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The Bethe logarithm is calculated for the lowest rotational-vibrational states of H2
+ and HD+ hydrogen

molecular ions in a wide range of vibrational (v = 0–4) and total orbital momentum (L = 0–4) quantum numbers.
Numerical results with eight to nine significant digits are obtained for all the states within this range. This allows us
to reduce an error in the leading-order radiative contribution, which results eventually in the relative uncertainty of
rovibrational frequency intervals at a level lower than 10−11. This high precision is important for the rovibrational
spectroscopy experiments of hydrogen molecular ions aiming to determine the electron-to-proton mass ratio.
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I. INTRODUCTION

Several laser spectroscopy experiments [1–3] have been
carried out recently to get high-precision measurements of
vibrational spectra of the hydrogen molecular ions H2

+ and
HD+. Aiming at sub-ppb precision, these measurements are
supposed to be used [4,5] to improve a value of the electron-
to-proton mass ratio by comparing with theoretical data. The
importance of the mp/me problem is supported by recent
experiments [6] with rubidium atoms, which allow to deduce
a new value of the fine-structure constant, α = e2/(h̄c), with a
relative uncertainty 6.6 × 10−10. Further improvement may be
hindered by the present limits on the proton-to-electron mass
ratio, which is known with a relative uncertainty 5.2 × 10−10

[7,8].
Nonrelativistic energies are obtained with numerical pre-

cision of 10−15 [5,9] for a wide range of vibrational states
and up to 10−30 [10–14] for some particular low vibrational
states of H2

+ and HD+. To calculate the observable transition
frequency interval, one needs as well to include quantum
electrodynamics (QED) corrections. For light systems, the
most natural way is to use the nonrelativistic QED (NRQED)
[15,16], where a bound state energy is expanded in powers
of the fine-structure constant α. The leading-order relativistic
corrections (R∞α2) are now available with very high precision
[17,18]. The next term is the one-loop radiative corrections that
contribute to the order R∞α3 [17,19,20]. The main difficulty
at this order is to calculate the Bethe logarithm, and this has
remained the major source of numerical uncertainty for the
fundamental vibrational transitions [(L = 0,v = 0) → (L′ =
0,v′ = 1)] in H2

+ and HD+ ions of about 20 kHz. For
higher-order corrections, recoil effects become negligible, and
the contribution of the R∞α4 order can already be calculated
in a nonrecoil limit [21] with sufficient accuracy.

The major aim of this work is to recalculate improved values
of the Bethe logarithm for a wide range (v = 0–4, L = 0–4)
of rovibrational states in H2

+ and HD+ hydrogen molecular
ions using a recently developed method [22] based on direct
integration over the virtual photon energy. The latter method
evolved from the Schwartz approach [23], which was the best
calculation of the Bethe logarithm for the ground state of a

helium atom for over 30 years. Atomic units (h̄ = e = me = 1)
are used throughout the paper.

We use the notation conventional for molecular-type three-
body systems. Thus, the space configuration of a molecular
ion is described by the following coordinates: ri = re − Ri

(i = 1,2) and R = R2 − R1, where Ri denotes the position
vectors of nuclei. Correspondingly, the charges are Ze = −1,
Z1 = Z2 = 1 and the masses are me, Mi .

II. THEORY

The complete spin-independent effective Hamiltonian of
order R∞α3 and R∞α3(me/M) for a one-electron molecular
system may be expressed as follows [24,25]:

δ(3)E = α3
∑

i

[
4Zi

3

(
− ln α2 − β(v,L) + 19

30

)
〈δ(ri)〉

+ 2Z2
i

3Mi

(
− ln α − 4β(v,L) + 31

3

)
〈δ(ri)〉

− 14Z2
i

3Mi

Q(ri)

]
, (1)

where

β(v,L) = N (v,L)

D(v,L)
= 〈J(H0 − E0) ln[(H0 − E0)/R∞]J〉

〈[J,[H0,J]]/2〉
(2)

is the Bethe logarithm. Here, H0 is the three-body nonrelativis-
tic Hamiltonian and E0 is an energy of a state with quantum
numbers v and L, vibrational and total orbital momentum, re-
spectively. The state is a solution of the stationary Schrödinger
equation,

(H0 − E0)ψ0 = 0.

The operators, which appear in Eqs. (1) and (2), are J =
−Zepe + ∑2

i=1 ZiPi/Mi , which is the electric current density
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TABLE I. Asymptotic coefficient C3, Eq. (11), for H2
+ of rovibrational states (v = 0–4, L = 0–4). N = 4000.

v = 0 v = 1 v = 2 v = 3 v = 4

L = 0 2.24754287 2.24333059 2.23916276 2.23501032 2.23086435
L = 1 2.24752822 2.24331484 2.23914249 2.23499095 2.23084327
L = 2 2.24749705 2.24328179 2.23910696 2.23494986 2.23080007
L = 3 2.24744640 2.24322774 2.23904902 2.23488251 2.23072687
L = 4 2.24737144 2.24314762 2.23896023 2.23478453 2.23061456

operator of the system, and Q(r) is the Q term introduced by
Araki and Sucher [26],

Q(r) = lim
ρ→0

〈
�(r − ρ)

4πr3
+ (ln ρ + γE)δ(r)

〉
. (3)

The denominator in Eq. (2) can be expanded as follows:

D(v,L) = 2π

2∑
i=1

Zi

(
1

me

+ Zi

Mi

)2

〈δ(ri)〉. (4)

Here we neglect the small term proportional to 〈δ(R)〉, because
the latter is of order 10−15 or even less. It is convenient to
express the numerator in the form of integration over photon
energy [19,22]:

N (v,L) =
∫ Eh

0
k dk

〈
J
(

1

E0 − H0 − k
+ 1

k

)
J
〉

+
∫ ∞

Eh

dk

k

〈
J

(E0 − H0)2

E0 − H0 − k
J
〉
, (5)

where Eh is the Hartree energy. Thus, β(v,L) may be easily
obtained if precise approximation of the following functions
is available:

J (k) = 〈J(E0 − H0 − k)−1J〉
= −1

k
〈J2〉 + 1

k2

〈[J,[H0,J]]〉
2

+ 1

k2
w(k), (6)

w(k) =
〈
J

(E0 − H0)2

E0 − H0 − k
J
〉
.

A. Low-energy contribution

For the low-energy part, k ∈ [0,Kmax], we solve the
equation

(E0 − H0 − k)ψ1 = iJψ0 (7)

using variational expansion for ψ1 [22]. In earlier calculations,
we solved this equation on a sequence of energy intervals

[ki,ki+1] to comply with the requirement that ψ1 should
contain terms which behave as e−√

2k ri . If one collects basis
sets made up for these intervals into one set of intermediate
states, one may expect that the final result would not be less
accurate than in a previous approach [19]. On the other hand,
the Hamiltonian can be diagonalized to get energies En and
dipole matrix elements 〈ψ0|iJ|ψ (n)

1 〉 for states and pseudostates
of the Hamiltonian spanned over the subspace of the variational
basis set. Then, using obtained data, the function J (k) is
expressed as

J (k) = −
∑

n

∣
∣〈ψ0|iJ

∣∣ψ (n)
1

〉∣
∣

2

E0−Em−k
, (8)

and integration of (8) can be performed analytically:

∫ Kmax

0
kd kJ (k)

=
∑

n

∣
∣〈ψ0|iJ

∣∣ψ (n)
1

〉∣
∣

2

×
[
Kmax − (E0−En) ln

∣∣∣∣ E0 − En

E0 − En−Kmax

∣∣∣∣
]

. (9)

Here Kmax is some intermediate energy (Kmax ∼ 103–105),
which is taken to optimize the precision of the calculation.
The larger Kmax is, the larger the basis set has to be for
the intermediate states to provide the necessary precision
for J (k) within the range of k ∈ [0,Kmax]. That in turn
improves extrapolation of an asymptotic expansion (see the
next subsection). On the other hand, convergence of numerical
J (k) to its exact value becomes worse with an increase of k,
which forces the choice of Kmax to be as low as possible for a
given precision.

TABLE II. Asymptotic coefficient C3, Eq. (11), for HD+ of rovibrational states (v = 0–4, L = 0–4). N = 4000.

v = 0 v = 1 v = 2 v = 3 v = 4

L = 0 2.24841853 2.24476334 2.24114194 2.23754139 2.23395070
L = 1 2.24840722 2.24475167 2.24112987 2.23752807 2.23393654
L = 2 2.24838417 2.24472700 2.24110278 2.23749760 2.23390349
L = 3 2.24834681 2.24468755 2.24106022 2.23745069 2.23385023
L = 4 2.24829292 2.24463111 2.24099934 2.23738344 2.23377521
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TABLE III. Test of convergence of the Bethe logarithm quantity for the H2
+ (v = 4,L = 0) state. Na is the basis length for the initial state;

Nb is the basis length for the intermediate state.

Na

Nb 3000 4000 5000 ∞
7000 3.0123774610 3.0123774692 3.0123773656
8000 3.0123777946 3.0123777400 3.0123777225
9000 3.0123778020 3.0123777707 3.0123777551
∞ 3.01237775(6)

B. High-energy contribution

For k ∈ [Kmax,∞], an asymptotic expansion for w(k) is used:

w(k) = −
2∑

i=1

(
1

me

+ Zi

Mi

)2 1

k

[
Z2

i

√
2μik − Z3

i μi ln k
]
4π〈δ(ri)〉

+ 2π

[
2∑

i=1

Zi〈δ(ri)〉
] {

−C3

k
+

∞∑
m=1

1

km+1
[C1m

√
k + C2m ln(k) + C3m]

}
, (10)

where μi = meMi/(me+Mi) are the reduced masses. In Eq. (10), the coefficient C3 may be calculated explicitly from the initial
state solution:

C3 × 2π

[
2∑

i=1

Zi〈δ(ri)〉
]

= 2Z1Z2

(
1

me

+ Z1

M1

) (
1

me

+ Z2

M2

) 〈
r1r2

r2
1 r2

2

〉

+
2∑

i=1

Z2
i

(
1

me

+ Zi

Mi

)2

{4πRi + Ziμi(−ln μi +ln 2+1)4π〈δ(ri)〉}, (11)

where

R = lim
ρ→0

{ 〈
1

4πr4

〉
ρ

−
[

1

ρ
〈δ(r)〉 + (ln ρ+γE) 〈δ′(r)〉

] }
,

(12)
〈φ1|δ′(r)|φ2〉 = 〈φ1|r

r
∇δ(r)|φ2〉 = − 〈∂rφ1|δ(r)|φ2〉 − 〈φ1|δ(r)|∂rφ2〉 .

Subtracting the known terms of the asymptotic expansion
from the numerically obtained w(k) [Eqs. (6) and (8)], one
may approximate the remaining part by

ffit(k) ≈
M∑

m=1

C1m

√
k + C2m ln k + C3m

km+3
. (13)

The coefficients C1m, C2m, and C3m are evaluated by using a
least-squares approximation of ffit(k) at a set of points ki ∈

[kmin,kmax] for kmin ∼ 10 and kmax ∼ 103–104. Then w(k) is
integrated analytically on [Kmax,∞]. In actual calculations, we
use the best fit of ffit(k) with a number of terms n = 10–16.

III. CALCULATION AND RESULTS

For vibrational calculations in H2
+ and HD+, the wave

functions both for the initial bound states and for the

TABLE IV. The Bethe logarithm for the lowest rotational, L, and vibrational, v, states of the hydrogen molecular ion H2
+.

v = 0 v = 1 v = 2 v = 3 v = 4
L = 0 3.012230335(1) 3.012547548(3) 3.01267873(2) 3.01262269(4) 3.01237775(6)
L = 1 3.01220132(1) 3.01251393(2) 3.01264054(3) 3.01258051(4) 3.0123316(1)
L = 2 3.01214395(1) 3.01244742(2) 3.01256542(3) 3.01249674(4) 3.0122395(1)
L = 3 3.01205949(2) 3.01234936(3) 3.01245429(4) 3.01237302(5) 3.0121036(1)
L = 4 3.01194983(3) 3.01222182(3) 3.01230955(5) 3.01221169(6) 3.0119263(2)
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TABLE V. The Bethe logarithm for the lowest rotational, L, and vibrational, v, states of the hydrogen molecular ion HD+.

v = 0 v = 1 v = 2 v = 3 v = 4
L = 0 3.01233626(2) 3.01263268(3) 3.01278948(4) 3.01280622(6) 3.0126822(1)
L = 1 3.01231470(2) 3.01260814(3) 3.01276198(5) 3.0127760(1) 3.0126490(1)
L = 2 3.01227206(2) 3.01255942(3) 3.01270766(5) 3.0127160(1) 3.0125836(2)
L = 3 3.01220877(3) 3.01248727(4) 3.01262691(6) 3.0126269(1) 3.0124865(2)
L = 4 3.01212616(4) 3.01239292(4) 3.0125211(1) 3.0125102(1) 3.0123593(2)

intermediate state are taken in the form

�L(l1,l2) =
∞∑
i=1

{Ui Re[e−αiR−βir1−γi r2 ]

+Wi Im[e−αiR−βir1−γi r2 ]}Y l1,l2
LM (R̂,r̂1), (14)

where Y l1,l2
LM (R̂,r̂1) are the solid bipolar harmonics as defined

in Ref. [27], and L is the total orbital angular momentum of
a state. Complex parameters αi , βi , and γi are generated in a
quasirandom manner [10]:

αi =
[⌊

1

2
i(i + 1)

√
pα

⌋
(A2 − A1) + A1

]

+ i

[⌊
1

2
i(i + 1)

√
qα

⌋
(A′

2 − A′
1) + A′

1

]
, (15)

where �x� designates the fractional part of x, pα and qα

are some prime numbers, and [A1,A2] and [A′
1,A

′
2] are real

variational intervals which need to be optimized. Parameters
βi and γi are obtained in a similar way.

For an initial state with nonzero L, its intermediate states
span over L′ = L,L ± 1 with the spatial parity π = −(−1)L.
A basis set of intermediate states is composed of a regular
part and two extra short-distance trial functions (for ri → 0,
i = 1,2) with exponentially growing parameters (see details
in Ref. [22]). To maintain the required numerical stability,
quadruple and sextuple precision arithmetics have been used.

The numerically obtained values of C3 for particular
rovibrational states are presented in Table I for the H2

+
molecular ion and Table II for the HD+ molecular ion,
respectively. The data have been obtained from the variational
bound state wave functions, Eq. (14), with the basis size
N = 4000. A relative accuracy of about 10−7–10−8 is reached,
which corresponds approximately to the precision of the
δ-function operator expectation values.

Convergence of the numerical value for the nonrelativistic
Bethe logarithm, β(4,0), for the rovibrational state with total
angular momentum L = 0 and vibrational quantum number
v = 4 is studied in Table III. As is seen, it is essential to analyze
convergence in two ways: as a function of an increasing basis
set (Na) of the initial state and as a function of the basis
size of an intermediate state (Nb). It is worth noting that
the lower the vibrational state is, the better precision may
be achieved. From this table, one may conclude that for the vi-
brational state, v = 4, an accuracy of eight significant digits is
reached.

Tables IV and V present numerical results of the Bethe
logarithm calculations for the H2

+ and HD+ rovibrational
states; the numerical uncertainty is indicated in parentheses.
The discrepancies of our results with previously published
data [19,20] has already been discussed in Ref. [22] and is due
to inclusion of reduced masses, μi , in the improved asymptotic
expansion [see Eq. (10)].

Using Eq. (1), improved radiative corrections of the R∞α3

order for H2
+ and HD+ fundamental transitions (0,0) → (1,0)

may be obtained,


v(H2
+) = −276.545 049(4)MHz,


v(HD+) = −242.126 26(4)MHz.

For these estimates, we have used numerical data for mean
values of operators, 〈δ(ri)〉 and Q(ri), obtained with 11 and
8 significant digits, respectively. To do this, the Schrödinger
wave functions for the states of interest were calculated with
a basis size of N = 5000. The error bar due to numerical
evaluation of these operators is below 1 Hz. Uncertainty, which
is introduced by the Bethe logarithm calculations, is about
4 Hz for the H2

+ molecular ion, while for HD+ it is slightly
higher, ∼40 Hz. For other transitions, either pure rotational
or vibrational overtones, the final fractional uncertainty in
theoretical frequency, which stems from the R∞α3 order
contribution, does not exceed 10−11.

In conclusion, a systematic study of the Bethe logarithm
for a wide range of ro-vibrational states in the hydrogen
molecular ions H2

+ and HD+ has been carried out, and
numerical accuracy of eight to nine significant digits has been
achieved. This allowed us to reduce the numerical errors in
the theoretical contribution of order R∞α3 and to comply with
precision requirements necessary for a determination of the
electron-to-proton mass ratio me/mp.
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