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Spontaneous symmetry breaking in rotating condensates of ultracold atoms
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We describe an equilibrium state of a rotating trapped atomic condensate, which is characterized by a nonzero
internal circulation and spontaneous breaking of the rotational O(2) symmetry with all three major semiaxes
of the condensate having different values. The macroscopic rotation of the condensate is supported by a mesh
of quantized vortices, whose number density is a function of internal circulation. The oscillation modes of this
state are computed and the Goldstone mode associated with the loss of the symmetry is identified. The possible
avenues for experimental identification of this state are discussed.
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Introduction. Rotating condensates of ultracold Bose or
Fermi gases form vortex lattices above a critical rotation
frequency. Such states have indeed been observed in a number
of experiments on superfluid bosonic [1] and fermionic [2]
vapors confined to magnetic and/or optical traps. These
systems provide an excellent tool to study various aspects
of ultracold rotating atomic gases due to the high level of
control over the parameters, such as the number of vortices,
strength of interparticle interactions, shape and rotation rate
of the trapping potential, multispecies loading of the trap, etc.
Various aspects of these rotating condensates have spawned
an enormous literature (see, e.g., [3,4]). For our purposes it
should be pointed out that theoretical studies of the rotational
equilibrium of condensates featuring an array of vortices and
their oscillations have confirmed the applicability of “coarse-
grained” superfluid hydrodynamics for such systems [5–14].
In particular, an excellent agreement between the theory and
experiment is observed for the breathing modes of a uniformly
rotating condensate [9]. The applicability of superfluid hy-
drodynamics needs a sufficiently large and strongly coupled
condensate, which can be routinely created in experiments.
Under these conditions and in the case of a Bose gas, the
quantum pressure term in the Gross-Pitaevskii equations can
be ignored compared with the interaction terms, in which case
this theory takes the form of superfluid hydrodynamics (see
Ref. [5]). Furthermore, the size of the vortex core, which scales
with the number of particles as ξ ∼ (8πaN )−1/2, where a is
the scattering length, is sufficiently small in this case and need
not be resolved.

In this work we explore the rotational state and oscillations
of nonuniformly rotating condensates. We concentrate on a
special class of departures from rigid-body rotation, which
feature a constant condensate circulation in the frame rotating
with the surface of the condensate. The states that we
are seeking are supported by a sufficiently dense mesh of
quantum vortices, which guarantee nonzero circulation in the
laboratory frame. Bifurcation in condensates at overcritical
rotation rates was considered previously with the constraint of
irrotationality of the superfluid velocity [15]. Although such
states do spontaneously break the rotational symmetry, they are
generically unstable and, thus, their time-dependent dynamics
is directed towards formation of vortices in the condensate.

We formulate the superfluid hydrodynamics in its virial
form, which was proposed and applied previously to uniformly
rotating condensates in Refs. [5]. The method has its roots

in developments in the context of self-gravitating fluids [16].
There are some parallels (duality), but also differences between
gravitationally bound and trapped systems [5]. The states
of the condensates discussed below are the duals to the
gravitationally bound Riemann ellipsoids.

Equilibrium. Consider a rotating cloud of condensed gas
confined by a harmonic trapping potential φtr(x) = mω2

i x
2
i /2,

where m is the atom mass and ωi are the Cartesian trapping
frequency components (hereafter the Latin indices run through
1,2,3–the components of the Cartesian coordinate system–
and a summation over the repeated indices from 1 to 3
is assumed). Below we consider the case of axisymmetric
trapping with ω1 = ω2 ≡ ω⊥. We will assume below that
the rotation frequencies are well above the lower critical
frequency for nucleation of the vortices, which scales as
�c1 ∝ (h̄/mR2) ln(R/ξ ), where R is the size of the condensate
transverse to the rotation. Then, the condensate executes
rigid-body rotation, where its angular momentum is supported
by a vortex lattice. Hydrodynamical treatments of such systems
are carried out after averaging (coarse-graining) the dynamical
quantities over distances much larger than the intervortex
distance. The rotating condensate is then described by the
Euler equation, which we write in a frame rotating with some
angular velocity �,

ρ(∂t + uj∇j )ui = −∇ip − ρ

2
∇i

(
ω2

j x
2
j

)

+ ρ

2
∇i |� × x|2 + 2ρεilmul�m, (1)

where ρ, p, and ui are the density, pressure, and velocity of the
condensate. We will specify the rotating frame more precisely
later on. Equation (1) is valid for Bose or Fermi gases, provided
the appropriate equations of state are used. The first moment
of Eq. (1), integrated over the condensate volume V , is the
second-order tensor virial equation

d

dt

∫
V

d3xρxjui = 2Tij + δij� + (
�2 − ω2

i

)
Iij

+ 2εilm�m

∫
V

d3xρxjul − �i�kIkj , (2)

where Iij ≡ ∫
V

d3x ρxixj and Tij ≡ (1/2)
∫
V

d3xρuiuj ,

are the second-rank tensors of the moment of inertia and
kinetic energy, and � = ∫

V
d3xp is the scalar volume integral

of the pressure. A direct integration of the unperturbed
hydrodynamic equation for the condensate for the class of
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polytropic equations of state shows that the density distribution
is of a Thomas-Fermi type, i.e., the density is a quadratic form
of the coordinates ρ = ρ(l2), where l2 = x2

1/a2
1 + x2

2/a2
2 +

x2
3/a

2
3 [5]. For such a distribution the moment of inertia tensor

can be written as Iij = (4π/3)a3
i akalδij

∫ 1
0 ρ(l2)l4dl, which

will allow us to translate the equations written for moment
of inertia tensors to equations written for the semiaxes of the
equilibrium condensate.

The equilibrium shape of the condensate in a rotating
axisymmetric trapping potential is an ellipsoid of revolution.
We fix the origin of the rotating coordinate system to coincide
with that of the ellipsoid, while the axes of the system coincide
with the semiaxes a1, a2, and a3 of the ellipsoid. Thus, the
system of coordinates corotates with the axis of the ellipsoid
at the frequency � = (0,0,�) introduced above. We now
specialize our discussion to a class of solutions for which ∇ ×
u = ζ , i.e., solutions which admit nonzero vortical motion
of the fluid in the rotating frame. We consider the simplest
case of uniform vortical motion along the rotation vector, in
which case u1 = Q1x2, u2 = Q2x1, u3 = 0, where Q1 and
Q2 are constants such that ζ3 = Q2 − Q1 ≡ ζ . We further
assume that the fluid flows associated with internal motions
are nonadvective, i.e., satisfy the condition u · ∇ρ = 0, which
is manifestly the case for, e.g., incompressible fluids. This
implies u1x1/a

2
1 = −u2x2/a

2
2 or Q1/a

2
1 = −Q2/a

2
2 , Q1 =

−a2
1ζ/(a2

1 + a2
2), and Q2 = a2

2ζ/(a2
1 + a2

2).
Consider first the stationary solutions of Eq. (2). We write

down the diagonal elements of this equation and eliminate �,
to obtain

−ω2
3I33 = 2T11 + (�2 − ω2

⊥)I11 + 2�

∫
d3xρx1u2

= 2T22 + (�2 − ω2
⊥)I22 − 2�

∫
d3xρx2u1. (3)

Substituting the components of the velocity ui and after some
further manipulations one finds

a2
1q

2
⊥ = a2

2q
2
⊥ = ω2

3a
2
3 + 2�ζa2

1a
2
2

/(
a2

1 + a2
2

)
, (4)

where q2
⊥ ≡ Q1Q2 + ω2

⊥ − �2, These equalities are satisfied
if �2 − Q1Q2 = ω2

⊥ and −2a2
1a

2
2ζ�/(a2

1 + a2
2) = ω2

3a
2
3 . Note

that these relations can be equivalently obtained from a
variational principle, where the energy of the system is
minimized with respect to the parameters a2 and a3 at fixed
mass, angular momentum, and circulation of the fluid [17]. It
is useful to define the ratio f ≡ ζ/�, in terms of which these
equilibrium conditions read

�̄2

[
1 + δ2

2(
1 + δ2

2

)2 f 2

]
= 1, − 2δ2

2

1 + δ2
2

f �̄2 = ω̄2δ2
3, (5)

where the reduced quantities are defined as �̄ = �/ω⊥ and
ω̄ = ω3/ω⊥ with ω⊥ the transverse trapping frequency, δi =
ai/a1, i = 2,3, and all the lengths are measured in units of
a1 = 1. Equations (5) fully determine the equilibrium structure
of the cloud for any pair of values of ζ and �. Note that
the first equation implies that the rotation frequency must be
below the transverse trapping frequency, i.e., ω⊥ > �, as is
the case also for uniformly rotating condensates. The solutions
(5) represent an example of spontaneous symmetry breaking
(SSB) in rotating condensed clouds: the initial Lagrangian

and the associated hydrodynamical equations have manifest
O(2) symmetry, but the ground state does not. Thus, there
exists a minimal frequency above which a1 �= a2 �= a3 as a
consequence of ζ �= 0. Indeed, in the limit ζ → 0 Eqs. (4)
give (�̄2 − 1) = δ2

2(�̄2 − 1) = −ω̄2δ2
3, which implies that

δ2
2 = 1, δ2

3 = (1 − �̄2)/ω̄2, i.e., if ζ = 0 the rotational O(2)
symmetry is unbroken. The explicit solutions of Eqs. (5)
read δ2

2 = (c − 1) ±
√

(c − 1)2 − 1, where c = f 2/2(�̄−2 −
1) and δ2

3 = −2f �̄2δ2
2/(1 + δ2

2)ω̄2. Since the radical needs to
be positive in order for δ2

2 to be real, we conclude that there
exists a minimum rotation frequency

�̄ � �̄min = (1 + f 2/4)−1/2, (6)

above which the SSB sets in.
The energy and angular momentum of the condensate cloud

associated with the solutions above are given by

E∗ = E

ω2
⊥

= 1

2

[ − (
1 + δ2

2

) − ω̄2δ2
3

]

+ 1

2

(
1 + δ2

2

)
(1 + b2)�̄2 − 2δ2b�̄2, (7)

L∗ = L

Mω⊥
= 1

5

[(
1 + δ2

2

) − 2δ2b
]
�̄, (8)

where b = −f δ2/(1 + δ2
2) and M is the mass of the cloud.

Figure 1 shows the values of the (dimensionless) semiaxes
of the condensate; for � < �min only axisymmetric figures
exist with a1 = a2 �= a3; for � � �min two pairs of nonax-
isymmetric solutions exist, which are shown by solid and
dashed lines. The figure also shows the energy and angular
momentum of these states. It is seen that the solutions with
small (δ2,δ3 < 1) semiaxes have lower energy than the ones
with large (δ2,δ3 > 1) semiaxes in units of a1. Close to the
onset of axial nonsymmetry the energies of both configurations
are nearly degenerate, as expected. The velocity fields for
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FIG. 1. (Color online) Upper panel: The dimensionless axes δ2

and δ3 as functions of the normalized rotation frequency for fixed
f = 4 (dark, blue online) and f = 2 (light, cyan online). The
solid and dashed lines distinguish the configurations. Lower panel:
The energies of the first (solid lines) and second (dashed lines)
configuration for f = 2 and f = 4. Their angular momenta are
shown by dotted lines.
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FIG. 2. (Color online) Illustration of the velocity vector field in
the x-y plane for two possible solutions with SSB for � = 0.5, f = 4,
and δ2 = 1.8 (left figure) and δ2 = 0.5 (right figure). Note that the
figures are not to the same scale. The third-axis values are δ3 = 1.5
and 0.98, respectively. The color coding reflects the Thomas-Fermi
density distribution of the cloud.

two possible solutions for fixed values of rotation frequency
� = 0.5 and circulation ζ = 2 are shown in Fig. 2.

Oscillation modes. Consider small perturbations around the
equilibrium with time dependence exp(λt). The lowest-order
nontrivial perturbations are those with l = 2 and |m| � 2. The
Lagrangian perturbation of Eq. (2) is given by

λ2Vi:j − 2λQjlVi;l − 2λ�εil3Vl;j

−2�εil3(QlkVj ;k − QjkVl;k) + Q2
j lVi;l + Q2

ilVj ;l

= �2(Vij − δi3V3j ) − ω2
i Vij + δij δ�, (9)

where Vi;j = ∫
V

d3xξixj with ξi being the Lagrangian pertur-
bation, and Vij = Vi;j + Vj ;i . In the case when the internal
circulation ζ is along the spin vector, the only nonzero
elements of the matrices Q and Q2 are Q12 = Q1,Q21 = Q2

and Q2
11 = Q1Q2,Q

2
22 = Q1Q2. The modes that have even

and odd parity with respect to the index 3 decouple. To
determine the even modes we need the equation of state
of the condensate, which determines the pressure pertur-
bations. For the class of fluids described by a polytropic
equation of state p = ργ the pressure perturbation is given
by δ� = (1 − γ )[(ω2

⊥ − �2)(V11 + V22) + ω2
3V33]/2 [5]. In

the case of an incompressible condensate one can proceed
in a model- and statistics-independent way, because in that
case the perturbations are solenoidal, which translates into
V11a

−2
1 + V22a

−2
2 + V33a

−2
3 = 0. The characteristic equation

for even modes in that case is

Det

⎛
⎜⎝

λ2

2 + p2 − �Q2 −3�Q1 − λ2

2 − ω2
3

+3�Q2
λ2

2 + p2 + �Q1 − λ2

2 − ω2
3

a−2
1 a−2

2 a−2
3

⎞
⎟⎠ = 0

with the abbreviation p2 = �2 + ω2
⊥ − Q1Q2. In the com-

pressible case the elements in the last row should be re-
placed: a−2

1 → (γ − 1)(ω2
⊥ − �2)/2, the same for a−2

2 , and
finally a−2

3 → λ2/2 + (1 + γ )ω2
3/2. Note that the character-

istic equation for the modes is invariant under simultaneous
interchange Q1 ↔ −Q2. Below we assume a Bose gas with
γ = 2. The characteristic equation for even modes is of order
8 in the incompressible case and order 12 in the compressible
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FIG. 3. (Color online) The even-parity compressible (upper
panel) and incompressible (middle panel) modes along with the
odd-parity (lower panel) modes for f = 2 (light, cyan online), and 4
(dark, blue online) as a function of rotation frequency. All quantities
are normalized by the transverse trapping frequency ω⊥. The real
parts are shown by the solid lines; the imaginary ones by the dashed
lines.

case. However, the modes come in complex-conjugate pairs
and the number of distinct modes is reduced. The odd-parity
modes are given by

Det

⎛
⎜⎜⎜⎝

λ2 + ω̃2
⊥ −2λ� q2

⊥ − 2�Q2 0

2λ� λ2 + ω̃2
⊥ 0 q2

⊥ + 2�Q1

ω2
3 0 λ2 + q2

3 −2λQ1

0 ω2
3 −2λQ2 λ2 + q2

3

⎞
⎟⎟⎟⎠ = 0

with the abbreviation q2
3 = Q1Q2 + ω2

3.
The secular equations for the even and odd modes were

solved numerically and their real and imaginary parts are
shown in terms of the quantity σ = −iλ in Fig. 3. The real
parts of the σ ’s are the eigenfrequencies of the modes and
their imaginary parts describe their damping. Although for
each pair of values of � and f there are two equilibrium
background solutions which exhibit SSB, there is only one
set of oscillation modes associated with both solutions for
δ2 and δ3. This is consequence of the Q1 ↔ −Q2 exchange
invariance mentioned above.

There is a trivial undamped odd-parity mode σ1 = �, which
arises because we are working in the rotating frame. A second
undamped mode with eigenfrequency σ2 = √−Q1Q2 can
be identified with the Goldstone mode, which emerges as a
consequence of the SSB; indeed σ2 ∝ ζ and vanishes in the
limit where the internal circulation is zero. The remaining
odd-parity modes are shown in Fig. 3. There are two physically
distinct domains: in the low-rotation-frequency domain there
are two real modes without damping; in the high-rotation-
frequency domain the real parts are degenerate, whereas the
imaginary parts are equal and opposite in sign. The negative
imaginary part emerging in this domain indicates dynamical
(i.e., nondissipative) instability of the system towards
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FIG. 4. (Color online) Dependence of the limiting dimensionless
rotation rates �lim for onset of SSB, Eq. (6) (above the solid line), for
the onset of instability of compressible even modes (above dashed
line) and instability of odd modes (above dash-dotted line) on the
internal circulation parameter f . The region corresponding to the
stable SSB state is enclosed between the solid and the dashed
lines.

even-parity oscillations. The two domains are separated by
the point of onset of dynamical instability. Furthermore, we
see that the stable segment decreases with decreasing f and
is absent for f � 2 in our example. There are two real
distinct even modes of oscillations in the incompressible
case, which are shown in the middle panel of Fig. 3 for
f = 2, and 4 as functions of rotation frequency. The high-
frequency mode weakly depends on the value of f , whereas
the low-frequency mode changes its asymptotic behavior in the
low-rotation-frequency limit. The incompressible even modes
are purely real and correspond to undamped oscillations. The
compressible even modes, displayed in the upper panel of
Fig. 3, show dynamical instability for high rotation rates,
whereby a stable branch of oscillations appears for f � 3
and low rotation rates.

Now we locate the space spanned by the parameters �̄

and f , where the SSB state is both energetically favorable
and stable against the odd- and even-parity oscillations. In
Fig. 4 the region above the solid line, which shows the �lim(f )
dependence given by Eq. (6), features the SSB state. This
region is bound from above by the minimal frequency at which
the even compressible oscillation modes become unstable.
Thus, the region between the solid and dashed lines in Fig. 4
corresponds to the parameter space where the SSB state is
stable. It is further seen that the minimum frequency at which
the odd-parity modes become unstable is larger than that for

the even-parity modes for all values of f , i.e., the stability of
the SSB state is controlled by the even-parity modes alone.

Experimental verification. The state of rotating condensates
with internal circulation can be studied with experimental
setups already used for uniformly rotating clouds. First,
one needs to establish the SSB by, e.g., measurements of
the axis ratio via imaging the condensate. The knowledge
of the axis ratios will permit reconstruction of all other
parameters of the cloud, including the magnitude of the internal
circulation. Second, the number of vortex lines in the cloud can
be “counted” again through imaging. Since the equilibrium
rotation of the condensate can be independently measured
through the excitation of the surface modes, one can detect
potential deviations from the Feynman formula nv = 2�/κ ,
where nv is the number density of vortices and κ is the
quantum of circulation. A breakdown of the Feynman formula
would be evidence for internal circulations. Indeed, if internal
circulations are present then the vorticity in the laboratory
frame and the vortex density are given respectively by

ζL = (2 + f )�, nv = (2 + f )
�

κ
. (10)

Thus, a simultaneous and independent measurement of � and
nv will give the experimental value of f . Third, the oscil-
lation modes can be measured and tested against theoretical
predictions, as has already been done for the l = 2 modes of
uniformly rotating condensates.

Conclusions. In this work we identified a state of a rotating,
harmonically trapped, condensate of an atomic cloud, which
in the frame rotating with the cloud’s surface has nonzero
internal circulation. The resulting equilibrium configurations
are nonaxisymmetric, and thus are a manifestation of SSB in
superfluid hydrodynamics. We have derived the complete set
of l = 2 harmonic modes, which are dynamically unstable for
high rotation rates and low internal circulation and are stable
otherwise. Several experimental tests have been suggested,
which can shed light on the structure and small-amplitude
oscillations of nonuniformly rotating clouds of Bose and Fermi
condensates.

As studies of rotating condensates provide a useful test
bed for exploring strongly correlated systems under rotation,
due to the great experimental flexibility available in these
systems, further insights are expected about systems that are
difficult or impossible to manipulate and/or observe. One
such example is provided by rotating neutron stars containing
strongly interacting condensates of nuclear and quark matter.
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