
PHYSICAL REVIEW A 86, 044303 (2012)

Performance scaling of Shor’s algorithm with a banded quantum Fourier transform

Y. S. Nam* and R. Blümel
Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA

(Received 1 August 2012; published 23 October 2012)

In excellent agreement with our numerical simulations of Shor’s algorithm, equipped with a truncated quantum
Fourier transform of bandwidth b, we find that its performance scales ∼2−ξbn, where n is the number of qubits,
ξb = 1.1 × 2−2b, and the bandwidth b is the number of quantum states coupled by the quantum Fourier transform.
Nonexponential behavior is observed for small n and explained analytically. The large-n exponential scaling
implies that b = 7 is sufficient to operate a 1000-qubit quantum computer running Shor’s algorithm on the 95%
performance level and implies hardware savings of the order of half a million rotation gates.

DOI: 10.1103/PhysRevA.86.044303 PACS number(s): 03.67.Lx

Together with Grover’s database search algorithm [1,2],
Shor’s algorithm [3] is one of the most powerful quantum
algorithms. Implemented on a quantum computer, Shor’s
algorithm is capable of cracking RSA encryption codes [4]
that currently form the backbone of internet security [5,6]. No
wonder, then, that Shor’s algorithm has been presented and
investigated in detail in the literature (see, e.g., [7–10]). So far,
RSA is safe from attacks via Shor’s algorithm, since quantum
computers do not yet exist that could run Shor’s algorithm
for the large semiprimes N currently used in RSA encryption
algorithms [4–6,8,9,11]. However, the more we simplify its
hardware requirements, the sooner Shor’s algorithm will
come online in a regime relevant for Internet security. In
this context, Coppersmith [10] was the first to notice that
substantial hardware savings may be realized by eliminating,
with negligible performance penalty, most of the quantum
gates of the quantum Fourier transform [8,9], the centerpiece
of Shor’s algorithm. According to Coppersmith, this leaves an
approximate quantum Fourier transform [10,12] that performs
well when used in connection with Shor’s algorithm. Written
in matrix form, this Fourier transform has a banded appearance
of bandwidth b, coupling only the b nearest neighbors of any
given quantum state. Therefore, this type of Fourier transform
is called a banded quantum Fourier transform. Testing the per-
formance of the banded quantum Fourier transform in numer-
ical experiments with semiprimes of up to 20 binary digits, we
confirm that a banded quantum Fourier transform indeed leads
to substantial hardware savings without seriously compromis-
ing the effectiveness of Shor’s algorithm. In addition, improv-
ing on previous results [9,10,12], we present analytical scaling
functions that measure the performance of Shor’s algorithm as
a function of the bandwidth and the number of qubits. Our ana-
lytical scaling functions agree well with our numerical results.

Shor’s algorithm is based on Miller’s algorithm [8,9,11] for
factoring semiprime numbers N = pq, where p �= q are two
prime numbers. Given a number x < N , relatively prime to N ,
the smallest power ω of x is determined such that xωmod N =
1. x is called the seed and ω is called the order of x. Now,
define A = xω/2 − 1 and B = xω/2 + 1. Then, if (i) ω is even
and (ii) B �= 0 mod N , the two prime factors of N are revealed
as (up to ordering) p = gcd(A,N) and q = gcd(B,N), where

*ynam@wesleyan.edu

gcd denotes the greatest common divisor. If condition i or ii
is violated, we simply try another x. It is known [8,9] that
finding a proper seed x has a high probability of success and
very few x need to be tried before a suitable seed is found. Since
determining ω on a classical computer is an algorithmically
hard problem, it is impossible (with currently known classical
factoring algorithms) to factor large semiprimes N on a
classical computer if the number of decimal digits of N

exceeds, say, 1000. To do so in a reasonable time (say, about
a month) would require a classical computer exceeding the
current size of the universe. This is where Shor’s quantum
algorithm comes in. Shor noticed [3] that determining ω on a
quantum computer is exponentially faster than performing the
same task on a classical computer, thus opening the possibility
of factoring large N within reasonable run times.

The centerpiece of Shor’s algorithm is a quantum Fourier
transform,

|l〉 = 1√
2n

2n−1∑
s=0

exp(2πisl/2n)|s〉, (1)

where n is the number of qubits. A circuit diagram of (1),
which also incorporates a measurement of the output state
|l〉, is shown in Fig. 1(a). On a quantum computer, as shown
in Fig. 1, the phases in (1) are realized by conditional phase
rotation gates, which rotate the phase of the target qubit k by
an angle

θ|k−j | = π

2|k−j | (2)

if the control qubit j is measured to be in state |1〉. We
notice immediately that for large n, ∼1000, as required for
factoring semiprimes N of practical interest, a complete
implementation of quantum Fourier transform (1) would
require the quantum hardware to distinguish phase differences
of the order of 1/21000 ≈ 10−300, an impossible task under
any circumstances. Not even fault-tolerant encoding [8,9]
would solve this problem, since hardware, present or future,
capable of distinguishing such small phase differences does
not exist and cannot be built in our universe. This begs the
question: What happens if we ignore gates that cannot be
implemented? Eliminating unrealizable gates leads to a banded
quantum Fourier transform [see, e.g., Fig. 1(b)] in which
only the coupling to b nearest-neighbor qubits is retained
[Fig. 1(b) illustrates the case b = 1]. Coppersmith [10] found

044303-11050-2947/2012/86(4)/044303(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.044303

BRIEF REPORTS PHYSICAL REVIEW A 86, 044303 (2012)

(a)

(b)

H

H

H

H

H

H

H

H

H

H

M

M

M

M

M

M

M

M

M

M

θ1

θ1

θ1

θ1

θ1

θ1

θ1

θ1

θ2

θ2

θ2

θ3

θ3θ4

|s[4]>

|s[3]>

|s[2]>

|s[1]>

|s[0]>

|s[4]>

|s[3]>

|s[2]>

|s[1]>

|s[0]>

|l[0]>

|l[1]>

|l[2]>

|l[3]>

|l[4]>

|l[0]>

|l[1]>

|l[2]>

|l[3]>

|l[4]>

FIG. 1. Logic circuit of a five-qubit quantum Fourier transform,
illustrating the concept of bandwidth, defined as the number b

of off-diagonal quantum states coupled by the quantum Fourier
transform. (a) Full implementation (bandwidth b = 4); (b) truncated
implementation (bandwidth b = 1). H, θ , and M denote Hadamard,
single-qubit conditional rotation, and measurement gates, respec-
tively.

that truncation to a quantum Fourier transform of bandwidth
b misses at most the phase

�ϕ = 2πn2−b−1, (3)

where n is the number of qubits. Coppersmith’s estimate is
rigorous but pertains only to the total “missing phase” of the
quantum Fourier transform, which Coppersmith then qualita-
tively relates to the performance of Shor’s algorithm [10]. An
improvement of (3) was obtained by Fowler and Hollenberg
[12], who directly investigated the performance of Shor’s
algorithm when equipped with a banded quantum Fourier
transform. For the probability of a successful factorization,
Fowler and Hollenberg obtained [12]

P (FH) ∼ 2−(n/2)/4b−1 = 2−ξ
(FH)
b n, (4)

where

ξ
(FH)
b = 2 × 2−2b. (5)

Since they pertain to different quantities, (3) and (4) cannot be
compared directly. However, Fowler and Hollenberg’s result
(4) confirms Coppersmith’s suggestion of a rapid (exponential)
convergence of Shor’s algorithm in b. While Fowler and
Hollenberg used a stochastic model to arrive at their scaling
result, (4), we use direct factorization of actual semiprimes
N . This allows us to test the scaling relation (4) and derive
an improved scaling relation for the performance of Shor’s
algorithm with a banded quantum Fourier transform.

Shor’s algorithm determines the order ω of a seed x for
a given semiprime N as the period of the function f (t) =
xtmod N , t integer, via a quantum Fourier transform that
produces an output state |ψout〉, consisting of a superposition
of all n-qubit binary states |l〉. A measurement of |ψout〉, then,
has a high probability of collapsing into a state |lj 〉, where

lj = 2n

ω
j + βj , j = 0, . . . ,ω − 1, (6)

and −1/2 < βj < 1/2 guarantees that lj is an integer. If ω

is a power of 2, all βj are 0 and Shor’s algorithm performs
perfectly, no matter what the bandwidth. Since for large N the
probability of encountering this case is practically 0, we do not
consider this special case any further. In the general case (the
most probable case), where ω is not a power of 2, we write

ω = 2αr, (7)

where r and α are integers and r is odd. In this case most of
the βj are nonzero.

The probability of collapse into one of states (6) is

P̃ (n,b) = 1

ωK2

ω−1∑
j=0

∣∣∣∣∣
K−1∑
k=0

exp{i[�(n,sk,lj) − ϕ(n,b,sk,lj)]}
∣∣∣∣∣
2

,

(8)

where

sk = s0 + kω, k = 0, . . . ,K − 1, (9)

and s0, 0 � s0 � ω − 1. We found that our results are
insensitive to the choice of s0. We used s0 = 0 (s0 = n − 1) in
our analytical (numerical) calculations. Denoting by a[ν] the
νth binary digit of an integer a,

�(n,s,l) = π

n−1∑
m=0

m∑
μ=0

s[n−m−1]l[μ]

2m−μ
, (10)

in (8) is the total phase angle experienced by a state |s〉 mapped
into a state |l〉 by a full, n-qubit quantum Fourier transform
(b = n − 1), and

ϕ(n,b,s,l) = π

n−1∑
m=b+1

m−b−1∑
μ=0

s[n−m−1]l[μ]

2m−μ
(11)

is the “missing phase” due to the restriction of the bandwidth
of the quantum Fourier transform to b off-diagonal couplings
[see Fig. 1(b)]. The exact maximum value of ϕ, consistent with
Coppersmith’s bound (3), is

ϕmax(n,b) = 2π [2−b−1(n − b) + 2−n − 2−b]. (12)

We evaluate P̃ (n,b) according to the following procedure.
Given n and b, we look for semiprimes N = pq such that

n = �2 log2(N) + 1�, (13)

where �z� is the floor function, i.e., the largest integer smaller
than z. Then we randomly choose a seed x of order ω and
compute P̃ (n,b) according to (8). Since the lj values, (6),
capture most (about 77%) but not all of the useful output
of Shor’s algorithm [a measurement of |ψout〉 may collapse
into an |l〉 state not contained in (6) but equally useful for
factoring], we normalize P̃ (n,b) to its maximal-bandwith case
P̃ (n,b = n − 1) to obtain the normalized probability,

P (n,b) = P̃ (n,b)/P̃ (n,b = n − 1). (14)

We choose P (n,b) in (14) as a quantitative measure for the
performance of Shor’s algorithm as a function of n and b.

Figure 2 shows P (n,b) as a function of n for four values of
b, obtained by factoring up to 12 sample semiprimes for each
n = 9, . . . ,39. Already for b = 4, i.e., without implementing
most of the rotation gates required by a full Fourier transform,

044303-2

BRIEF REPORTS PHYSICAL REVIEW A 86, 044303 (2012)

 0.01

 0.1

1

5 10 15 20 25 30 35 40

n

P

b=1

b=2

b=3

b=4

FIG. 2. Probability for successful factorization of sample semi-
primes N of binary length log2(N) ∼ n/2 [for details see (13)]
using Shor’s algorithm, supplied with a quantum Fourier transform
of bandwidth b. Shown are the data for up to 12 randomly
selected semiprimes N per n, factored with b = 1 (triangles), b = 2
(asterisks), b = 3 (diamonds), and b = 4 (squares). Solid lines are
the scaling functions, (23), with decay constants, (24).

we observe excellent factoring performance in the 90% region
over the entire range of n < 40. This observation has an
immediate and important consequence for the construction
of quantum computers: substantial hardware savings without
significant sacrifice in performance. For fixed b and large n, as
predicted by (4), we observe exponential decay of P (n,b) as a
function of n. However, as extracted from Fig. 2 and discussed
further below, our decay constants ξb are somewhat smaller
than predicted by (5), resulting in an even better performance
of Shor’s algorithm “in practice” than suggested by (5), based
on a probabilistic model.

For small n, not noticeable on the scale of Fig. 2, P (n,b)
is not exponential. To analyze the small-n behavior, we start
from (8) and note that for βj = 0 the corresponding term in
(8) contributes an amount 1/ω to P̃ (n,b). Since βj = 0 occurs
whenever j/r is an integer, there are ω/r such cases, which
contribute a total amount 1/r to P̃ (n,b). Turning now to the j

terms with βj �= 0, we found that �(n,sk,lj) varies slowly with
k, while ϕ(n,b,sk,lj) is an erratic function of k. Therefore, we
write j terms with βj �= 0 in (8) approximately as

P̃j (n,b) ≈ 1

ωK2

∣∣∣∣∣
K−1∑
k=0

exp[i�(n,sk,lj)]〈exp(−iϕ)〉
∣∣∣∣∣
2

, (15)

where 〈 〉 indicates a statistical average over the probability
distribution of ϕ. Numerically we found that, apart from
isolated spikes, the distribution of ϕ is Gaussian in ϕ/ϕmax

with a variance of about 1/200. Therefore, approximately,

〈exp[−iϕ(n,b)]〉 ≈ exp
[−ϕ2

max(n,b)/200
]
. (16)

The k sum in (15) can be evaluated analytically:

K−1∑
k=0

exp[i�(n,sk,lj)] = sin(πβj)

sin(πβj/K)
. (17)

Since there are (ω − ω/r) terms with βj �= 0, we obtain

P̃ (n,b) ≈ 1

r
+

(
1 − 1

r

)
g exp

[−ϕ2
max(n,b)/100

]
, (18)

where

g = 1

ω − ω/r

∑
βj �=0

sin2(πβj)

(πβj)2
. (19)

Defining

f̄ =
∫ 1/2

−1/2

sin2(πβ)

(πβ)2
dβ ≈ 0.774, (20)

g can be expressed approximately as

g ≈ f̄ − 1/r

1 − 1/r
, (21)

and P (n,b), valid for small n, as

P (n,b) ≈ P̃ (n,b)/f̄ . (22)

This fully analytical expression for (14) is shown as the
solid lines in Fig. 3. We plot 1 − P (n,b) to increase our
sensitivity in the small-n region. The analytical result captures
the small-n behavior very well. Also shown are the crossover
points (arrows) that mark the transition from the small-n,
nonexponential regime to the large-n, exponential regime
(dashed lines). The transition points move toward larger n for
larger b so that the region of nonexponential behavior increases
for increasing b.

Returning to Fig. 2, we note that the slope of P (n,b) is a
sensitive function of b. Indeed, (4) predicts exponential scaling
of the slope in b. To test this prediction, we write P (n,b) in

 0.0001

 0.00001

 0.001

 0.01

 10 15 20 25 30n

1 – P
b=6

b=7

b=8

FIG. 3. Small-n behavior of semiprimes N for b = 6 (squares),
b = 7 (crosses), and b = 8 (circles). Solid lines are the analytical
performance functions P (n,b) in (22), with f → f̄ according to (20).
Dashed lines are their large-n, exponential behavior. Crossover points
between the small-n, nonexponential and the large-n, exponential
behavior are marked by arrows.

044303-3

BRIEF REPORTS PHYSICAL REVIEW A 86, 044303 (2012)

the form

P (n,b) ≈ 2−ξb(n−nb), (23)

where ξb and nb are constants. We graphically extracted the
decay constants ξb from Fig. 2 and found

ξb = 1.1 × 2−2b (24)

and nb ≈ 8. The quality of the scaling function, (23), is
illustrated by the solid lines in Fig. 2, which are plotted using
(23) with (24). Comparing (24) with (5), we find the same
exponential dependence on b. Our prefactor of 1.1, however, is
smaller than the pre-factor predicted by (5), which, according
to our results, implies a more optimistic performance scaling
than predicted by (5).

As an additional test of performance scaling we plot

η(n,b) = − log2[P (n,b)]/ξb (25)

versus n for all the data points in Fig. 2, where ξb is defined
in (24). The result is shown in Fig. 4. The data points in Fig. 4
cluster around the straight line y = n − 8 (solid line in Fig. 4)
as expected if the scaling in (23) were exact. The near-collapse
of the data points in Fig. 4 confirms the approximate perfor-
mance scaling of Shor’s algorithm with a banded quantum
Fourier transform, as suggested in (23) and (24).

0

5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20 25 30 35 40
n

η

FIG. 4. Data points in Fig. 2 scaled according to (25). The scaled
data cluster around y = n − 8 (solid line).

Extrapolating our results to n = 1000 qubits, P (n,b)
reaches a performance level of 95% with a bandwidth of
only seven qubits. Thus, without a substantial reduction of
performance, of the order of half a million rotation gates can
be saved when implementing a 1000-qubit quantum computer
running Shor’s algorithm.

[1] L. K. Grover, in Proceedings, 28th Annual ACM Symposium on
the Theory of Computing (STOC), Philadelphia (ACM Press,
New York, 1996), pp. 212–219.

[2] L. K. Grover, Am. J. Phys. 69, 769 (2001).
[3] P. W. Shor, in Proceedings of the 35th Annual Symposium on

the Foundations of Computer Science, edited by S. Goldwasser
(IEEE Press, Los Alamitos, CA, 1994), pp. 124–134.

[4] R. Rivest, A. Shamir, and L. Adleman, Comm. ACM 21, 120
(1978).

[5] D. Boneh, Notices Am. Math. Soc. 46, 203 (1999).
[6] S. Robinson, SIAM News 36(5) (2003).

[7] A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).
[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[9] N. D. Mermin, Quantum Computer Science (Cambridge Uni-
versity Press, Cambridge, 2007).

[10] D. Coppersmith, arXiv:quant-ph/0201067.
[11] R. Blümel, Foundations of Quantum Mechanics—From Photons

to Quantum Computers (Jones and Bartlett, Sudbury, 2010).
[12] A. G. Fowler and L. C. L. Hollenberg, Phys. Rev. A 70, 032329

(2004).

044303-4

http://dx.doi.org/10.1119/1.1359518
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1103/RevModPhys.68.733
http://arXiv.org/abs/quant-ph/0201067
http://dx.doi.org/10.1103/PhysRevA.70.032329
http://dx.doi.org/10.1103/PhysRevA.70.032329

