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Mean-field methods such as Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) constitute the building
blocks upon which more elaborate many-body theories are based. The HF and HFB wave functions are built
out of independent quasiparticles resulting from a unitary linear canonical transformation of the elementary
fermion operators. Here, we discuss the possibility of allowing the HF transformation to become nonunitary.
The properties of such HF vacua are discussed, as well as the evaluation of matrix elements among such states.
We use a simple ansatz to demonstrate that a nonunitary transformation brings additional flexibility that can
be exploited in variational approximations to many-fermion wave functions. The action of projection operators
on nonunitary-based HF states is also discussed and applied, in a variation-after-projection approach, to the
one-dimensional Hubbard model with periodic boundary conditions.
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I. INTRODUCTION

Mean-field methods such as Hartree-Fock (HF) and
Hartree-Fock-Bogoliubov (HFB) have become paradigmatic
in the description of many-fermion physics. These methods
have found a wide range of applications in nuclear structure
theory, condensed matter physics, and quantum chemistry.
This is not only because they constitute the simplest approx-
imations to the exact many-body wave function, but also
because more elaborate correlated approximations usually
start from such independent quasiparticle vacua (HF or HFB).

The HFB wave function developed to explain supercon-
ductivity relies on the so-called Bogoliubov-Valatin [1,2]
transformation, which defines quasiparticle operators as linear
combinations of single-fermion creation and annihilation oper-
ators. These are then used to form a quasiparticle product state,
the HFB wave function. Berezin [3] studied the properties of
general linear transformations of fermionic operators within a
second-quantized framework. In this sense, one can consider
the HF and HFB wave functions as being built out of single
quasiparticle operators that result from a linear canonical
transformation of the elementary fermion ones.

A canonical transformation is understood in an algebraic
framework as that which preserves the Dirac bracket of the
phase-space variables in quantum mechanics (the position
and momentum operators) [4]. In a second-quantized frame-
work, this corresponds to a transformation that preserves the
anticommutation rules of the elementary fermion operators
[5]. A linear canonical transformation does not need to
be unitary, although Dirac [6] and Weyl [7] showed that
unitary transformations are canonical. Standard HF or HFB
methods in several fields of many-body physics are usually
carried out using a unitary canonical transformation. In this
work, we study the possibility of constructing N-particle
Slater determinants resulting from nonunitary linear canonical
transformations. The extension to HFB determinants will be
discussed in a follow-up paper [8].
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We note that nonunitary canonical transformations have
been discussed in the literature before. They are discussed,
for instance, by Blaizot and Ripka [5] in the general context
of canonical transformations of second-quantized operators.
They have been used by Balian and Berezin [9] in the eval-
uation of matrix elements between two different Bogoliubov
states. Zhang and Tang [10], and later Ma and Zhang [11], have
studied the properties of linear canonical transformations of
fermion operators, including the nonunitary ones that we have
just referred to. We also mention the work of Anderson [4],
where the properties of nonunitary canonical transformations
have been discussed in a purely algebraic context, without
reference to a Hilbert space.

If a single Slater determinant is used as an ansatz for
the many-fermion wave function, the full flexibility that a
nonunitary canonical transformation affords is not evident
because it does not add additional degrees of freedom to
those existing in a unitary transformation. On the other
hand, one can construct more general ansétze that use the
flexibility of such a nonunitary transformation. We discuss
here what may be the simplest, two-determinant ansatz that
exploits all the degrees of freedom that define a nonunitary
transformation for N-particle Slater determinants. This idea
has not been explored before in the literature. We here derive
all expressions required for the evaluation of matrix elements
between nonunitary-based N-particle Slater determinants. We
also discuss the variational optimization of states based on a
nonunitary (nu)-HF-type canonical transformation.

Our interest in nu-HF-type transformations originated from
our recent work on projected HF calculations for molecular
systems [12,13] and the two-dimensional (2D) Hubbard
Hamiltonian with periodic boundary conditions (PBCs) [14].
The idea of using a symmetry-projected HF state as an
approximation to the many-body wave function was proposed
by Lowdin [15] as early as 1955. We, building on tech-
niques developed and successfully applied in nuclear physics
[5,16-20], have shown that symmetry projection out of the
most general HF transformation yields a multireference-type
wave function which can account for a very significant part
of the electron correlations. We have observed that, the more
general the transformation we use (or the more symmetries that
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are broken), the better the resulting projected wave function
is able to account for the correlation structure of the true
Hamiltonian eigenvector. It is then natural to explore whether a
nonunitary canonical transformation, which has more degrees
of freedom than the unitary one commonly used, would
yield additional flexibility for HF wave functions, in general,
and projected HF states, in particular. This work describes
our efforts along this line. We show that, indeed, using
a nonunitary canonical transformation, one can build more
flexible ansitze (based on N-particle Slater determinants)
from which additional correlations can be accounted for in
variational approximations.

This paper is organized as follows. In Sec. II, we discuss
some general properties of linear canonical transformations
of fermion operators. We proceed to show in Sec. III
how to construct N-particle Slater determinants based on
such transformations. Section IV discusses our extension
of Thouless’ theorem for nonunitary Slater determinants.
This is followed by Sec. V, where we use this theorem
to derive the form of matrix elements between nonunitary
N-particle Slater determinants. In Sec. VI, we introduce a
two-determinant ansatz that displays the full flexibility of a
nonunitary transformation. We show in Sec. VII how such
an ansatz can be used in projected HF approaches. This
is followed by an illustrative application of the proposed
wave-function ansitze to the one-dimensional (1D) Hubbard
Hamiltonian with PBCs in Sec. VIIL.

II. CANONICAL TRANSFORMATIONS

We start by introducing a set of fermion annihilation

and creation operators ¢ = {ck,c,t}, which obey the standard
anticommutation relations

[ck.cjly =0, [cl,c;h =0, [Ck,C}]+ = (klJ) =8,
where |k) ((k]|) is a single-particle ket (bra) state.

We now introduce a new set of fermion operators g =

{Br, B,i }, which is related to the original one by the linear
transformation

(éi):(ly]; ET)G) (1)

where we have arranged the sets of fermion operators ¢ and
B into single columns. Here, U, V, Y, and X are arbitrary
M x M matrices, where M is the dimension of the single-
particle space. For compactness, we write the transformation
defined by Eq. (1) as

B =Te. )

It should be stressed that we have not enforced the relation
,B_Jf = (,B)f in Eq. (1), as this leads to a standard unitary
transformation. One can show [5] that the transformation is
unitary if the matrix 7 satifies

T*=0To, 3)

where the matrix o is given by

o:(? é) @)

Here, Eq. (3) impliesU = X and V =Y.
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We do insist, on the other hand, on making our transfor-
mation canonical, which implies preserving the appropriate
anticommutation relations, that is,

[Be.Bile =0, [BLAIL. =0, (BBl =5

It is not difficult to prove [5] that the transformation 7 is
canonical if it obeys

ToT' =o. ®)

Using Eq. (5), one can easily deduce the form of the inverse

transformation,
_ X v
(5 o) ©

Equation (5) also provides the conditions that the matrices
U, V, X, and Y must satisfy for T to define a canonical
transformation. Those are given by

U'x+viy=1, (7a)
X'Uur+y'vi=1, (7b)
utv+viur=o, (7¢)

YTx+x'y=0. (7d)

Note that the matrices UT V* and YT X are antisymmetric.

The matrices T form a group (the fermion group described
by Ma and Zhang [11]) isomorphic to the group of orthogonal
matrices of dimension 2M [O(2M,C)] [5]. On the other hand,
the set of matrices T for which the transformation is unitary
forms a group isomorphic to the group of real orthogonal
matrices of dimension 2M [O(2M)]. There are twice as many
degrees of freedom in a general nonunitary transformation than
in a unitary one.

We close this section by noting that the transformation
defined in Eq. (1) is more naturally understood as a linear
transformation if one introduces an operator S such that

B=ScS'=Te. (8)

The form of the operator S has been discussed by Blaizot and
Ripka [5], Zhang and Tang [10], and Ma and Zhang [11].

III. N-ELECTRON SLATER DETERMINANTS

In this section, we discuss the construction of N-particle
Slater determinants using quasiparticle operators resulting
from canonical transformations of the elementary fermion
ones. This is discussed in detail by Navon [21], as well as
in several textbooks on many-body physics.

In standard (i.e., unitary) HF theory, an N-electron Slater
determinant is constructed out of a set N hole creation ({b;})
and M — N particle annihilation ({5, }) operators, each of them
resulting from a linear combination of the elementary operators

{cr.cl):

by = D%l (9a)
J

b= Djyc;. (9b)
J
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Using standard notation, the first N columns in D (which
we write as Dj,) represent the hole states, while the last M — N
columns (which we write as D) represent the particle states.

The transformation from the elementary operators to the set
of HF operators constructed above can be written as

b; On DZ

by | _ D} Ocv— Nyt (c) 10)
by, D} On s ct )

b; Ocrs—nyxm D;

where we have implicitly assumed the transformation to be
unitary.

The above transformation is canonical if the HF operators
satisfy the (nontrivial) anticommutation relations

[bn.bjls = 8un. [bp.bh)e =8y, [bp.bhle =0.

These conditions restrict the form of the matrix D according
to

[bh,b;trh = Z Dj;, D}y 8jx = (D' D)y = 8py (11a)
ik

[bp.bl1e = Djp D}y 8k = (DY D)y =8, (11b)
jk

[bp.bjle =Y Dj, D}y 8 = (D' D)y, = 0. (11¢)
Jjk

Equation (11a) implies orthonormality of the hole states;
Eq. (11b), orthonormality of the particle states; and Eq. (11c)
corresponds to orthogonality between hole and particle states.
All these conditions are summarized in the requirement
D'D=1.

One could allow the HF transformation described previ-
ously to become nonunitary by introducing, in addition to the
operators described by Eq. (9), another set of hole and particle

operators, {Eh,l;;}, given by

Eh = ZDthj, (12a)
J
__‘_ _ = . .’_
b, = Dj,c;. (12b)
J
A nonunitary transformation can then be built as
b:, On s p D}
bp . D;E O(M—N)XM C (13)
Bh D}I 0N><M CJr .
EL Ov—N)yxm D;

It is a canonical transformation if the (nontrivial) anticommu-
tation relations

[by.byls =0, (B}, =0,

[bn.bl 1, = Swn. [bp.bh1e =38y,
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are satis_ﬁed. These conditions restrict the form of the matrices
D and D according to

[bp.bj)e =Y Dj, D}y 8 = (D' DYy, =0, (14a)
ik

[bw.B}1+ = > Dju D}, 8 = (D' D),y =0, (14b)
Jjk

[Eh,b:,«h = Z Djy D}y 8 = (D' D)y, = 8w, (14c)
ik

[bp.bl1e = Djy D}y 8 = (DI D)y =8y, (14d)
ik

Equations (14a) and (14b) imply orthogonality of the hole
and particle states in D and D. Equations (14c) and (14d)
imply a biorthonormality between the hole and the particle
orbitals in D and D. Note that the latter two conditions are
satisfied by choosing D' = D!, but the orthogonality among
hole and particle states has to be separately imposed.

Let us remark that, if the HF operators {b}; .by.by, EL} define
a canonical transformation, the inverse transformation is given
by [see Eq. (6)]

b,
¢\ [ Omxn D; Dy Oyxam—ny \| bp
(CJf)_(Dh 0y xm—-n)y Omxn D, ) by,

b)

(15)

The biorthonormal Slater determinants |®) and |®) are
produced when the set of operators {bT ,E};} acts on the bare
fermion vacuum |—), i.e.,

@) =[] bhl-). (16)
h

@) =[] 1. a7
h

They satisfy the biorthonormality condition (®|P) = 1.
One can easily show that |®) and |®) act as vacua to a
certain set of hole or particle states:

bi|®) =0Vbl, b,|d) =0Vb,,
bi|®) =0V, b,|®) =0Vb,.

IV. THOULESS’ THEOREM FOR N-ELECTRON
SLATER DETERMINANTS

In standard (i.e., unitary) HF, there is a theorem due to
Thouless [22] which reads:

Theorem. Given a Slater determinant |®y) which is a
vacuum to the operators {b};,bl,}, any N-particle Slater de-
terminant |®;) which is not orthogonal to |®() can be written
in the form

1) =N exp | D Zub) b | |®0), (18)
ph
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where A = (®g|®,) is a normalization constant and the
coefficients Z,;, are uniquely determined. Conversely, any
wave function of the form of Eq. (18), where |®,) is a Slater
determinant, is also an N-particle Slater determinant.

For Slater determinants built out of operators resulting from
a nonunitary linear canonical transformation, the equivalent
theorem reads:

Theorem. Given a Slater determinant |®y) which is a
vacuum to the operators {bi,bp}, any N-particle Slater de-
terminant |®) which is not orthogonal to [®y) can be written
in the form

1) =N exp | D Zub), b | |®0), (19)

ph

where N = (®|®;) is a normalization constant and the
coefficients Z,;, are uniquely determined.

For a proof of the latter theorem we refer the reader to
Appendix A of the present work.

V. MATRIX ELEMENTS BETWEEN N-ELECTRON
SLATER DETERMINANTS

In this section we obtain the expressions required for
the evaluation of matrix elements between arbitrary Slater
determinants built out of operators resulting from a nonunitary
canonical transformation.

A. Norm overlaps

The overlap between two N -particle Slater determinants of
the form |®,) = [, @/|—) can be obtained by application of
Wick’s theorem [5] on the bare fermion vacuum. That is,

(@p|Dy) = (—|Bn -~ Bral ---al|—) =detS, (20)

where S;; :,3?1; = (Bila;). Here, we have used the fact that

the contractions ,BTB ; and o(iT a} vanish for HF-type operators.

The overlaps among N -particle Slater determinants become

(®o|®;) = dety DT D', (21a)
(@] D) = dety DT D™, (21b)
(@0|®,) = dety DT D', (21c¢)
(@] ®,) = dety DT D', (21d)

where we have used dety to denote that the determinant is over
the N x N set of occupied orbitals. Observe that (®g|®g) =
(®g|Pg) = 1, which corresponds to the biorthonormality
condition previously described.

B. Operator matrix elements

In deriving the expressions for operator matrix elements,
we follow Ring and Schuck [16]. Our aim in this subsection is
to evaluate matrix elements of the form

(@ole) -+ ci e er, 1®1). (22)
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The form above is chosen for convenience, but other matrix
elements can be derived in the same way described below.
We use Thouless’ theorem to write the state | D) as

|@1) = exp(2)| Do) (o P1), (23)
Z= Z Z b} by. (24)
ph

Here, {b:,,bp,Eh,EI,} are defined such that

bl Do) =0Vbl, b,|de) =0Vb,,
(®olby = 0¥ by, (®olB), = 0V B},

On the other hand, we write the state (®| as
(®o| = (®o| exp(—2), (25)

where use has been made of the vacuum properties just
described.

It then follows that we can evaluate the general matrix
element from Eq. (22) as

(@ole, -+ i - cx, 1)
= (®|®1) (ol exp(—Z)c] -+ c] ek, -+~ e, exp(2)|Dy)
= (| D) (Dold), - -+ dy, di, - - - di,, | Do), (26)

where we have introduced the operators

d = exp(—2) c] exp(2),
d, = exp(—ZA’) Ck exp(Z,A’).

(27a)
(27b)

We now express the operators {d;,d;} in terms of
{b; ,b,,by,bp}. This is accomplished by using Eq. (15) to write
{c;.ct} in terms of {b}.b,.by.bp}. It follows that

di =exp(—2)c] exp(2) =l —[2.c]]

=Y "Dhbi+> (D,Op > Zu D?h> bl (28)
h P h
di = exp(—Z) cx exp(Z) = cx — [Z,¢]
=2 (D?Z + D 2 D;?,’:) by+ Y Drby. (29)
h p P

Because {d;,d;} are given as linear combinations of

{b,t,b,,,l;h,l}},}, Wick’s theorem [5] can be used to calculate
the corresponding matrix elements. The nonvanishing con-

tractions among the operators {bj,,b p,Eh,E;} are given by

bbw = . (30a)
bybl, = 8. (30b)
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It follows that the nonvanishing contractions among the
operators {d;,d;} are of the form

didy = Z Dy, (D,?;f + Z Zow D,?;j) S
I )
= Z Dy, Dy + Z Dy, Zpi ka» €29

ph
dd = 3B (D,g,,, Yz, D,?h) "
pr’ h

= Y Dy DY, — > D Z, DY, (32)
p ph
The application of Wick’s theorem to the operator matrix
elements of the form of Eq. (22) leads us to conclude that all
such matrix elements can be evaluated in terms of the transition
density matrix p°!, given by

o (@olc] cx| @)

ol = = (Bp| exp(—Z) c] e exp(2)| Do)

(Dol P1)
= Z Dy, D+ Diy Zpn Dy, (33)
ph
where
Zpn =Y (DT D) (L Y, (34)
"
Ly = (DT DYy, (35)

Here, we have used Eqgs. (A2) and (AS) from Appendix A to
write the forms of the matrices Z and L.

C. Evaluation of the energy of a single Slater determinant

As an example of the application of the above equations, let
us now consider the evaluation of the energy of a determinant
|®). Given a two-body Hamiltonian in the usual second-
quantized form Ref. [5],

A N 1 s
A = ilhk) cf e + i > ijlolkty el clerer, (36)
ik ijki
where (i|Alk) and (i j|0]kl) are one-particle and antisym-

metrized two-particle integrals, respectively, the energy can
be evaluated as

(®|A|D)
= T A Z ik Pri + 5 Z l]|U|kl Pki Pij

(@] D) 24
:Tr(hp—i—%l"p), 37
where

(®lc] ci| D)

Pki = W
= Z Dy Dy + Y Din Zpi D}, (38)

ph
Tie = Y (ij101kD) pij, (39)
jl
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and
Zon =Y (D" D*)pu (L i, (40)
-
Ly = (D' D). (41)

It is important to realize that the energy expression
[Eq. (37)] has the same form as in standard (i.e., unitary)
HF. The difference lies in the form of the density matrix
o [Eq. (38)], which comes about from the fact that the
anticommutation relations satisfied by the HF operators are
different.

VI. VARIATIONAL ANSATZ WITH SLATER
DETERMINANTS FROM NONUNITARY
TRANSFORMATIONS

In this section, we use a simple, two-determinant ansatz
that uses the full flexibility of the nu-HF-like transformation
of Eq. (13) as part of a variational strategy. Before introducing
this ansatz, we note that using a single Slater determinant |®)
as a trial wave function, whether resulting from a unitary or a
nonunitary canonical transformation, would lead to the same
variational energy. An N-particle Slater determinant resulting
from a nonunitary canonical transformation is equivalent to an
un-normalized Slater determinant in the usual (i.e., unitary)
sense. The variational optimization of the energy (taken as
the Hamiltonian overlap over the norm overlap) would
lead to the same result regardless of the underlying normaliza-
tion of the determinant.

The two-determinant ansatz that we use is given by

|¥) = ¢1|D) + 2| D),
= c1|D1) + 2| P2), (42)

where ¢ and ¢, are coefficients to be determined variationally.
We have made the identification |®;) = |®) and |D,) = |D)
to simplify our notation below. Observe that for a standard
(i.e., unitary) HF transformation, |®;) = |®), which in turn
implies |V) = | D).

One could argue that the ansatz of Eq. (42) has the
same variational flexibility as that in which |®;) and |$,)
are two nonorthogonal Slater determinants resulting, each of
them, from a standard unitary canonical transformation (see
Ref. [23]). Nevertheless, the ansatz we use explicitly results
from a single linear canonical transformation of the elementary
fermion operators.

The Hamiltonian expectation value associated with the state
|W) is given by

Yo et €l cp( Do H | D)

E=—"%5 (43)
> pet Co €p{Pa| Pp)
We rewrite the energy above in the form
2 A
(Po| H|Pp)
E= Yap— (44
a%::l P (@ Dp)
Cq €p{Pa|Dp)
Vap = b2 (4$)

3 .
Za’,ﬁ’:l Co g (P | Pp)
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The matrix elements appearing in Eqgs. (44) and (45) can be
evaluated in a straightforward way. The overlap kernels in
Eq. (45) are computed as

(®|®) = dety D' D*, (46a)
(®|®) = dety D" D* =1, (46b)
(®|®) = dety DT D* =1, (46¢)
(®|®) = dety DT D*. (46d)

The Hamiltonian kernels are evaluated in terms of transition
density matrices as

(@q|H|Pg) _ < 1
— hp™+ T p* ) (47

(o] Pp) 2
rif = ijlolki) pff . (48)

Jjt
The transition density matrices are in turn given by

11 <<D|C‘T k| D)

RS WIS
(@[) o
(49a)
21 <CD|C i |P)
= S N Dy, Dy 49b
pkl @qu Z h Kk ( )
(<I>|c cr| @)
P2 = = Z Dij, D}, (49¢)

(D|D)

2 <®|Ci Ck|d>

;= —— Dy, D}, + Di, 2, D
ki (CDlCI)> Z h Hkn Z h<=ph Pgp-

ph
(49d)
Here,

Zpw =Y (DT D) (L Yo, (50a)

-
Zpn =Y (DT D) (L™ Yn, (50b)

-
Lyyw = (D' Dy, (50¢)
Liyw = (D' D)y (50d)

A. Variational optimization of | P)

Let us now consider the variational optimization of the
wave-function ansatz introduced in Eq. (42). The variational
parameters are the coefficients ¢; and ¢, and the orbital
coefficients (that is, the matrices D and D) defining the states
|®) and |®). The variation has to be carried out subject to the
constraint that (®|®) = 1, which is equivalent to saying that
|®) and |®) are defined by a canonical transformation of the
form of Eq. (13).

The variation with respect to the coefficients ¢; and ¢; yields
the generalized eigenvalue problem,

(H—EN)c=0, 51
with the constraint

¢'Ne=1, (52)
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which ensures the orthonormality of the solution. Here, ¢
represents the column of coefficients {c;,c,}, while H and
N are, respectively, Hamiltonian and overlap matrices given
by

Hyp = (| H|Dp), (53)
Nop = (B |p). (54)

It should be stressed that at this level we only keep the
lowest energy solution to the generalized eigenvalue problem,
in a similar way as in projected-HF methods involving an
eigenvalue problem [14].

Let us now consider the variation in the energy with respect
to the underlying nu-HF transformation. We have followed
the work of Egido and coworkers [24] for this purpose. Let
us assume that we are provided a guess for |®) and |®),
characterized by the set of HF operators {b,t,b,,,Bh,l;L}. We
can now parametrize the energy functional around {|®),|®)}
by allowing for independent Thouless’ rotations of both states,
characterized by the matrices Z and Z. That is, we let

|®) — exp Zzphé;éh |D), (55a)
ph
|®) — exp Zzph bl by | D). (55b)

ph

We define the local gradient {G,G} around Z = 0 and Z =
0as

G =~ 3 z E[Z,Z] , (56a)
p Z[,/,=O
G 0 A (56b)
ph — — =% s
ad Z Z,m0

Here, Z,; and Z% i are treated as independent variables, and

the same is true for Z,, and Z; The total derivative of the
energy then becomes

dE = =Y [GpdZy, + GprdZy, +ccl.  (57)
ph
Explicit differentiation of the parametrized energy func-
tional leads to the following expressions for the local gradient:
(@1B} by (H — E)|®)
(O|P)
_y, (2155, (H — E)®)
([P) ’
(@b} by (H — E)|®)
(@|D)
(@b} by (H — E)[®)
—yp — : (58b)
(@|D)

where E is the energy corresponding to the state |W) from
Eq. (42).

Gph = =

(58a)

Q

ph = —Y21
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The overlap-like matrix elements appearing in Eq. (58) can
be evaluated as

<c1>|b*b ) .
—@o Z D}y, Dup oy (59a)
Dbl b,|D
Hl—”” =0, (59b)
(D|D)
(©15, b,[®) _ (590
(®|D)
(d>|bhb |D) "
D, D,, p22. 59d
(I)|(I) Z P Pnm ( )

mn

The Hamiltonian-like matrix elements appearing in Eq. (58)
can be evaluated as

(®|b] b, H|P) S -4 c1>|H|q>
—F——— =) D,, D,
X D;knh an (hlk+rlllcl) p/l}’lﬂ (ani _pni)’
(60a)
i
®|b b, H|P
( |<h$[;1>> —ZD (hix + T2 (60b)
(®|b! b, H|D)
(h®|% : _Z D, Diy (hix +T12). (60c)

B. Restoration of the biorthonormality condition

Let us assume that, during the optimization process, we
started with the states |®) and |®) and produced the new
states |®’) and |®’) by using the Thouless’ transformations,

|y = N exp Zzpﬂ;;z;h |D), (61a)
ph
|[®) = N exp ZZ,,hbj,bh |D). (61b)

ph
Here, the matrices Z and Z can be chosen as, for instance,

(62a)
(62b)

th = nGph»
th = nGph’

with n > 0being some parameter. We denote by {dh .d p,dh ,d }
the set of HF operators produced by such transformations [see
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Egs. (A6a) and (A6Db)],

572 = b/Tl + Z Zph 51,, (63a)

d, =b, Z Zpn b, (63b)
dy = by + Z Z;h by, (63¢)
dj = b}, Z Z3, b}, (63d)

where the operators {b,Tl,bp,Eh,E,T,} describing states |®) and
|®) are assumed to satisfy all the appropriate anticommutation
relations.

We show in Appendix A that the operators {dh

dy,)
'.d,}

annihilate the vacuum |®’). Similarly, the operators {d
annihilate the vacuum |®’). The operators {dh,d,,,dh,dt} do
not, however, satisfy the anticommutation relations given by
Eq. (14). In fact, they satisty

[d,.di1, =0, (64a)
[dy.df]. =0 (64b)
[dn.d})e = I+ ZT 2", (64c)
[dy.d) ) = +Z"Z7)p,. (64d)

We can restore the desired anticommutation relations by
performing the transformations

= Z L\ dl, (65a)
Z Lt dy, (65b)

d, = Z M dy, (65¢)
(65d)

3t _ 7—1 3t
dP - ZMW dp/
»

in terms of the lower triangular matrices L, L, M, and M [24].

The anticommutation relations among {dh,dp,dh,d } be-
come

[dindi e =Y Ly Liph (T4 Z7 2% = 8y, (662)
nv

[dyd) e = M3 ML+ 2% 27, =8y, (66b)
nv

which yield the following equations for determining L, L. M,
and M:

I+Z7Z'7Z*=LL",
1+72°72" =M M.

(67a)
(67b)

Hence, given the matrices Z and 7, standard LU de-
compositions [Egs. (67a) and (67b)] can be performed to
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obtain the matrices L, L, M, and M. This is similar to
the unitary case, where the only two matrices required
(L and M) can be obtained by Cholesky decompositions
[14,25].

We remark that if Z =0 (or Z = 0), then the operators
{d}.d,.dy.d}} do obey all the required anticommutation rela-
tions. In other words, one has to restore the biorthonormality
condition only if both |®) and |®) are rotated.

C. Global gradient

In order to use gradient-based optimization methods such
as the conjugate gradient or quasi-Newton methods (see
Refs. [14,19,20,24,25]), one must be able to compute a global
gradient. That is, we should be able to compute the gradient of
the energy at | W) with respect to variations in Z and Z defined
in terms of the operators {bgT,bg,Eg,l;gT} corresponding to the
reference state |Wy). Here, we follow Egido er al. [24] in
deriving the form of the global gradient.

Consider the energy of state |\W). It is given by

Zi,ﬁ:l Co Cﬂ(‘bé }I:I|<D/l1)

E[W ] =
BREAZICHES

(68)

Provided that |®') and |51) are nonorthogonal to (50| and
(P9, respectively, we can write

') =N exp [ Y Z,, B9 by | |9°). (69a)
ph

— - - ; -0

©) =Nexp | Y Zu 0560 | @), (69b)

ph

where N = (50|d>1) and N = (d>0|51) are normalization
constants. Here,

Zpn =Y (DT D) (L Y, (70a)
h!

Zpn =Y (DT D) (L Y, (70b)
h!

Liyw = (D" D"y, (70¢)

Liyn = (D" D"y, (70d)

where we have used Egs. (A2) and (AS) to write Z and Z in
terms of the matrices of orbital coefficients D°, D°, D!, and
D'.

A variation in Z and Z leads to a change in energy given
by

oE 0E _
SE = E |:— SZj,h + 3? (SZ;h:| + c.c.
ph h ph

=Y (=G 8Z}y, — Gp 82,1 + c.c., 1)
ph
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where we have introduced the global gradients G and G given
by

(®'15) 59 (A — E)|®")

Gpn = =y (D1
0t 10 A —1
(@15, 5% (A — E)|®)
— Y2 d (;1@1) ; (72a)
—1 N
T by, b5 (H = E)|@)
ph— —1
(@ |®!)
—1 0t 1.0 / ¥ —1
o |b,' b (H — E)|P
L L ) oy
(@ [®)

In order to evaluate the matrix elements appearing in the

global gradient [Eq. (72)], we need to relate the operators

{sz,bg,Eg,EgT} to the operators {b,llT,b},,E,ﬁ,E,lj}. Combining

the results in Sec. IV B with Egs. (A6a) and (A6b), we arrive
at

by = LByl =YLy, (bjjf + > Zw B ) , (73a)
n n p
1 _ -170 __ -1 0 0
o= D By = S (1 - D)
h

/

P 4
(73b)
by=> L'y =Y Lt <52, +Y 7%, b‘},) ,
n ' P
(73¢)
Pl _ 7—1 70t _ 7—1 [ £Of 5w 1 0f
by = ZMPP’ by = ZMPP' (bp’ N Z Zpnby ) ’
4 r h
(73d)

where the matrices L, L, M, and M are here determined by
the solution to Egs. (67a) and (67b).

Because the transformation defined by Eqgs. (73a)—(73d) is
canonical (we have explicitly ensured that anticommutation
rules are preserved), we can invert the transformation using
Eq. (6) as a reference. We arrive at

hh'

by =Y Lyt by =Yz M B (74a)
n pr

By =3 My bl 4y ZpLyhbi,  (74D)
p' hh'

By= Linby =) 2y M, b, (T40)
n pr

B =3 My B+ D 2y Lt'hl (7Ad)
—

We now use Eqgs. (74a)—(74d) to write the global gradient
(G and G) matrix elements in terms of the local gradient
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(G and G) as
Gon =D _ L My, Gy =[MT G L "], (752)
p/h/
Gon =Y Ly My} Gy =M™ G L* "], (75b)
'

We close this subsection by noting that one has reached a
solution to the variational equations when the local gradient
(and, consequently, the global gradient) vanishes, i.e.,

d
_E =0, (76a)
07,
d
- E=0. (76b)
07,

VII. VARIATIONAL ANSATZ WITH PROJECTION
OPERATORS

We now turn our attention to states resulting from the action
of symmetry-restoring projection operators on symmetry-
broken determinants. We start by providing a brief description
of the form of the projection operators used. More details can
be found in Refs. [5,16,18].

Consider a symmetry group G, with elements {2}, that
commutes with the Hamiltonian. The group can be continuous
or discrete, but we assume for simplicity that it is Abelian. A
Slater determinant is symmetry broken if

g|®) # |®), (77)

that is, if the determinant is not invariant upon action by the
elements {g}. The set of all {g|®)} is called the Goldstone
manifold. The norm and the matrix elements of commuting
observables are the same within the Goldstone manifold
up to an arbitrary phase factor [5]. It is well known [26]
that the symmetry can be restored by diagonalization of the
Hamiltonian among the Goldstone manifold.
A projection operator can, in general, be written as

N o
pPi= —fde w!(0) Ry, (78)
LJL

where L is the volume of integration, Iég is an element
of the symmetry group in consideration, the index j labels
the eigenvalue restored by means of the projection, and
the coefficients w/(#) correspond to the matrix elements
of the operator Ry among the irreducible representations of
the group. Evidently, for discrete groups the integration above
is replaced by a discrete sum. We drop the label j henceforth
for simplicity of notation.

As an example of the projection operators discussed above,
S, projection on a broken-symmetry determinant can be
accomplished by

pro L / db explif(S. — m)], (79)
4

where an eigenfunction of S, with eigenvalue m is recovered
upon the action of the projection operator above.

PHYSICAL REVIEW A 86, 052102 (2012)

We work with cases where Ry are single-particle rotation
operators that act on the HF ones according to

bi©) = RybiR;' =" Dy RoclRy' =" Ry(0) Dy o],
J ij

(80)

where R;;(0) = (i |Ry| J) is the matrix representation of Ry in
the single-particle basis.

We can now use the variational ansatz introduced in Eq. (42)
and put a projection operator in front of it. The proposed wave
function becomes

Plw) = /de w(@)lc; Ryl D) + ¢z Rg|®)].  (81)

The Hamiltonian expectation value of a wave function of
the form of Eq. (81) can be written as

(W|PT A P|W) (V|A P|V)
E[V] = — = =
(V| Pt P|W) (W|P|W)
2 A A
(®y|H Rg|Dg)
= [ dow(®) wp(0) —————— = (82)
/ aﬂzzly P (@l Ry | Pp)
yaﬁ(e) — C:; cﬁ(®0¢|R9|(Dﬁ> (83)

[ dOw®) Y2 4, ¢t cp (Do Rol g

where we have made the identifications |®;) = [®) and
|®,) = |P). The expressions for the matrix elements appear-
ing in Egs. (82) and (83) are given in Appendix B.

A. Optimization of the projected ansatz | V)

Our task is now to minimize the energy of our ansatz for
the projected state [Eq. (82)] with respect to variations in
the reference determinants |®) and |®). We closely follow the
derivation we presented before (Sec. VI A) for the optimization
of the unprojected state.

The variation with respect to the coefficients ¢; and c;
yields a generalized eigenvalue problem similar to the one of
Egs. (51) and (52). In this case, H and N are 2 x 2 matrices
given by

Hyp = fd@ w(0) (®g|H Ry|Dp), (84)

Nog = f d6 w(6) (®u| Ro| D). (85)

Once again, only the lowest-energy solution is used in the
variational optimization.

The parametrization of the energy functional with respect
to the determinants |$) and |5) is done in the same way as was
done for the unprojected case [18,24]. That is, we parametrize
the energy functional in terms of the Thouless’ rotation
matrices Z and Z acting upon |®) and |®), respectively.
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The resulting local gradient is derived by using the
definitions in Egs. (56a) and (56b). We arrive at the expressions

(®b} b, (H — E) Ry|®)

Gop = / d9w(9){—)’11(9)

(®|Ry| D)
@ 2 Ef q()f; - 5E>) Ry [®) } 60
Gpn = /de w(®) {_yZI(g) (®lb; b%ﬁé;f}) Ry|®)
(6 (@b} bgi{é(;;)) Ro|®) } .

Here, E is the energy corresponding to the state |W) from
Eq. (81). The explicit expressions for the matrix elements
appearing in Eq. (86) are given in Appendix B. We, finally,
note that the relationship between the local gradient and the
global gradient is the same as in the unprojected case [see
Eq. (75)].

VIII. APPLICATION TO THE ONE-DIMENSIONAL
HUBBARD HAMILTONIAN

In this section we present the application of the ansitze
discussed previously to the 1D Hubbard Hamiltonian [27] with
PBCs. This describes a set of electrons in a lattice according
to

I:I = -t Z(C},a Citl,o + C;r‘-t,-l,(r C_]‘,g)

J.o

-i-UZc;T Cint c;¢ iy &7)

J

Here, c} , creates an electron on site j of the lattice with o =

{r, 1} z’-projection of spin. The first term in the Hamiltonian
accounts for a negative (f > 0) kinetic energy that the electrons
gain when they hop from one site to a neighbor. The second
term accounts for the (U > 0) repulsion that opposite-spin
electrons feel when they are in the same site. The lattice used
for this Hamiltonian is a finite one with N; sites. PBCs are
assumed, which make the site Ny + k equivalent to the site
k. We direct the interested reader to the comprehensive book
on the 1D Hubbard Hamiltonian by Essler et al. [27]. We
also refer the reader to the work of Lieb and Wu [28], where
the authors derived a set of equations from which the exact
solutions to the 1D Hubbard Hamiltonian of Eq. (87) can be
obtained.

The 1D Hubbard Hamiltonian has been extensively studied,
and our purpose here is merely to test the flexibility that N-
particle Slater determinants constructed in terms of nonunitary
canonical transformations bring. In particular, we apply the
two-determinant ansdtze in Secs. VI and VII (unprojected
and projected) to the 1D Hubbard Hamiltonian of Eq. (87).
In our symmetry-projected calculations, we have used two
different projection operators to demonstrate the feasibility of
the approach; more accurate results can be obtained through
the simultaneous breaking and restoration of all symmetries
in the Hamiltonian. Recent work on the 1D Hubbard

PHYSICAL REVIEW A 86, 052102 (2012)

Hamiltonian with projected HF approximations has been done
by Schmid et al. [25] and Tomita [23].

We have performed our calculations with an in-house
code using a limited-memory quasi-Newton method for
the variational optimization of HF-based states [14,25]. We
have selected U = 4t as a representative on-site repulsion,
corresponding to a strongly correlated case (U is of the order
of the noninteracting bandwidth). Nevertheless, our formalism
can be used for any other U value belonging to the weak,
intermediate, or strong coupling regimes. For all methods
except the restricted HF (RHF), we have constructed an initial
guess of the HF transformation such that all symmetries (spin,
lattice momentum) are broken. This is sometimes referred
to as the generalized HF (GHF) in the quantum chemistry
community [29]. We have converged the HF states such that
the norm of the gradient is smaller than 10~*. The exact
ground-state energies, evaluated by solution to the Lieb-Wu
equations from Ref. [28], have been obtained with an in-house
MATHEMATICA notebook.

We have used two different projection operators in our
calculations: the S, projection operator of Eq. (79) and the
linear momentum (LM) projection operator (equivalent to
restoration of C,, symmetry of the lattice [30]) given by

N,

. I
Pr= 3 explip — k)jl, (88)

5 =1

N i I . .
where p = >, k¢, ko, With ¢, resulting from a discrete

Fourier transform of the on-site operators c;g, is the LM
operator [25]. Only certain values of k with the form k =
2r&/Ns (6§ =0,1,...,N; — 1) are allowed in the projection.
For methods involving S, projection we have chosen to
recover states with S. eigenvalue m = 0, as it is known that
at half-filling the ground state is always a singlet state [31].
For methods involving LM projection we recover states with
k=m or k=0 for anharmonic (N; =4 L) or harmonic
(Ny = 4 L + 2) lattices, respectively.

Table I shows the total energies predicted by a variety of
methods for the ground state of the 1D Hubbard Hamiltonian
at half-filling (N = N;, where N is the number of electrons in
the system). It is evident from the results in Table I that the
nu-HF [defined by Eq. (42)], which uses the full flexibility of a
nu-HF transformation, is able to yield lower energies than the
standard HF. This was expected, since it is, at the very least,
a two-configuration wave function. This remains true in the
presence of projection operators (both S, and LM).

It is less evident that the total correlation energy for the
nu-HF, defined here [32] as the difference with respect to the
energy of the broken-symmetry HF solution, should tend to a
nonzero constant with increasing lattice size. This is the case,
as shown in Fig. 1. In fact, the correlation energy tends to
a constant for all methods that do not involve LM symmetry
breaking and restoration. For the latter methods, the correlation
energy per particle increases with lattice size, but it does not
reach the ideal 1/N behavior as shown in the right panel in
Fig. 1. We should stress that, even for those methods for which
the correlation energy per particle tends to 0 as N — oo, the
total energy and the wave function itself are different from the
broken-symmetry HF solution.
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TABLE I. Total energies (in units of ¢, the hopping parameter) for the ground state of the N,-site 1D Hubbard model Hamiltonian at
half-filling with different approximate methods. We have set U = 4 ¢ for all calculations.

N, RHF* HF® nu-HF® S HF nu-S,HF* LMHF' nu-LMHFe Exact"

8 ~1.656 9 ~3.748 6 ~3.969 1 —4.163 6 —43290 ~3.9839 —4.463 0 —4.603 5
12 ~2.9282 ~5.629 1 ~5.8490 —6.068 1 —6.248 3 —6.051 1 —6.447 0 ~6.9204
16 —4.109 4 ~7.5057 ~7.722 4 ~7.948 7 ~8.118 3 ~8.087 4 ~8.550 6 —9.2144
24 ~6.3830  —11.2585 ~114724  —11.7037 ~12.0113 ~12.1126 ~12.648 1 ~13.795 8
32 ~8.6127 ~150114  —152249  —154575 ~15.7773 ~16.101 8 ~16.708 9 ~18.379 4
48 ~13.0282  -22.5171 ~22.7305 —229640  —23.2912 ~24.019 6 ~24.749 1 ~27.552 4
64 —17.4219 ~30.0227 ~302362  -304700  —30.7989 -31.8875 —32.7184  —36.7287
96  —26.1874  —45.0341 —452476 454818 —45.811 1 —47.5328 —48.526 3 ~55.084 7
128 —349419  —60.0455 —60.2589  —60.4933 —60.8226  —63.0998 —64.2227 ~73.442 4
192 524402  —90.0682  —90.2817 —90.5162  —90.8453 —94.0874  —954138  —110.1594
256 —69.9330  —1200909  —120.3044  —120.5390  —120.8680  —124.9475  —1264351  —146.8772

“Restricted Hartree-Fock, i.e., all symmetries of the Hamiltonian are preserved.

>Symmetry-broken Hartree-Fock.
“Nonunitary Hartree-Fock, defined by Eq. (42).
43, -projected Hartree-Fock (with S, eigenvalue m = 0).

¢S.-projected nonunitary Hartree-Fock, defined by Eq. (81) (with 8, eigenvalue m = 0).

fLM-projected Hartree-Fock (with p eigenvalue k = 7).

¢LM-projected nonunitary Hartree-Fock, defined by Eq. (81) (with p eigenvalue k = 7).

"Obtained by solution to the Lieb-Wu equations in Ref. [28].

It is noteworthy that simple ansitze such as the nu-HF,
S;-projected nu-HF (nu-S HF), and LM-projected nu-HF
(LMHF) can be useful to describe finite-size lattices, where
they can capture a significant part of the correlation. For
N = 12, for which the exact ground-state energy is —6.9204 ¢,
the nu-HF recovers 17%, the nu-S,HF recovers 48%, and the
nu-LMHF recovers 63% of the missing correlation energy
in the broken-symmetry HF solution. Using both S, and LM
projection (resulting in the nu-LMS_HF) allows one to recover
96% of the total correlation. Full spin and LM projection may
be used to recover even a larger fraction of correlation energy,
as has been shown for projected HF methods in small Hubbard
1D or 2D lattices [14,25].

A. Structure of the optimized wave functions

It is interesting to analyze whether the physics behind the
character of the broken-symmetry Slater determinants that
optimize our (symmetry-projected) wave functions, in both
the unitary and the nonunitary cases, is relevant. This has
been done in similar contexts in Refs. [23,33], and references
therein. We construct the following structure parameters
characterizing the nature of a spin-density wave in an arbitrary
Slater determinant |1/):

2

As an example, we have computed the structure parameters
defined by Egs. (89) and (90) for unitary- and nonunitary-based
methods on a 48-site lattice at U = 4t; they are shown in
Fig. 2. The underlying determinants in the nu-HF and nu-S,;HF
develop a broad feature in A,(j), which corresponds to a
slight deviation from the antiferromagnetic alignment of spins.
On the other hand, the underlying determinants in methods
involving LM projection show localized solitons. Previous
works [23,33] have connected those localized features in the
broken-symmetry Slater determinants with the large quantum
fluctuations occurring in 1D Hubbard chains. It is noteworthy
that the soliton structure is already present in an LM-projected
single-determinant picture. The second determinant included
in our nonunitary ansitze displays a soliton structure in a
different position in the lattice.

B. Comparison with other two-determinant approaches

The results shown so far indicate that the nu-HF and nu-
S.HF improve upon the HF and S_HF, respectively. This is due
to a combination of the more general canonical transformation
being used and the fact that the nu-HF and nu-S HF are
explicitly constructed as two-determinant configurations.

It is interesting to compare the nonunitary-based ansétze
discussed in this paper with other two-determinant anséitze

. WISGH|v) resulting from a single, unitary canonical transformation. We

A(j) = W ) (89) have already discussed that more general two-determinant

. . ansitze, where each configuration results from an independent

As(j) = (_1)j+l (UIS(D|y) ) (WIS(HIY) . (90) HF transformation, have the same flexibility as the nonunitary
(Yr|r) (¥ |yr) approaches considered in this work, something we have

A1(j) is a measure of the amplitude of the spin wave at site j,
while A,(j) measures the relative orientation of the spin at site
J with respect to the one at site 1, modulated by the expected
antiparallel arrangement between neighboring sites.

verified numerically.

One can think of several ways to construct a two-
determinant ansatz based on a single, unitary canonical
transformation. Our experience shows that symmetry-
projection approaches are very effective in capturing electron
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FIG. 1. (Color online) Left: Total correlation energy (in units of ¢), predicted by several methods for 1D Hubbard model calculations as
a function of the number of sites N,. Right: Corresponding correlation energy per particle. Calculations were performed at half-filling, with
U = 4t. The correlation energy has been defined with respect to the broken-symmetry HF solution.

correlations. In this sense, several two-element symmetry
groups can be used in the 1D periodic Hubbard Hamilto-
nian to build a two-state Goldstone manifold: the complex-
conjugation group built with the elements {1, K }, where I is the
identity operator and K is the complex conjugation operator,

consider the complex conjugation group as a representative
example. In this subsection, we compare our nonunitary-based
ansitze with the complex-conjugation restored HF (KHF) or
the complex-conjugation and S,-projected HF (KS_ HF):

) v e WKHRY — ¢ K|®), 1
or the time-reversal group built with the elements {/,®}, where | ) =al®) +akie) D
® =exp(i w Sy) K is the time-reversal operator. We here quKSZHF> — ¢ ﬁ52|q>) ¥ o ps- m@)’ 92)

T T T T T T T T T T T T T T T T T T
0.24 — = _
012 N[ 4—“'——+——'—\=~33‘§’15TZT‘»-§T ‘*\~P-—l = =
= i I \/ | P
= l \ | l l
= 0.00 ! ~ \/ l' l’ |, —
4 , I i i
012 | 4+ i :
v ! \' |
0.24 4 F |P) D)
0.24 4 F . i
f\ /N /\ -/‘\ 1/\ ,!\
01 E =<t | e ap—— Bt | s sep——r sy p— =|
% 0.00 - - - -
< — HF — nu-HF
-0.12 + ———- S_HF - - ——-- nu-S.HF —
—— LMHF —— nu-LMHF
-0.24 + -—- LMS,HF - - -—-- nu-LMS.HF |
| | | | | | | | | | | | | | | | | |
8 16 24 32 40 48 8 16 24 32 40 48 8§ 16 24 32 40 48

site

FIG. 2. (Color online) Structure parameters A(j) and A,(j) [defined by Egs. (89) and (90), respectively] for the broken-symmetry Slater
determinants in unitary (left)- and nonunitary (right)-based methods. For the latter, we show the structure parameters for the two determinants
|®) and |®). The calculations have been performed for a 48-site periodic 1D Hubbard lattice at U = 4 t. LMS,HF denotes the simultaneous

projection into good S, and LM quantum numbers.
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FIG. 3. (Color online) Correlation energy per electron (in units
of 1), predicted by a variety of approximate methods for a 14-site
periodic 1D Hubbard model as a function of N/N;. The correlation
energy has been defined with respect to the broken-symmetry HF
solution. We were unable to converge KHF for N = 8.

where |®) is an N-particle Slater determinant and P5 is the
S, projection operator (onto m = 0).

Figure 3 shows the correlation energy per electron predicted
by a variety of approximate methods for a 14-site periodic 1D
Hubbard model as a function of the hole filling (N /Nj). It is
interesting to note that at half-filling (N/N; = 1) the nu-HF
and KHF yield exactly the same correlation energy. In this
sense, the full flexibility of the nonunitary transformation is
not being exploited in the solution. At other fillings, on the
other hand, the nu-HF is able to improve substantially over
the KHF. In contrast, the nu-S,HF yields lower energies (or
higher correlation energies) at all fillings, even though the
improvement is only marginal in some cases.

Overall, there is no guarantee that introducing more
flexibility into an approximate wave function will result in
lower energies for every system. We have shown, however,
that ansitze based on a nonunitary canonical transformation
yield lower energies than HF or projected-HF methods. They
even yield lower energies than the KHF or projected-KHF
solutions in some cases, despite the fact that complex-
conjugation projected wave functions are also two-determinant
configurations, even though they result from a single, unitary
canonical transformation.

IX. CONCLUSIONS

The HF and the HFB wave functions constitute the building
blocks upon which more elaborate many-body methods rely.
They are built out of a set of independent quasiparticles
resulting from a linear unitary canonical transformation of
elementary fermion operators. In this work, we have explored
the possibility of relaxing the unitarity condition within an
HF-type formalism in order to have more variational flexibility
in the considered wave functions.
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The properties of N-particle Slater determinants con-
structed from a set of HF-type operators resulting from a
nonunitary canonical transformation of fermion operators have
been discussed. We have derived the corresponding Thouless’
theorem for such states, which allowed us to compute matrix
elements in an efficient way by application of Wick’s theorem
[S].

An ansatz based on a single Slater determinant is incapable
of utilizing the full flexibility of a nonunitary transformation.
We have therefore introduced a two-determinant ansatz,
defined by Eq. (42), where all the degrees of freedom of an
HF-type nonunitary transformation are used. This, however, is
not a limitation of the nonunitary transformation. One could
work with other more general ansitze used in many-body
theory that utilize an N -particle Slater determinant as a starting
point.

Symmetry breaking is commonly used within a HF formal-
ism to access relevant correlations that are otherwise difficult
to obtain starting from a symmetry-preserving Slater determi-
nant. In this sense, a nonunitary transformation provides ad-
ditional degrees of freedom that can be used in the variational
problem. A symmetry-broken wave function is, nevertheless,
still unphysical; we advocate the use of projection techniques
out of a symmetry-broken intrinsic state, within a variation-
after-projection approach, to access the relevant correlations
resulting from large quantum fluctuations. This can be done,
as we have shown in the present work, in combination with
a nonunitary canonical transformation, affording even more
flexibility than that which a projected HF state based on a
unitary HF transformation has. A nonunitary-based projected
HF scheme aims to provide an accurate description of a
many-particle system with a limited number of configurations,
still a far-reaching problem in fields such as nuclear and
condensed matter physics as well as in quantum chemistry.

Finally, we note that our formalism can also be used in
the optimization of N-particle Slater determinants that are
considered as approximations to the left and right eigenvectors
of non-Hermitian Hamiltonians. In particular, our work can
be directly applied to non-Hermitian Hamiltonians with real
eigenvalues, such as those resulting from similarity transfor-
mations of a standard Hermitian one.

The extension of this work to the full nonunitary Bogoli-
ubov transformation is possible and will be presented in a
forthcoming publication [8].
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APPENDIX A: PROOF OF THOULESS’ THEOREM

In order to prove the extension to Thouless’ theorem stated
in Sec. IV, we start by introducing the operators {b,t ,by.by ,E;}
and {d,d,.d.d}}, such that {b},b,} kill the vacuum |d) and
{b}.b,} kill the vacuum [®o), while {d].d,} annihilate the
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vacuum |®;) and {J,I,Jp} annihilate the vacuum |®;). We
assume that both sets obey the anticommutation rules defined
by Eq. (14). We explicitly write these operators in the form of

Egs. (9) and (12); that is,
by = Z D?P ¢j
J

T 0% 1
by, = ZDJZ Cj
o 0% T
bII’_ZD]P €
J

= Z Djy ¢,
1% 1 _ 1.
ZDM ) dp = ZDJPC/’
It L 1
ZD/hcl’ dp ZD/P €
J
where the superscripts to the matrices indicate the state to
which the operators correspond.
We can now relate the operators {d;[,d »} to the operators

{bT,bP} by using the inverse transformation discussed in
Eq. (15). We arrive at

Zthbh/ +Z b, (Ala)
d, = Z My, by + Z Yip b, (Alb)

V4 h

where we have set

Lyy = (D DYy, (A2a)
M,, = (D DY, ,, (A2b)
Yy = (DT DY, (A2¢)
i = (DT DY, (A2d)

We now assume that the N x N matrix L is invertible,
which is only true if (Do D) # 0 [see Eq. (21)]. In such a
case, the matrix M is also invertible. We now introduce the
operators

7= "W ), (A3a)
w
dy =Y (M")y,d, (A3b)
o
Inserting Eq. (A3) into Eq. (A1), we arrive at
dy=by+> Zub, (Ada)
P
de = bp + Z th Eh? (A4b)
h
where we have set
Zpn =) Y5 (L* D, (A5a)
h/
(A5b)

Won = V(M)
~

In fact, by computing the anticommutation rules among the
operators {JZ,JP}, one can readily conclude that W = —Z.
This also implies that if L is invertible, then so is M. The
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transformed operators become
dj = b:l + ZthE;,

- Zzph Eh~
h

(A6a)

(A6b)

We are now in a position to investigate whether the
transformed operators, defined by Egs. (A6a) and (A6b),
annihilate the vacuum defined by Eq. (19). We start by
evaluating the commutators

bj,;, exp Z Zp’h’ E;/ Eh’

p'h

( Zthb')exp ZZ,,hb by |, (A7a)

p'n

by, exp Z LZyw 5; by
p'h

(Z thbh> exXp Z V4 P b bh/

/h/

(A7)

The operators from Eqs. (A6a) and (A6b) act on the vacuum
of Eq. (19) as

dyexp | " Zu bl by | |®0)
ph

= (_ D Zmbl+ ) th’;;)
p p

x exp | D Zywbl by | 1®0) =0, (ASa)
p'n
dyexp | Y Z,n bl by | |Do)
ph
= (Z Zpwby — Z th5h>
h h
x exp | D Zywbl by | 1®o) =0. (A8)

p/h/

This essentially completes the proof. {c?;[,c?p} annihilate the
right-hand side of Eq. (A6b). The operators {d,i,d,,} that kill
the vacuum |®) on the left-hand side of Eq. (A6b) are simple
linear combinations of {J ,1,3 »}; N-particle Slater determinants
built from either sets of operators are the same up to a
normalization factor.
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APPENDIX B: MATRIX ELEMENTS APPEARING
IN PROJECTED STATES

Here, we provide explicit formulas for the matrix elements
appearing in the energy expression and in the local gradient
from the variational ansatz based on projected states. The
overlap kernels appearing in Eq. (83) are evaluated as

(@|Ry|®) = dety DT R(6) D*, (Bla)
(®|Ry|®) = dety DT R(0) D*, (B1b)
(®|Ry|®) = dety D' R(9) D*, (Blc)
(®|Ry|®) = dety DT R(9) D*. (B1d)

The Hamiltonian kernels appearing in Eq. (82) are evaluated
in terms of transition density matrices as

(q)ot”:I R9|®ﬂ> ( aff 1 aff aff )
elZR O 1 (1 0) + 5 THO) 070) ) (B2)
(@l Rol®p) 7 P
Iif©) = D (ijlolkl) o ©). (B3)

ji
The transition density matrices are in turn given by

(@|c] ¢ Ry|D)

11
pii (0) = :
¢ (@] Ry| D)
=Y DuDjy+ Y Du 2,)(0) D},, (Bda)
gy — (@lei e Ral®)
. (®| Ry | )
= Z Diy Dy, + Z Dy 2,)(0) Dy,. (BAb)
2100 (@lc] cx Ry D)
“ (®| Ry | )
- Z Diy D}y + Z Dy 25,(0) Dy, (Bdc)
20) <6|cf ci R[®)
“ (@] Ry |P)
=" Du D}, + Z Diy 257(0) Dy, (BAd)
h
Here,
20,©0) = Y [DTROD* 1L O)wn,  (BSa)
T
2020) = Y [DTRO)D* 1w L O)Iwn,  (BSb)
T
250©0) = Y IDTROD* 1 L2 @), (BSC)
T
2520) = Y IDTROD* 1 (L O)wn  (B5d)

h
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and

Li))©) = [DTR*(0) DIy, (B6a)
L32(6) = [D'R*0) DIy, (B6b)
L3)(@) = [D'R*©)Dlyn, (B6c)
L320) = [D'R*©) Dl (B6d)

The overlap-like matrix elements appearing in the local
gradient [Eq. (86)] can be evaluated as

(®|b] b, Ry| D)

: E D*, D, 0 B7a
<CD|R9|¢)> mh 4 pnm( ) ( )
(®|b) b, Re|D) .
— L =% "D}, D, 0), B7b
@lR0) L Do oo o @) (BT0)
(®|b) b, Re|P) I,
—_——— = D* D, m 9 N B7C
DR [D) mEn i Dp P (0) (B7¢)
M p (9) (B74d)
np Fnm

:ZD*
mn

(®|Ry| D)

Similarly, the Hamiltonian-like matrix elements in Eq. (86)
can be evaluated as

(Db} b, H Ry| D)
(D|Ry| D)

_ (®|H Ry| D)
—ZDmh np Pam(0) —————

(P|Rg|P)
+ZZD;;}, an ik +F (0))
mn ik

x o @) (8. — pl1(©),  (BSa)
(@b} b, H Ry|®) (®|H Ry| D)
— X Dm n m e
(@] Ry | D) Z # Do i) =5 2 )
+ Z > D}y, Dup (hix + T7(0))
mn ik
X pen (@) (82 — 021(0)),  (B8b)
(@b} b, H Ry| D) _. (®|H Ry|D)
A~ = Dm D" p Fnm T A o
(®| Ry [®) ; # Do o) = 2
+ Z Z D;h an (hik + F,lkz(e))
mn ik
X pim(©) (80 — £ (0)) . (B8o)
(®|b] b, H Ry|D) . (®|H Ry|D)
= A = = Dm np Pnm T A
(®|Ro[) ; b Do i) = e
+ Z Z D np lk + 1—‘12]{2(0))
mn ik
X pia(0) (8, — p27(6)).  (B8A)
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