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Trap-free manipulation in the Landau-Zener system
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The analysis of traps, that is, locally but not globally optimal controls, for quantum control systems has
attracted great interest in recent years. The central problem that has remained open is to demonstrate for a given
system either the existence or the absence of traps. We prove the absence of traps and hence completely solve
this problem for the important tasks of unconstrained manipulation of the transition probability and unitary gate
generation in the Landau-Zener system, a system with a wide range of applications across physics, chemistry,
and biochemistry. This finding provides an example of a controlled quantum system which is completely free of
traps. We also discuss the impact of laboratory constraints due to decoherence, noise in the control pulse, and
restrictions on the available controls, which, when being sufficiently severe, can produce traps.
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I. INTRODUCTION

Manipulation by atomic and molecular systems is an impor-
tant branch of modern science with applications ranging from
optimal laser-driven population transfer in atomic systems to
laser-assisted control of chemical reactions [1]. Much interest
is directed towards control of the Landau-Zener (LZ) system,
a two-state quantum system whose unitary evolution under the
action of the control ε(t) (e.g., shaped laser field) is governed
by the equation

U̇ ε
t = −i[�σx + ε(t)σz]U

ε
t , Uε

t=0 = I, (1)

where � > 0, and σx and σz are the Pauli matrices. The
case ε(t) = εt with constant ε was studied by Landau, Zener,
Stückelberg, and Majorana [2]. This system has been widely
applied in physics, chemistry, and biochemistry, for example,
for describing transfer of charge along with its energy [3],
photosynthesis [4], atomic and molecular collisions, processes
in plasma physics [5], Bose-Einstein condensate [6], experi-
mental realizations of qubits, etc. [7–13].

Controlled manipulation by a quantum system can be
formulated as finding global maxima of a suitable objective
J (ε) associated to the system. For example, maximizing the
probability of transition from the initial state |i〉 to a target
final state |f〉 at a final time T can be described by maximizing
J (ε) = Pi→f = |〈f|Uε

T |i〉|2. A control which attains a local
maximum of J can be found either numerically using the
model of the system or experimentally. In both circumstances,
the first step of a common procedure is to apply a trial pulse ε0

and obtain the outcome J (ε0), either numerically or measuring
it in the laboratory. The second step is to make various small
modifications of ε0 and find ε1, which produces maximum
increase in J . Then ε1 is used as a new trial pulse and the
procedure is repeated until no significant increase is produced
or a maximum number of iterations is reached.

Of crucial practical importance is to know whether J (ε)
has traps, that is, local maxima with the values less than the
global maximum, as necessary to properly choose between

*apechen@gmail.com; http://mathnet.ru/eng/person17991

local (e.g., gradient) and global optimization methods [14–19].
Traps can strongly influence both theoretical and experimental
quantum control studies; they determine the level of difficulty
of controlling the system and can significantly slow down
or even completely prevent finding globally optimal controls.
Whereas the analysis of traps in manipulation by quantum
systems has attracted high attention [20–28], no examples
of trap-free quantum systems have been known. Only partial
theoretical results have been obtained, stating the absence of
traps at special regular controls. This finding does not at all
exclude the absence of traps that makes the problem open since
even a single trap may produce significant difficulties for the
optimization if it has a large attracting domain [29]. In this
work we show that the LZ system is trap-free and hence, for
example, the only extrema of J (ε) = Pi→f for this system are
global maxima and minima. This finding provides an example
of a trap-free quantum control system where unconstrained
local manipulations are always sufficient to find best control
pulses. Sufficiently strong constraints on the controls may
destroy this property and in the end we discuss possible
limitations for the analysis due to decoherence, noise in the
control pulses, and limited tunability of the control strength
and time scales in laboratory experiments.

II. TRAPS AND CONTROL LANDSCAPES

Formally, a control field ε(t) is a trap for the objective
J (ε) if it is a local maximum, that is, a maximum with the
value less than the global maximum, J (ε) < Jmax = max

ε
J (ε)

(in this work we consider as a control goal maximizing the
objective; if the goal is to minimize the objective, then traps
are local minima). Answering the question whether traps
exist for a given control problem is crucial for determining
proper algorithms and our abilities for finding optimal control
fields. In the absence of traps, local search algorithms should
generally be able to find globally optimal controls (exceptions
may occur if the initial control is chosen exactly at a saddle
point, where the gradient of the objective is zero). If the
objective has traps (perhaps even a single trap with large
attracting domain), then local search procedures may converge
to local maxima instead of attaining a desired globally optimal
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control and more sophisticated global search methods should
be exploited for a successful optimization.

Traps are critical points, that is, the gradient ∇Jε = 0 at
any trap. Critical points for control objectives J (ε) = Pi→f

were studied in seminal works [20], where the absence of
traps was suggested. The suggestion was drawn from the
proof that any function of the form f (U ) = Tr[Uρ0U

†O]
(ρ0 is a positive matrix and O is Hermitian) defined on the
unitary group U(n), where n is the system dimension, has
as extrema only global maxima, global minima, and saddles
and has no traps. (Extrema of trace functions over unitary
and orthogonal groups were studied in other contexts by von
Neumann [30], Brockett [31], Glaser et al. [32], etc.) Then,
under the controllability condition which assumes that any U ∈
U (n) can be generated by some control, this result was used
to conclude the absence of traps for the underlying objective
functional J (ε). Later it was shown that the conclusion of
the absence of traps requires an additional assumption that the
map χ : ε → Uε

T is nondegenerate [21], meaning that arbitrary
infinitesimal variations of ε produce variations of Uε

T in all
directions on U(n) [33,34]. While the controllability condition
is relatively easy to verify [35], checking the nondegeneracy
assumption turned out to be a hard problem. Moreover,
critical controls violating this assumption were found [24,25],
and even second-order traps—critical controls which are not
global maxima and where the Hessian H = δ2J/(δε)2 is
negative semidefinite were shown to exist under rather general
assumptions [26]. (Second-order traps are not necessarily local
maxima but effectively they are traps for local algorithms
exploiting at most second-order local information about the
objective; see Chap. 20 of [36] for a general discussion of
the nondegeneracy and second-order optimality conditions.)
These findings led to reconsideration of the conclusion of an
absence of traps. Some numerical simulations suggested that
the condition of nondegeneracy might be generally satisfied or
at least its violation does not produce multiple traps [27], while
others indicated possible trapping behavior [25,29]. However,
numerical search is limited and the extent to which these
runs span the full space of quantum control possibilities is
questionable [29]. Hence, the problem of proving either the
existence or the absence of traps has remained open.

III. ABSENCE OF TRAPS FOR THE
LANDAU-ZENER SYSTEM

Our main result is that the only critical points of any
objective of the form J (ε) = f (Uε

T ), where Uε
T satisfies (1)

and f (U ) is any function on the special unitary group SU(2),
which has no local extrema, are global maxima, global minima,
and the zero control field ε(t) = 0. Important examples of such
objectives include the following.

(i) Transition probability:

Ji→f(ε) = ∣∣〈f|Uε
T |i〉∣∣2

.

This objective is maximized by a control which completely
transfers the initial state |i〉 into the desired final state |f〉.

(ii) Expectation of a system observable O:

JO(ε) = Tr
[
U

ε

T ρ0U
ε†
T O

]
.

Here O is a Hermitian matrix representing the observable and
ρ0 is the initial system density matrix. The objective is max-
imized by a control which maximizes quantum-mechanical
average of O at time T .

(iii) Generation of a unitary process W :

JW (ε) = 1
4

∣∣Tr
(
W †Uε

T

)∣∣2
.

Here W is the unitary matrix representing a desired sys-
tem evolution or a desired quantum gate, for example,
Hadamard gate. The maximum of this objective is achieved
by a control such that UT = eiφW , where φ is an arbitrary
(generally unphysical) phase. Factor 1/4 is chosen to have
max

ε
JW (ε) = 1.

Proof of the main result. We consider first J (ε) = Ji→f(ε).
For brevity, we sometimes omit the superscript ε in Uε

t and
Uε

T , and without loss of generality set � = 1. Gradient of
J (ε) = |〈f|Uε

T |i〉|2 for the LZ system has the form [26]

∇Jε(t) = 2Im(〈i|U †
T |f〉〈f|UT U

†
t σzUt |i〉). (2)

It can be written as ∇Jε(t) = L(U †
t σzUt ) = l(t), where

L : su(2) → R is the linear map on the Lie algebra of
traceless Hermitian 2 × 2 matrices defined by L(A) =
2Im[〈i|U †

T |f〉〈f|UT A|i〉] and l(t) is a real-valued function. If
ε is a critical control field, then l(t) ≡ 0 and therefore, in par-
ticular, l′(t) = l′′(t) = 0. These derivatives can be computed
to be

l′(t) = L( − iU
†
t [σx + ε(t)σz,σz]Ut ) = −2L(U †

t σyUt ),

l′′(t) = −2L( − iU
†
t [σx + ε(t)σz,σy]Ut )

= −4L(U †
t σzUt ) + 4ε(t)L(U †

t σxUt ).

Thus, the condition l′′ = l′ = l = 0 for any t such that ε(t) 	= 0
takes the form

L(U †
t σxUt ) = L(U †

t σyUt ) = L(U †
t σzUt ) = 0. (3)

The matrices U
†
t σxUt , U

†
t σyUt , U

†
t σzUt are linearly indepen-

dent traceless Hermitian 2 × 2 matrices. They form a basis of
su(2) and hence (3) implies L(A) = 0 for any A ∈ su(2).

Let |i⊥〉 be the state which is orthogonal to |i〉. Taking
A = |i〉〈i⊥| + |i⊥〉〈i| and A′ = i(|i〉〈i⊥| − |i⊥〉〈i|) gives

L(A) = 0 ⇒ Im(〈i|U †
T |f〉〈f|UT |i⊥〉) = 0,

L(A′) = 0 ⇒ Re(〈i|U †
T |f〉〈f|UT |i⊥〉) = 0.

Thus, 〈i|U †
T |f〉〈f|UT |i⊥〉 = 0; that is, either 〈i|U †

T |f〉 = 0 or
〈f|UT |i⊥〉 = 0. The former case corresponds to the global
minimum of the objective (J = 0) and the latter to its global
maximum (J = 1). These are the only allowed critical controls
except of ε(t) ≡ 0. This finishes the proof of the main result
for Ji→f(ε).

The analysis above immediately implies that if a linear map
L : su(2) → R satisfies L(U †

t σzUt ) = 0 then L ≡ 0. Now we
show that it means that the map χ : ε → Uε

T is nondegenerate
everywhere outside of ε(t) ≡ 0. Since we consider objectives
produced by functions on SU(2) which are therefore invariant
with respect to the overall phase of Uε

T , we can identify Uε
T

with the corresponding element of SU(2). Small variations
around Uε

T can be represented as Ũ ε
T = Uε

T eδw ≈ Uε
T (1 + δw),
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where δw = −i
∫ T

0 U
†
t σzUtδε(t)dt . For the map χ to be non-

degenerate, Ũ ε
T should span a neighborhood of Uε

T that in turn
requires δw to span su(2). If δw does not span su(2), then there
exists A ∈ su(2), A 	= 0 such that (A,δw) ≡ Tr(A†δw) = 0
for all δε and hence LA(U †

t σzUt ) := Tr(A†U †
t σzUt ) = 0. This

is possible only if A = 0 and hence the map cannot be
degenerate. Therefore, our result immediately implies the
absence of traps at any ε 	= 0 for any objective functional
J (Uε

T ) which has no traps if considered as a function on SU(2).
This includes important objectives JO = Tr[Uε

T ρ0U
ε†
T O] for

maximizing expectation of a system observable O and JW =
(1/4)|Tr(W †Uε

T )|2 for optimal generation of a unitary process
W (e.g., for unitary gate generation). These objectives appear
to be trap-free for the LZ system since functions fO(U ) =
Tr[Uρ0U

†O] and fW (U ) = (1/4)|Tr(W †U )|2 have no local
maxima on SU(2) [20].

The control ε(t) ≡ 0 requires a separate consideration since
the condition l′′(t) = 0 for ε ≡ 0 cannot be used to conclude
L(U †

t σxUt ) = 0. This control is, however, not a trap, for
example, for Ji→f as shown by direct computation in the
Appendix.

IV. DISCUSSION

Now we discuss important limitations for the present
analysis. No real-world system will perfectly evolve according
to Eq. (1) and three general kinds of deviations from the ideal
situation include decoherence effects, deviations of the actual
control from the intended one due to noise or imperfections
of the laboratory setup, and limited tunability of the control
strength and time scales in laboratory experiments. While we
consider the system as evolving according to the Schrödinger
equation with unitary evolution, in real circumstances it can
experience additional influence of the environment which
causes the dynamics to be nonunitary. We also assume that any
shape of the control ε(t) is available, whereas typical pulses are
either piecewise constant or finite sums of cosines and sines at
certain fixed frequencies. These assumptions are common for
the first step of control landscape analysis which deals with the
ideal situation of noiseless unconstrained controls. The next
step upon establishment of the ideal landscape properties is
to study the effects of possible deviations, which we discuss
below for the LZ system.

The requirements on the available control fields (e.g., on
their strength and time scale) necessary for the conclusion
of the absence of traps for attaining maximal objective value
are such that the available controls are sufficient to guarantee
controllability of the system. Minimal control time for the
LZ system can be estimated using the fundamental theory
of optimal control at the quantum speed limit as TQSL ≈
�E−1

0 arccos(|〈i,f〉|), where �E0 is the energy variance of the
free Hamiltonian H0 = �σx calculated on the initial state [10].
Hence, our analysis applies to any final time T � π�E−1

0 . If
for a given physical system decoherence effects occur on a
time scale slower than �E−1

0 , they can be neglected when
the control is implemented in the time optimal fashion. This
shows that while finite-time [37] and decoherence [38–40]
effects can be important for the LZ system, they do not modify
the trap-free landscape property as soon as final time T is

FIG. 1. (Color online) The control landscape of J0→1(a1,a2) for
the LZ system controlled by piecewise constant controls (N = 2, T =
10, � = 1). The landscape possesses multiple traps (local maxima).

sufficiently smaller than the relaxation time and at the same
time is not too small to violate controllability of the systems.

An extensive numerical analysis of control landscapes for
multilevel model systems with realistic laboratory control
fields is provided in [27]. To analyze the role of limita-
tions on the available control fields for the LZ system,
we numerically estimate the probability of trapping when
available controls are piecewise constant controls of the form
ε(t) = ∑N

i=1 aiχ[ti ,ti+1](t), where χ[ti ,ti+1](t) = 1 if t ∈ [ti ,ti+1]
and zero otherwise and ai are the control parameters. Typically,
N ≈ 100 and control amplitudes are constrained within certain
ranges, say, ai ∈ [−A,A]. An exact solution for piecewise
constant controls can be obtained, for example, in the simplest
case N = 1. The objective for maximizing the probability of
spin flip J0→1 = |〈0|Uε

T |1〉|2 by a constant control ε(t) = a

can be computed to be J0→1(a) = sin2(T
√

1 + a2)/(1 + a2).
Its traps (local maxima) are given by solutions of the equation
tan(T

√
1 + a2) = T

√
1 + a2; the corresponding objective

values are J0→1(a) = T 2/(1 + T 2 + T 2a). Control landscapes
for a two-dimensional control space (N = 2) are more com-
plex. Figure 1 shows as an example the control landscape
of J0→1(a1,a2). The landscape has multiple local maxima
showing that significant restrictions on the control space in
an originally trap-free system may produce traps. Figure 2
provides the numerically estimated probability of trapping for
piecewise constant controls as a function of N . The probability
of trapping becomes negligible already for N = 10–15, which
means that limitations on the number of components N of
available laboratory control fields have minor effect already
for N � 10 and hence should be negligible for the realistic
case N ≈ 100.

In the laboratory, actual controls may deviate from the
designed numerically optimal pulse due to noise and imper-
fections of experimental setup [42]. These noise effects can
influence on the landscape structure by decreasing the maximal
objective value. We adopt the general theory of [43] to analyze
this influence for the LZ system. Let ε0(t) be an optimal control
in the ideal situation of absence of noise. In the presence
of a random noise ξ (t), the actual control will fluctuate as
ε(t) = ε0(t) + �(t)ξ (t), where �(t) = 1 for additive noise and
�(t) = ε0(t) for multiplicative noise. A weak noise modifies
the averaged objective as

E[J (ε0)]

≈ J (ε0) + 1

2

∫ T

0

∫ T

0
H0(t,t ′)�(t)�(t ′)E[ξ (t)ξ (t ′)]dtdt ′,
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FIG. 2. (Color online) Probability of trapping as a function
of N for piecewise constant controls (T = 10, � = 1). For every
point, 103 runs of MATLAB realization of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm where performed
each starting at a random initial control a = (a1, . . . ,aN ) [41]. Initial
control amplitudes are uniformly distributed in the range ai ∈ [A,A]
but are allowed to escape this range during the search. The search is
defined as trapped if the attained objective is less than 0.99. Trapping
may occur due to the presence of local maxima and/or principal
impossibility of attaining the objective value greater than 0.99 with
available controls. Probability of trapping is estimated as a fraction
of trapped runs among all 103 runs.

where H0(t,t ′) = δ2J
δε0(t)δε0(t ′) is the Hessian of the objective

computed at the optimal control field ε0 and E[ξ (t)ξ (t ′)] is the
autocorrelation function of the noise. Since Hessian is negative
semidefinite at the maximum, the noise generally decreases the
average fidelity. The objective for additive (AWN) and mul-
tiplicative (MWN) white noise with autocorrelation function
E[ξ (t)ξ (t ′)] = σδ(t − t ′), where σ 2 is the variance of the noise
amplitude distribution, take the forms

EAWN[J (ε0)] ≈ J (ε0) + σ 2

2

∫ T

0
H0(t,t)dt,

EMWN[J (ε0)] ≈ J (ε0) + σ 2

2

∫ T

0
H0(t,t)|ε0(t)|2dt.

The last term in these equations is the noise-induced decrease
−D(ε0,σ,T ) of the objective [such that E(J ) ≈ J (ε0) − D
with D � 0]. The diagonal of the Hessian for J = Ji→f can be
shown to be H0(t,t) = −2|〈i|U †

t σzUt |i⊥〉|2 so that |H0(t,t)| �
2. Therefore, D(ε0,σ,T ) for J = Ji→f is majorized by

DAWN(ε0,σ,T ) � σ 2T , DMWN(ε0,σ,T ) � σ 2E,

where E = ∫ T

0 |ε0(t)|2dt is the total energy of the pulse. The
diagonal of the Hessian for the objective JW is H0(t,t) = −2
and therefore for this objective DAWN = σ 2T and DMWN =
σ 2E. It then follows that in both cases the influence of a
weak AWN can be minimized by using time optimal controls,
while minimizing weak MWN can be done by selecting less
energetic pulses among all optimal pulses.

If the ideal landscape has multiple global optima with
different H0(t,t), then the noise-induced decrease of objective
can be different at different optima that can produce traps in the
nonideal landscape. Weak decoherence operates similarly to

weak noise and can also produce traps in the ideally trap-free
landscape [20]. These deviations from the ideal situation
should be avoided to reveal the trap-free landscape property
by either operating in the time optimal regime or using weak
optimal controls to combat MWN. Strong noise and strong
decoherence that can significantly modify the landscape are
beyond the scope of this discussion.

V. CONCLUSIONS

This work shows that unconstrained manipulation in the LZ
system is free of traps and hence unconstrained local search
for optimal controls is always able to find the best optima.
The impact on this result of laboratory limitations due to
decoherence, noise in the actual control pulses, and restrictions
on the available control fields is discussed.
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APPENDIX

Here we prove that the control ε(t) ≡ 0 is not a trap
for state-to-state transfer described by the objective J (ε) =
Ji→f (ε). The evolution operator produced by ε(t) = 0 has
the form Ut = e−itσx . Therefore, Vt := U

†
t σzUt = cos(2t)σz +

sin(2t)σy and the gradient of the objective is

∇Jε=0(t) = cos 2tL(σz) + sin 2tL(σy).

If ε(t) = 0 is a critical point, then ∇Jε=0(t) = 0 for any t ∈
[0,T ], and hence L(σz) = L(σy) = 0. If α := L(σx) = 0, then
L ≡ 0 on su(2) and similarly to the proof of the main result
we conclude that ε = 0 is not a trap.

Now consider the case α 	= 0. In this case |i〉 and |f〉 are such
that ε = 0 is neither a global maximum nor global minimum.
The evolution operator produced by a small variation of the
control δε can be represented as Uδε

T = e−iT σx WT , where WT

satisfies

Ẇt = −iδε(t)VtWt , W0 = I.

The operator WT can be computed up to the second order in
δε as

WT = I + A1 + A2 + o(‖δε‖2), A1 = −i
∫ T

0
dtδε(t)Vt ,

A2 = −
∫ T

0
dt1

∫ t1

0
dt2δε(t1)δε(t2)Vt1Vt2 .

This gives the perturbation expansion for the objective (here
|f′〉 = eiT σz |f〉),

J (δε) = |〈f′|I + A1 + A2 + · · · |i〉|2
= |〈f′|i〉|2 + δJ1(δε) + δJ2(δε) + o(‖δε‖2),
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where

δJ1(δε) = 2Re(〈f′|i〉〈f′|A1|i〉),
δJ2(δε) = |〈f′|A1|i〉|2 + 2Re(〈f′|i〉〈f′|A2|i〉).

Hence, the variation of the objective satisfies [note that
|〈f′|i〉|2 = J (0)]

δJ = J (δε) − J (0) = δJ1(δε) + δJ2(δε) + o(‖δε‖2).

If ε = 0 is a critical control, then δJ1(δε) = 0 for any δε.
We will show the existence of controls δε1 and δε2 such that
δJ2(δε1) and δJ2(δε2) have opposite signs. It is sufficient to
choose δε1 and δε2 to satisfy 〈f′|A1|i〉 = 0, for example,

∫ T

0
dtδεi(t) cos 2t =

∫ T

0
dtδεi(t) sin 2t = 0, i = 1,2.

Since Vt1Vt2 = cos 2(t1 − t2) + iσx sin 2(t1 − t2), we have

δJ2(δε) = 2
∫ T

0
dt1

∫ t1

0
dt2δε(t1)δε(t2)(J (0) cos 2(t1 − t2)

+α sin 2(t1 − t2))

= 2α

∫ T

0
dt1

∫ t1

0
dt2δε(t1)δε(t2) sin 2(t1 − t2).

Assuming for simplicity that T � π , we take δε1(t) = χ[0,π](t)
and δε2(t) = cos(4t)χ[0,π](t), where χ[0,π](t) is the charac-
teristic function of the interval [0,π ]. Then δJ2(δε1) = −πα

and δJ2(δε2) = πα/6. Therefore for α 	= 0 there exist control
variations around ε(t) = 0 increasing the objective and control
variations decreasing it. This implies that ε(t) = 0 is neither a
local maximum nor minimum.
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