us briefly consider the situation of a noise-free
quadrature measurement as can be implemented for a properly
laser-driven trapped ion [34,35]. This leads to a situation
that resembles that of the photon-number measurement based
on the JC interaction. The required interaction Hamiltonian
reads [34]

Ĥint = h̄�∗x̂ϕÂ21 + H.c., (25)

where � is an effective Rabi frequency characterizing the laser
excitation. For the physical realization we refer to the next
subsection, where it follows as a special case of the generalized
scheme studied there.

Let us consider the time evolution of the system starting
again from the initial state (22). Now the electronic excitation
evolves according to [34]

p|2〉(t) = 1

2

{
1 +

∫ ∞

−∞
dx cos(xτ )p(x,ϕ)

}
. (26)

Here τ = |�|t is dimensionless time, p(x,ϕ) =
Tr[ρ̂(0)|xϕ〉〈xϕ|] is the probability distribution of the
quadrature for arbitrary but fixed phase ϕ, and |xϕ〉 is the
corresponding quadrature eigenstate.

Combining Eqs. (16) and (8), the desired perfect quantum
state is given by

x̂ϕ|ψ〉 = xϕ|ψ〉, (27)

which defines the quadrature eigenstate, |ψ〉 ≡ |xϕ〉, with
the eigenvalue being xϕ = 〈x̂ϕ〉. In this case the electronic
dynamics according to Eq. (26) is purely harmonic, as in the
case of the JC dynamics for a Fock state. The oscillation
frequency reflects again the precisely defined value of the
observable to be measured.

This reproduces the well-known fact that the quadrature
eigenstates are suited for QNF quadrature measurements. The
severe difficulty in realizing this situation consists of the
fact that these eigenstates represent the limit of infinitely
strong squeezing, which requires an infinite amount of energy.
Nevertheless, experimenters try to generate strongly squeezed
states in order to approach this ideal situation. For example,
recently a 10 dB reduction of the noise power of radiation has
been achieved [36], and even stronger squeezing was realized
in the quantized motion of a trapped ion [33]. In this way one
can suppress the noise effects in measurements significantly,
but one cannot reach the QNF limit.

C. Squeezed states for perfect measurements

The question appears whether there is an alternative
possibility of using squeezed states for QNF measurements.
We show that the answer is yes. It can be realized by a proper
choice of the observable to be measured. Since the quadrature
noise is reduced for a squeezed states, it may seem that a

quadrature measurement is the optimal choice. However, we
may achieve a better performance and even reach the QNF
limit.

For simplicity, we deal with a squeezed vacuum state |0; ν〉,
which obeys the eigenvalue equation

(μâ + νâ†)|0; ν〉 = 0, μ2 − |ν|2 = 1. (28)

The complex (real) parameter ν (μ) controls the amount of
quadrature noise reduction for properly fixed phase ϕ. Total
noise suppression requires |ν| → ∞, which cannot be realized
in practice. Instead, we may choose the operator f̂ for our
measurement device as

f̂ ≡ μâ + νâ†. (29)

By comparing Eq. (28) with Eq. (7), it is obvious that
the squeezed vacuum indeed obeys the condition of perfect
quantumness for the resulting observable f̂ †f̂ . In this way
one can implement a QNF measurement.

We still need a measurement setup for the observable
f̂ †f̂ . For this purpose we consider the situation for a trapped
and laser-driven ion. In this case a motional squeezed state
can be readily prepared [33]. Let us consider a trapped ion,
in the resolved-sideband and the Lamb-Dicke regimes. It is
simultaneously laser-driven on the first red and blue sidebands
(cf. Fig. 1). The couplings on the red and the blue sidebands are
given by the Rabi frequencies �r and �b, respectively, which
fulfill the condition |�r| > |�b|. For equal driving of both
sidebands the scheme measures quadratures as considered in
the previous subsection. More details on the method, including
the measurement of the time evolution of the electronic states
of the atom, are given in Refs. [34,35].

The interaction Hamiltonian reads

Ĥint = h̄

2
Â21e

iϕr (|�r|â + |�b|ei�ϕâ†) + H.c., (30)

where ϕr and �ϕ are the phase of the red-detuned laser and
the phase difference of both lasers, respectively. It can be

FIG. 1. (Color online) Scheme for QNF measurement with
moderate squeezing. The interaction on the red sideband is stronger
than on the blue one, |�r| > |�b|.
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rewritten as

Ĥint = h̄

2
�f̂ Â21 + H.c., (31)

with � = eiϕr (|�r|2 − |�b|2)1/2. The operator f̂ is given by
Eq. (29), with

ν = |�b|
|�| ei�ϕ, (32)

and μ2 = 1 + |ν|2 according to Eq. (28). The resulting
dynamics is sensitive to the operator f̂ under study.

Straightforward algebra yields for the evolution of the
electronic-state occupation of a trapped ion, initially prepared
in the state (22), the result

p|2〉(t) = 1
2 {1 + Tr[ρ̂(0) cos(|�|t

√
f̂ †f̂ + 1)]}. (33)

This evolution depends sensitively on the statistics of the
observable f̂ †f̂ , with f̂ from Eq. (29). The ion is initially
prepared in a motional squeezed vacuum according to Eq. (28).
In this case we easily arrive at

p|2〉(t) = 1
2 [1 + cos(|�|t)]. (34)

This represents a completely coherent oscillation, reflecting
again the QNF property of the observable f̂ †f̂ . As in
the examples considered above, the oscillation frequency
yields the measured sharp expectation value of our basic
observable, which is zero in the present case. The harmonic
electronic dynamics clearly displays the striking property of
the moderately squeezed states. For any amount of squeezing
one may adjust the observable f̂ †f̂ properly, such that the
squeezed state exhibits perfect quantumness. The implemented
detection scheme represents a perfect QNF measurement for
this observable.

V. ALGEBRAIC QUANTIFICATION

We have seen above that very different states can be used for
a perfect QNF measurement: the eigenstates of the Hermitian
operators n̂ and x̂ϕ on the one hand, and the eigenstates of
the non-Hermitian operator f̂ in Eq. (29) on the other hand.
As outlined above, the possibility of a QNF measurement is
closely related to our concept of operational quantification
of nonclassicality. Here we consider the question of what
are the common features of these very different quantum
states to make them useful for perfect measurements. The
answer to this question will open a new approach to the
quantification of the nonclassicality of quantum states from the
viewpoint of their algebraic structure. For this purpose,
we introduce the degree of nonclassicality. The conclusions
obtained from the algebraic quantification will be compared
with those from the operational one.

A. Axiomatic quantification

For the quantification of entanglement an axiomatic formu-
lation of entanglement measures has been introduced [37–39].
Let us here formulate a similar approach for a nonclassicality
measure. Recently, a general method to introduce geometric

ordering procedures and measures on convex sets of quantum
states has been formulated [40].

Before we can start with the definition of a nonclassicality
measure, we need to consider mappings between quantum
states. Such linear functions can be given in terms of Kraus
operators 
, which map a quantum state ρ̂ to another one

(ρ̂). A Kraus operator is a classical one if, by definition, it
maps any classical state to (another) classical state:


(|α〉〈α|) =
∫

d2α′�α(α′)|α′〉〈α′|, (35)

with �α being a classical probability distribution for all α ∈ C.
It is worth mentioning that it is sometimes convenient to relax
this requirements to �α being non-negative. The additionally
needed normalization can be done via 
(ρ̂)/tr
(ρ̂). This
class of Kraus operators refers to as nondeterministic Kraus
operations.

Examples of classical Kraus operators can be given by

β(ρ̂) = D̂(β)ρ̂D̂(β)† [where D̂(β) denotes the unitary dis-
placement operator], or the free time evolution, 
ϕ(ρ̂) =
e−iϕn̂ρ̂eiϕn̂ for ϕ = ω(t − t0). Obviously, both map a pure
classical state (i.e., a coherent state) to another state. More
sophisticated is the transposition in Fock basis


(ρ̂) = ρ̂T, (36)

which maps |α〉〈α| to |α∗〉〈α∗|. This map cannot be described
as a unitary operator, but it also preserves the purity.

A nonpurity-preserving classical operation can be formu-
lated, for example, as a convolution with a classical probability
distribution �(α):


(|α〉〈α|) =
∫

d2α′�(α′ − α)|α′〉〈α′|. (37)

Here, � introduces some classical noise to the coherent
state |α〉. One example could be given by thermal noise,
�(α) = (πn̄)−1e−|α|2/n̄, as occurs in thermalization processes.
Alternatively, this particular map can be connected with the
Lee measure [2]. A similar approach introduces some phase
noise to a quantum state. Such a classical phase randomization
has been experimentally realized to study its influence on the
nonclassicality properties of squeezed light [41].

Other realizations of such classical Kraus operators can
be given by photon-substraction experiments [42,43] and
noiseless amplification [44,45]. The photon substraction maps
P (α) to |α|2P (α). The noiseless amplification maps |α〉 to
|gα〉, with g > 1. Both mappings belong to the class of
nondeterministic (probabilistic) Kraus operators. This means
that the experiment, which realizes these Kraus operators, has
a success rate below one and postselection methods have to be
applied.

After the definition of classical maps, let us now come to
the definition of a proper nonclassicality measure. A function
ENcl, mapping a quantum state to a non-negative number which
fulfills

(1) ENcl(ρ̂) = 0 if and only if ρ̂ is classical;
(2) and for any classical Kraus operator 
, we have

ENcl(ρ̂) � ENcl(
(ρ̂));
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refers to as a nonclassicality measure. Note that such a measure
is invariant under classical unitaries Û :

ENcl(ρ̂) � ENcl(Û ρ̂Û †)

and ENcl(Û
†[Û ρ̂Û †]Û ) � ENcl(ρ̂), (38)

which yields ENcl(ρ̂) = ENcl(ρ̂ ′) for ρ̂ ′ = Û ρ̂Û †.

B. Degree of nonclassicality

Following the approach in Ref. [40], we may construct such
a nonclassicality measure. First, we start with a measure for
pure states and, using a convex roof construction [46,47], we
get a measure for mixed quantum states. In order to quantify
the quantum behavior of the system under study, we start with
the quantum superposition of coherent states

|ψr〉 =
r∑

k=1

λk|αk〉, (39)

where |αk〉 are coherent states for αk �= αk′ (k �= k′), λk are
complex coefficients, and r is a given integer. Whenever a
given pure state |ψr〉 can be written in such a form, we say it
is in the set S (r)

pure.
For mixed states, we define classical mixtures of those pure

states as

ρ =
∑

ψr∈S (r)
pure

pψr
|ψr〉〈ψr |, (40)

with pψr
� 0 and

∑
ψr

pψr
= 1. The set S (r) is given by the

closure (with respect to the trace norm) of states in the form
of Eq. (40). We get a system of convex sets which fulfill the
inclusion S (r−1) ⊂ S (r). Finally, we can define the degree of
nonclassicality ENcl(ρ̂) as

ENcl(ρ̂) = 1 − e−(r−1), (41)

where r is the integer for which holds that ρ̂ is in S (r), but not
in S (r−1).

In case of a classical state ρ̂, we have ρ̂ ∈ S (1) and
ρ̂ /∈ S (0) (the void set). We get for classical states ENcl(ρ̂) = 0.
In contrast to the operational measure R, we have an “if
and only if” condition. For R = 0, we cannot conclude in
general that the considered quantum state is a classical one.
In the operational sense, R = 0 means that the considered
measurement cannot use the possible nonclassicality within
the state.

Let us consider perfect nonclassicality, ENcl(ρ̂) = 1 or r =
∞. This means that ρ̂ /∈ S (r), for finite r . It is important to
justify that ρ̂ is indeed in the set S (∞). Since any pure state can
be written as an infinite superposition of coherent states, any
mixed state ρ̂ can be formally written as a mixture of states
with r = ∞.

Due to the fact that a classical operation 
 maps the
set S (r) to a subset of itself, the degree of nonclassicality
ENcl fulfills the requirements of a nonclassicality measure. Its
physical interpretation is quite convenient. By construction,
the degree of nonclassicality identifies quantumness based on
the quantum superposition principle.

C. Quantum superpositions

Let us compare the degree of nonclassicality with related
entanglement measures. The given measure is related to the
Schmidt number [48], counting the number of superpositions
of product states. The Schmidt number is the convex roof
construction of the Schmidt rank [49] of pure quantum states.
Recently it has been shown that the Schmidt number is
a universal entanglement measure [50]. However, it only
coincides with the degree of nonclassicality from the formal
point of view. Here, we quantify single-mode nonclassicality
of a harmonic oscillator.

The Schmidt number and the degree of nonclassicality
consider quantumness by the quantum superposition principle,
which yields all possible kinds of quantum interference
phenomena. The uncertainty principle is such a consequence.
Whenever the eigenvectors of a given observable Â need to be
written as a superposition of eigenvectors of another observ-
able B̂, those two observables do not commute: [Â,B̂] �= 0.
The result is that a simultaneous QNF measurement of Â and
B̂ is impossible. Note that this condition is necessary and
sufficient.

For the quantum system of the harmonic oscillator, this
also implies the well-known fact that the ground state has
a nonzero energy. The Hamiltonian may be written as Ĥ =
c1p̂

2 + c2x̂
2 with two proper positive constants c1, c2, and p̂

being the conjugate momentum of x̂. Due to the symmetry
of the Hamiltonian for the exchanges x̂ �→ −x̂ or p̂ �→ −p̂,
the minimal energy is given for a states with 〈x̂〉 = 〈p̂〉 = 0.
Therefore, from [x̂,p̂] �= 0 it follows that

〈Ĥ 〉min = c1〈(�p̂)2〉 + c2〈(�x̂)2〉 > 0. (42)

Hence the vacuum noise is also a consequence of the quantum
superposition principle.

In addition, we may discuss some Kraus operators, which
may increase the number of superpositions of coherent states.
Obviously, such a Kraus operator is a nonclassical one since the
degree of nonclassicality can increase. A possible generation
of states with controlled number of superpositions r has been
studied for trapped ions [51]. In experiments, generations
of so-called Schrödinger cat states with r = 2 have been
realized, using trapped ions [52], Rydberg atoms [53], cavity
QED systems [54], or propagating optical fields [55]. Both
methods consider Kraus operations which map |α〉 to some
superposition state; for example, |α〉 + |−α〉. Thus, these
experiments can generate from a classical state with r = 1 a
nonclassical state with r = 2. Such experiments clearly use the
quantum superposition principle to create this nonclassicality.
Another well-known Kraus operation which uses quantum
properties is the photon addition (see, e.g., Ref. [42]), which is
given by the nondeterministic Kraus operator 
(ρ̂) = â†ρ̂â.

It is not surprising that the quantum superposition principle
leads to a manifold of quantum effects. It is remarkable that
methods under study identify the number of superpositions
r—defining ENcl—as a proper nonclassicality measure. Hence
a fundamental concept of quantum physics directly defines a
quantifier of quantumness.
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D. Examples

In the previous examples of operational nonclassicality, we
have shown that squeezed states and Fock states exhibit perfect
operational nonclassicality in the sense of QNF measurements.
Let us study the amount of nonclassicality of these states using
the proposed degree of nonclassicality, ENcl. In a first step, we
consider properties of the nonclassicality number r for pure
states. Afterward we apply our findings to Fock states and
squeezed states.

Let us consider the resolution of the unity with coherent
states,

1̂ =
∫
C

d2α

π
|α〉〈α|. (43)

A quantum state |ψ〉 can be decomposed as

|ψ〉 = 1̂|ψ〉 =
∫
C

d2α

π
e−|α|2/2(e|α|2/2〈α|ψ〉)|α〉. (44)

In case we have a given nonclassicality number, |ψ〉 =
|ψr〉 ∈ S (r)

pure, we get

1̂|ψr〉 =
∫
C

d2α

π
e−|α|2/2

(
r∑

k=1

λke
α∗αk e−|αk |2/2

)
|α〉. (45)

This means that for each α it must hold that

e|α|2/2〈α|ψ〉 =
r∑

k=1

λke
α∗αk e−|αk |2/2. (46)

Hence a convenient test for the question is |ψ〉 in S (r) or not?
is given. The state |ψ〉 is not in this set if and only if it does
not fulfill Eq. (46).

First, we may consider the photon Fock state |n〉 for n > 0.
A photon represents the particle description of radiation. A
good quantifier should give a high nonclassicality of such a
state. We get from Eq. (46)

α∗n

√
n!

=
r∑

k=1

λke
α∗αk e−|αk |2/2. (47)

Except the constant polynomial, none other is a finite linear
combination of exponential functions. Here we have for any
finite r that α∗n /∈ span{eα∗αk : k = 1, . . . ,r}—independently
of the choice of the αk . Thus we get r = ∞, which is equivalent
to

ENcl(|n〉〈n|) = 1. (48)

Photons exhibit perfect nonclassicality. Beyond the opera-
tional usefulness for the considered QNF measurement, the
algebraic nonclassicality is also maximal.

The second example is a squeezed state, whose nonclassi-
cality arises from the subvacuum noise in one quadrature. The
squeezed vacuum state |0; ν〉 can be written as

|0; ν〉 = 1√
μ

exp

(
− ν

2μ
â†2

)
|0〉, (49)

with a squeezing parameter ξ �= 0 (μ = cosh |ξ | and ν =
sinh |ξ |ei arg(ξ )) [19]. Now, Eq. (46) reads

1√
μ

e
− ν

2μ
α∗2 =

r∑
k=1

λke
α∗αk e−|αk |2/2. (50)

Again, one can argue that a function with a quadratic exponent
cannot be written as a finite combination of functions with a
linear exponent. Immediately, we have r = ∞ or

ENcl(|0; ν〉〈0; ν|) = 1. (51)

Squeezed states exhibit maximal nonclassicality, not only in
the previously discussed operational sense, but also in the al-
gebraic approach of nonclassicality measures. This underlines
the previously obtained result from the relative operational
nonclassicality R. It comes as a surprise that the squeezed
state is perfectly nonclassical, without considering the limit
of infinite squeezing. Both approaches—the operational and
the algebraic one—manifest the fact that subvacuum noise is
a very strong kind of nonclassicality. It is worth noting that
a strong nonclassicality is easy to identify (e.g., by low-order
moments; cf. Sec. III).

VI. SUMMARY AND CONCLUSIONS

In conclusion we have introduced an operational measure
for the nonclassicality or quantumness of a quantum state
of the harmonic oscillator. It is based on the negativity
of an observable whose classical counterpart is positive
semidefinite. The resulting perfect quantumness is related
to the feasibility of performing totally quantum-noise-free
measurements. As an example, we have demonstrated that
a moderately squeezed state of the quantized center-of-mass
motion of a trapped ion can display perfect quantumness. An
implementation of the corresponding noise-free quantum mea-
surement has been given. In this context we have also discussed
the general strategy of implementing quantum-noise-free
measurements.

A general, axiomatic quantification of nonclassicality has
been introduced and compared with the operational approach.
For this purpose, the degree of nonclassicality has been
defined. This degree is zero for classical states, and it becomes
unity for maximal nonclassicality. We have outlined the
relation between fundamental concepts (namely, the quantum
superposition principle) in quantum optics and the defined
degree of nonclassicality.

Examples of maximally nonclassical states have been
discussed. A Fock state represents the particle aspects of a
quantized electromagnetic wave. This dualism is reflected by
the maximal degree of nonclassicality for photon number states
from the viewpoint of classical electrodynamics. A squeezed
state, on the other hand, can beat the classical shot-noise limit
of a quadrature measurement. The violation of such an ultimate
classical boundary is again verified by the maximal degree of
nonclassicality even for moderate squeezing. It is important
to stress that in practice stronger squeezing may be preferred,
whenever it is sufficiently robust against occurring classical
noise effects.

Both concepts, the operational and the algebraic one,
present different ways for the quantification of nonclassicality.
The operational approach can quantify the nonclassicality,
which can be measured or used in a particular experimen-
tal scenario. Experimental noise effects could be included
in the choice of the observable. The algebraic degree of
nonclassicality quantifies the actual amount of quantumness
independently of the experiment. The first method is of great
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interest for particular applications of nonclassical light. The
second method identifies—for an experimentally generated or
theoretically studied state—how much nonclassicality can be
possibly used.
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