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We study how multipartite entanglement evolves under the paradigm of separable operations, which include the
local operations and classical communication as a special case. We prove that the average “decay” of entanglement
induced by a separable operation is measure independent (among SL-invariant ones) and state independent: The
ratio between the average output entanglement and the initial entanglement is solely a function of the separable
operation, regardless of the input state and of the SL-invariant entanglement measure being used. We discuss
the “disentangling power” of a quantum channel and show that it exhibits a similar state invariance as the average
entanglement decay ratio. Our Rapid Communication significantly extends the bipartite results of Horodecki and
Horodecki, Quantum Inf. Comput. 10, 901 (2010), Konrad et al., Nat. Phys. 4, 99 (2008), and Tiersch et al.,
Phys. Rev. Lett. 101, 170502 (2008) as well as the multipartite one of Gour, Phys. Rev. Lett. 105, 190504 (2010),
all of the previous work being restricted to one-sided or particular noise models.

DOI: 10.1103/PhysRevA.86.050302 PACS number(s): 03.67.Mn, 03.65.Ud, 03.67.Hk

Introduction. Entanglement is a key ingredient in many
quantum information protocols, such as factoring [1], telepor-
tation [2], quantum dense coding [3], or measurement-based
quantum computation [4]. In all these schemes entanglement
plays the role of a resource that is “consumed” during the actual
implementation of the protocol. For example, in measurement-
based quantum computation, a highly multipartite entangled
state (the cluster state) is adaptively measured locally until the
desired unitary evolution is achieved; the cluster state model is
equivalent to the well-known circuit model [5], but, in contrast
to the latter, the role of entanglement as a computational
resource is now clearly visible.

Decoherence [6] constitutes a major impediment in the
physical implementation of quantum information protocols. In
general, entangled states are not resilient against noise, and this
may first look like an impassible barrier for the construction
of a working quantum computer. Quantum error correcting
codes can make quantum computation possible provided the
level of noise is below a certain threshold, but the current
technology is far from achieving it. It is therefore of crucial
importance to understand how entanglement behaves under
decoherence. Previous work [7–10] addressed this important
problem of entanglement evolution (decay), however, the noise
model was restricted to one-sided channels; i.e., noise that acts
nontrivially only on one subsystem, without affecting the other
remaining parts of it.

In this Rapid Communication we investigate multipartite
entanglement evolution under a far more general setup:
the locally correlated noisy channels—technically separable
operations—which includes the local operations and classical
communication (LOCC) as a strict subset [11]. Separable
operations (and automatically LOCC) constitute a much richer
class and encompasses the previous investigated one-sided
channels as well as the usual independent noise model assumed
in the theory of quantum error correction. The study of
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entanglement evolution under such a noise model is therefore
deepening our understanding of the fascinating and not-at-all
well understood subject of multipartite entanglement [12].

Our most surprising result is that entanglement evolution is
independent of the initial state and the entanglement measure
used to quantify its evolution, and depends solely on the
intrinsic properties of the noise. We provide a closed-form
formula for how entanglement decays which is straightforward
to calculate given the Kraus operator-sum representation of the
process.

Recent attempts to characterize entanglement evolution
under locally correlated noise, not just one sided, were made in
Ref. [13], however, the authors restricted their study to tripar-
tite qubit entanglement and a particular form of LOCC proto-
cols. Our result completely characterizes the average entangle-
ment evolution under the very general class of separable opera-
tions and may be of interest from an experimental point of view.

Entanglement evolution. We consider a multipartite system
of n qudits, described by a Hilbert space H = H1 ⊗ H2 ⊗
· · · ⊗ Hn, and let di be the dimension of the ith local Hilbert
space. Denote by B(H) the set of all bounded operators (e.g.,
density matrices) acting on H. We further define the special
linear group G ≡ SL(d1,C) ⊗ SL(d2,C) ⊗ · · · ⊗ SL(dn,C),
where SL(d,C) is the group of d × d complex matrices of
determinant 1.

Definition 1. An SL-invariant multipartite entanglement
measure [10], Einv(·), is a nonzero function initially defined
from pure states in H to non-negative real numbers then
extended to mixed states satisfying the following:

(i) it is SL invariant, i.e., Einv(g|ψ〉〈ψ |g†) = Einv(|ψ〉〈ψ |),
for all g ∈ G and all |ψ〉 ∈ H;

(ii) it is homogeneous of degree 1, i.e., Einv(r|ψ〉〈ψ |) =
rEinv(|ψ〉〈ψ |), for all non-negative r and all |ψ〉 ∈ H; and

(iii) its convex roof extension to mixed states is given by

Einv(ρ) := min
∑

i

piEinv(|ψi〉〈ψi |), (1)

where the minimum is taken over all possible pure states
ensembles that decompose ρ, i.e., ρ = ∑

i pi |ψi〉〈ψi |.
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The criteria above guarantee that Einv is an entanglement
monotone under LOCC [14]. However, we will explicitly show
here that Einv is also monotone under the more general class
of separable operations (see the upper bound in Theorem 1).
These measures capture genuine multipartite entanglement
and are in general dimension dependent, i.e., may not exist
for some choices of the local dimensions di . The measures are
therefore dependent on the space the states are embedded in, as
we will see below. An example is Wootters’ concurrence of two
qubits [15] and its higher dimension generalization called G

concurrence [16]. In particular, these are the only SL-invariant
measures for the bipartite case, with d1 = d2. No SL-invariant
measure exists for d1 �= d2, hence a simple embedding of
a 2 × 2 state into a 2 × 3 state is not measurable. For
multipartite systems there is more than one measure, and their
construction is based on SL-invariant polynomials [14,17].
An SL-invariant polynomial f (|ψ〉〈ψ |) is a polynomial in
the components of the state |ψ〉, invariant under the action
of the group G, i.e., f (g|ψ〉〈ψ |g†) = f (|ψ〉〈ψ |), for all
g ∈ G. Then Einv(|ψ〉〈ψ |) = |fk(|ψ〉〈ψ |)|1/k is an example
of an SL-invariant measure, where fk is a homogeneous
SL-invariant polynomial of degree k. In particular, for three
qubits the square root of the 3-tangle [18] is the simplest
multipartite SL-invariant measure.

In the next Lemma we prove that the convex roof extension
on an SL-invariant measure satisfies the SL-invariance and
homogeneity properties, similarly to the pure state case. This
is the most important technical result of our paper and is crucial
for the proof of our main result, Theorem 1. This important
Lemma was overlooked by the community, a partial version
being stated before in Ref. [7], with inequality instead of
equality and valid only for bipartite separable operations.

Lemma 1. Any entanglement measure defined as a convex
roof extension of an SL-invariant pure state entanglement
measure remains SL invariant and homogeneous of degree
1, i.e.,

(i) Einv(gρg†) = Einv(ρ), for all g ∈ G and all ρ ∈ B(H)
and

(ii) Einv(rρ) = rEinv(ρ), for all non-negative r and all ρ ∈
B(H).

Proof. Proof of (i): Let g ∈ G and let {|ψ̃i〉〈ψ̃i |} be an
optimal un-normalized ensemble decomposition of ρ, i.e.,

Einv(ρ) =
∑

i

Einv(|ψ̃i〉〈ψ̃i |). (2)

Then {g|ψ̃i〉〈ψ̃i |g†} must be some ensemble decomposition
of the positive operator gρg†, in general not the optimal one.
Hence

Einv(gρg†) �
∑

i

Einv(g|ψ̃i〉〈ψ̃i |g†)

=
∑

i

Einv(|ψ̃i〉〈ψ̃i |) = Einv(ρ). (3)

Let {|φ̃k〉〈φ̃k|} be an optimal un-normalized ensemble decom-
position of gρg†, i.e.,

Einv(gρg†) =
∑

k

Einv(|φ̃k〉〈φ̃k|). (4)

Note that {g−1|φ̃k〉〈φ̃k|g−1†} is some ensemble decomposition
of ρ, again not necessarily the optimal one, where g−1 is the
inverse of g (the inverse is guaranteed to exist since g has
determinant 1). Then

Einv(ρ) �
∑

k

Einv(g−1|φ̃k〉〈φ̃k|g−1†)

=
∑

k

Einv(|φ̃k〉〈φ̃k|) = Einv(gρg†). (5)

Now part (i) follows from (3) and (5).
Proof of (ii): This follows at once, since if {|ψ̃i〉〈ψ̃i |} is an

optimal ensemble decomposition of a density operator ρ, then
{r|ψ̃i〉〈ψ̃i |} will automatically be an optimal decomposition of
the operator rρ. Then the result follows from the homogeneity
of Einv(·) for pure states. �

Definition 2. Let � be a completely positive trace pre-
serving (CPTP) multipartite separable operation acting on
B(H1) ⊗ B(H2) ⊗ · · · ⊗ B(Hn), with operator-sum represen-
tation given by Kraus operators {K (1)

m ⊗ K (2)
m ⊗ · · · ⊗ K (n)

m }m,

with
∑

m K (1)
m

†
K (1)

m ⊗ · · · ⊗ K (n)
m

†
K (n)

m = I ⊗ · · · ⊗ I . We de-
fine the entanglement resilience factor (ERF) of � to be

F(�) := min
∑
m

∣∣ det
(
K (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K (n)

m

)∣∣2/dn
, (6)

where the minimum is taken over all separable Kraus decom-
positions {K (1)

m ⊗ K (2)
m ⊗ · · · ⊗ K (n)

m }m of �.
Lemma 2. F(�) � 1, with equality only if � is a separable

random unitary channel, i.e., all Kraus operators are propor-
tional to unitaries.

Proof. From the closure condition we have∑
m

K (1)
m

†
K (1)

m ⊗ · · · ⊗ K (n)
m

†
K (n)

m = I ⊗ · · · ⊗ I. (7)

Taking the determinant on both sides and applying the
Minkowski’s inequality for a sum of positive (semidefinite)
operators (see p. 47 of Ref. [19]) yields∑

m

∣∣ det
(
K (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K (n)

m

)∣∣2/dn � 1, (8)

where we have used det(AA†) = | det(A)|2 and det(A ⊗ B) =
det(A)b det(B)a for A and B square matrices of dimension
a × a and b × b, respectively. The result then follows at once
from Eqs. (6) and (8). �

The ERF was first introduced in Ref. [10] for the particular
case of one-sided operations of the form �(1) ⊗ I ⊗ · · · ⊗ I ,
where its computation reduced to an optimization problem
due to the unitary freedom in the Kraus representation of a
quantum operation [5]. However, in our case, it is not at all clear
whether a separable operation admits more than one separable
representation (up to a relabeling of the Kraus operators),
excluding the trivial cases where the operation is a tensor
product of independent channels � = �(1) ⊗ · · · ⊗ �(n). For
this latter case

F(�(1) ⊗ · · · ⊗ �(n)) �
∏
k

F(�(k)), (9)

since among all possible separable representations of �

there are Kraus representations of the form {K (1)
j1

⊗ · · · ⊗
K

(n)
jn

}j1,...,jn
, with

∑
jk

K
(k)
jk

†
K

(k)
jk

= I for any individual party
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k, and this implies that the minimization (6) can split into n

individual parts, which proves (9).
The following Theorem constitutes our central result.
Theorem 1 (Entanglement evolution). Let � be a multi-

partite separable operation with operator-sum representation
given by Kraus operators {K (1)

m ⊗ K (2)
m ⊗ · · · ⊗ K (n)

m }m, with∑
m K (1)

m

†
K (1)

m ⊗ · · · ⊗ K (n)
m

†
K (n)

m = I ⊗ · · · ⊗ I , let Einv(·) be
an SL-invariant entanglement measure, and let ρ ∈ B(H) be
an entangled input state with Einv(ρ) �= 0. Then the average
output entanglement is independent of the input state and of
the entanglement measure, and is given by∑

m pmEinv(σm)

Einv(ρ)

=
∑
m

∣∣ det
(
K (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K (n)

m

)∣∣2/dn � 1, (10)

with equality if and only if � is a separable random uni-
tary channel [20]. Here pmσm = (K (1)

m ⊗ · · · ⊗ K (n)
m )ρ(K (1)

m ⊗
· · · ⊗ K (n)

m )† and
∑

m pm = 1.
In particular, note that the upper bound in Eq. (10)

explicitly shows that Einv is an entanglement monotone under
separable operations, as we claimed in the remarks following
Definition 2.

Proof. We start by noting that(
K (1)

m ⊗ · · · ⊗ K (n)
m

)
ρ
(
K (1)

m ⊗ · · · ⊗ K (n)
m

)† = pmσm. (11)

For the Kraus operators that have nonvanishing determinant
(i.e., are invertible), we have∣∣ det

(
K (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K (n)

m

)∣∣2/dn

×
[

K (1)
m ⊗ · · · ⊗ K (n)

m(
det K (1)

m

)1/d1 · · · ( det K (n)
m

)1/dn

]
(ρ)

×
[

K (1)
m ⊗ · · · ⊗ K (n)

m(
det K (1)

m

)1/d1 · · · ( det K (n)
m

)1/dn

]†

= pmσm. (12)

Note that the quantity in square brackets has a determinant of
magnitude one. Use now the homogeneity and SL-invariance
property of any convex roof SL-invariant measure (see
Lemma 1) and apply Einv to Eq. (12) to get∣∣ det

(
K (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K (n)

m

)∣∣2/dn
Einv(ρ) = pmEinv(σm).

(13)

The Kraus operators that have determinant zero produce states
with pmEinv(σm) = 0, see Lemma 1 of Ref. [10], and hence
(13) is generally valid for all Kraus operators. Now summing
(13) over m yields the desired equality. The upper bound of
1 follows again from Minkowski’s inequality for a sum of
positive semidefinite operators (see the proof of Lemma 2). �

Operationally Theorem 1 can be thought of in terms of a
separable measurement repeated multiple times, each time the
outcome m and the resulting state σm being recorded and at the
end the output entanglement being averaged over all outcomes.
Theorem 1 implies that the ratio between the average output
entanglement and the initial entanglement can be computed
explicitly as a function of the operator-sum representation of
the separable operation and has the following properties: (i) it

is independent of the input state and (ii) it is independent of
the entanglement measure, as long as the latter is SL invariant.

In Theorem 1 we considered only input states with
nonvanishing entanglement, since whenever Einv(ρ) = 0 the
average output entanglement must also be zero, hence such
nonentangled states ρ are not of interest.

The following Corollary then follows.
Corollary 1. The ERF is bounded by

Einv[�(ρ)]

Einv(ρ)
� F[�] �

∑
m pmEinv(σm)

Einv(ρ)
. (14)

Proof. The inequality F(�) � [
∑

m pmEinv(σm)]/Einv(ρ)
follows from the definition of the ERF as a minimum over all
Kraus decompositions, see (6), and the equality (13) proved
above.

Finally, the inequality Einv(�(ρ))/Einv(ρ) � F(�) can be
proved by noting that Einv(�(ρ))/Einv(ρ) is independent of the
Kraus representation of the channel. We can therefore choose
the Kraus representation that achieves the minimum in Eq. (6),
{K̃ (1)

m ⊗ K̃ (2)
m ⊗ · · · ⊗ K̃ (n)

m }m, which yields

F(�) =
∑
m

∣∣ det
(
K̃ (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K̃ (n)

m

)∣∣2/dn
. (15)

But∑
m

∣∣ det
(
K̃ (1)

m

)∣∣2/d1 · · · ∣∣ det
(
K̃ (n)

m

)∣∣2/dn =
∑

m pmEinv(σm)

Einv(ρ)
,

(16)

as we just showed. Now, we use the convexity of Einv

(we remind the reader that the measure Einv is defined on
mixed states via a convex roof extension [see part (iii) of
Definition 1], to get

Einv(�(ρ))
Einv(ρ)

�
∑

m pmEinv(σm)

Einv(ρ)
= F(�), (17)

and this concludes the proof. �
In particular, for one-sided operations, F(�) can be

computed explicitly [10] and, additionally, for one-sided
operations and pure state inputs, the first inequality of Eq.
(14) is actually an equality, Einv [�(|ψ〉〈ψ |)] /Einv(|ψ〉〈ψ |) =
F(�) [10]. However, in the most general case of multipartite
separable operations, this is no longer true. Consider, for ex-
ample, a bipartite separable operation � with an operator-sum
representation given by {√pI ⊗ I,

√
1 − pX ⊗ X}, where

0 < p < 1 and X = |0〉 〈1| + |1〉 〈0| is the usual bit-flip Pauli
operator. In this case it is not hard to see that there are no other
separable representations of � (any two Kraus representations
are related by a unitary matrix, and it follows at once that
a different representation of � will not be separable). The
ERF F[�] can then be computed explicitly, since there is no
minimization to be done, and equals 1. The maximally entan-
gled state |ψ〉 = (|00〉 + |11〉)/√2 is invariant under �, hence
Einv [�(|ψ〉〈ψ |)] /Einv(|ψ〉〈ψ |) = F[�] = 1 and the bound is
saturated. But, in general, an arbitrary bipartite state |φ〉 is not
invariant under � and has Einv [�(|φ〉〈φ|)] /Einv(|φ〉〈φ|) < 1,
as one can easily check using the closed-form expression for
the bipartite concurrence [15].
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Entanglement breaking. Interestingly, the capability of a
channel to destroy entanglement is another quantity that is also
independent of the initial state, as we will explain below. This
is closely related to the work of Ref. [21], in which the authors
define correlation measures (classical and quantum) based on
how much “noise” one has to “inject” by local operations
into an entangled quantum state to make it separable, in the
limit of many copies and asymptotically vanishing errors. We
now point out that such a measure cannot be defined in the
zero-error single copy case, since the quantity of interest
is state independent. The capability of a channel to destroy
entanglement is quantified as follows.

Definition 3. A CPTP map � : B(Hd ) −→ B(Hd ) is called
partial-r entanglement breaking [22] if

SN [(� ⊗ I )ρ] � r, ∀ρ ∈ B(Hd ⊗ Hd ). (18)

It generalizes the usual notion of entanglement breaking
channels [23], the latter having r = 1. Here SN(σ ) denotes
the Schmidt number [24] of the bipartite density operator σ ,
defined as

SN(ρ) := min
{pi ,|ψi 〉}

{
max

i
SR(|ψi〉)

}
, (19)

where the minimum is taken over all possible pure state
ensemble decompositions of ρ and SR(|ψi〉) denotes the
Schmidt rank on |ψi〉, i.e., the number of nonzero Schmidt
coefficients of |ψi〉. A state σ is separable if and only if
SN(σ ) = 1.

The following proposition was recently proved in Ref. [25]
(see Proposition 8).

Proposition 1. A CPTP map � : B(Hd ) −→ B(Hd ) is
partial-r entanglement breaking if and only if there exist a
full Schmidt rank pure state |ψ〉 ∈ Hd ⊗ Hd (i.e., having all
Schmidt coefficients strictly positive) for which

SN [(� ⊗ I )|ψ〉〈ψ |] = r. (20)

In other words, if a channel breaks entanglement for
one (maximal Schmidt number) state, then it must break
entanglement for all states; that is, its “disentangling power”
is an intrinsic property of the channel independent of the input
state, as long as the input has maximal Schmidt number (this
corresponds to the case of nonzero entanglement as quantified
by any SL-invariant measure). This means that one cannot
use the approach of Ref. [21] to quantify entanglement (or
correlations) as the total amount of local noise one has to
inject in a state to make it separable, since in a single copy
zero-error regime this quantity is state independent.

Conclusions and open questions. We studied the evolution
of mixed-state entanglement under local decoherence. Our

main result is summarized by Theorem 1, in which we proved
that multipartite mixed-state entanglement evolution under
separable operations is measure and state independent and
is solely a function of the channel. This significantly extends
the results in Refs. [7–9] applicable only for the restricted
case of bipartite separable operations, and also generalize the
previous work of Ref. [10], where only one-sided operations
of the form �(1) ⊗ I ⊗ · · · ⊗ I were considered. We derived a
closed-form expression for the average entanglement evolution
under the most general class of separable channels, and our
results are automatically valid for LOCC since the latter is a
proper subset of the former.

An interesting fact is that our equality in Theorem 1 depends
on the Kraus representation of the separable operation. Given
such a separable operation, is there more than one separable
representation of it (aside from a permutation of the Kraus
operators)? A complete solution to this problem will allow an
explicit evaluation of the ERF F(�) and provide a nontrivial
upper bound on the entanglement evolution of arbitrary
mixed states, Corollary 1. We observed numerically using
nonlinear optimization methods that there are many cases
of separable operations that do not admit more than one
nontrivial Kraus representation, but this is far from a rigorous
proof.

Our results are valid for SL-invariant entanglement mea-
sures based on convex roof extension and are not applicable
in general to arbitrary entanglement measures. However, it
follows at once that the convex roof extension is an upper
bound on any other convex measure that coincides with the
former on pure states, i.e., both give the same result on a pure
state. In this case Theorem 1 provides a useful upper bound
on the average entanglement evolution, i.e., the equality in
Eq. (10) becomes an inequality.

We discussed the disentangling power of a quantum channel
and pointed out that it exhibits a similar state invariance as
our average entanglement ratio in Theorem 1. This forbids a
straightforward extension of Ref. [21] to the single copy zero-
error regime. An interesting generalization will be to define
a disentangling power of a separable operation, instead on a
single-sided channel, and characterize the class of partial-r
entanglement breaking such operations. This approach may
prove useful in extending [21] to the single copy zero-error
regime, since one does not expect the disentangling power to
be state invariant anymore.
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