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Holevo’s bound from a general quantum fluctuation theorem
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We give a derivation of Holevo’s bound using an important result from nonequilibrium statistical physics, the
fluctuation theorem. To do so we develop a general formalism of quantum fluctuation theorems for two-time
measurements, which explicitly accounts for the back action of quantum measurements as well as possibly
nonunitary time evolution. For a specific choice of observables this fluctuation theorem yields a measurement-
dependent correction to the Holevo bound, leading to a tighter inequality. We conclude by analyzing equality
conditions for the improved bound.

DOI: 10.1103/PhysRevA.86.044302 PACS number(s): 03.67.Hk, 05.30.−d, 05.40.−a, 89.70.Kn

Thermodynamics and information theory are intimately
connected. The most prominent evidence for this relationship
is that the Clausius entropy [1] is given by the Shannon infor-
mation [2] in systems at thermal equilibrium [3]. In particular,
Landauer’s principle [4,5] illustrates that information is a
physical, measurable quantity. Thermodynamic work has to be
performed in order to create or erase information. Landauer’s
principle can therefore be understood as a statement of the
second law of thermodynamics in an information theoretic
context. This is also true for Holevo’s bound [6], which
limits the amount of classical information that can be encoded
in a generic quantum system. Recently, nanodevices, for
which these principles are directly applicable, have become
experimentally accessible [7]. These controlled quantum
systems have applications ranging from quantum simulation
[8,9], cryptography [10], and computing [11–13] to metrology
[14–17]. The main obstacles towards realization of such de-
vices are control noise and interactions with the environment.
Thus, a thermodynamic study is necessary to fully under-
stand their information theoretic properties. However, most
nanodevices operate far from thermal equilibrium, so tools
from nonequilibrium statistical physics are required. In recent
years, formulations of the second law have been derived which
are valid arbitrarily far from equilibrium. These so-called
fluctuation theorems, in particular, the Jarzynski equality [18],
enable the calculation of equilibrium quantities from nonequi-
librium averages over many realizations of a single process.
They also encompass nonequilibrium, information-theoretic
generalizations of the second law. As Landauer’s principle
is a direct implication of this approach [19–21], one may ask
whether Holevo’s bound is also such a result. One complication
in this case is that the approach to fluctuation theorems for
quantum systems is mathematically and conceptually more
involved. Thermodynamic quantities, which are not given
as state functions, cannot be assigned a Hermitian operator
[22]. The proper formulation of quantum thermodynamics
for nonequilibrium systems, especially quantum fluctuation
theorems [23], must therefore be treated with care.

The purpose of the present Brief Report is twofold. In the
first part we derive a general quantum fluctuation theorem
that accounts for the back action of measurements on reduced
systems (see Ref. [24] for a similar approach). To this end,
we consider an experimental point of view; we assume that

the system of interest is coupled to an environment which
is experimentally inaccessible. Such measurements on open
quantum systems are inherently incomplete since they ignore
environmental degrees of freedom. Information is lost that,
in principle, could have been acquired by concurrent mea-
surement of the reservoir. A general formulation of quantum
fluctuation theorems must explicitly account for these effects.
The integral fluctuation theorem we derive is applicable to
arbitrary orthogonal measurements for systems undergoing
both unitary and nonunitary dynamics.

In the second part we focus on an information-theoretic
consequence of the general quantum fluctuation theorem:
Holevo’s theorem. The derivation and implications of this
result have attracted much attention [25–29]. Like more recent
works [30–32], our derivation results in a sharpened statement
of Holevo’s bound, which takes into account the choice of
measurement used to obtain the encoded information. Further
our treatment is based on results weaker than the monotonicity
of relative entropy and directly leads to necessary and sufficient
equality conditions. This illustrates an interesting connection
between quantum thermodynamics and quantum information
theory.

General quantum fluctuation theorem. Consider a time-
dependent quantum system S with Hilbert space HS and
initial density matrix ρ0. Information about the state of the
system is obtained by performing measurements on S at the
beginning and end of a specific process. Initially, a quantum
measurement is made of observable Ai, with eigenvalues
ai

m. Letting �i
m denote the orthogonal projectors into the

eigenspaces of Ai, we have Ai = ∑
m ai

m�i
m. Note that the

eigenvalues {ai
m} can be degenerate, so the projectors {�i

m}
may have a rank greater than 1. Unlike the classical case, as
long as ρ0 and Ai do not have a common set of eigenvectors,
i.e., they do not commute, performing a measurement on
S alters its statistics. Measuring ai

m maps ρ0 to the state
�i

mρ0�
i
m/pm, where pm = tr{�i

mρ0�
i
m} is the probability

of the measurement outcome ai
m. Generally accounting for

all possible measurement outcomes, the statistics of S after
the measurement are given by the weighted average of all
projections,

M i(ρ0) =
∑
m

�i
m ρ0 �i

m . (1)
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If ρ0 commutes with Ai, it commutes with each �i
m, so

M i(ρ0) = ∑
m �i

m�i
mρ0 = ρ0, and the statistics of the system

are unaltered by the measurement. After measuring ai
m, S

undergoes a generic time evolution, after which it is given
by E(�i

mρ0�
i
m)/pm. Here E represents any linear (unitary or

nonunitary) quantum transformation, which is trace preserving
and maps non-negative operators to non-negative operators.
Further, we require that this holds wheneverE is extended to an
operation E ⊗ IE on any enlarged Hilbert space HS ⊗ HE (IE
being the identity map on HE ). Such a transformation is called
a trace-preserving, completely positive (TCP) map [33]. After
this evolution, a measurement of a second (not necessarily the
same) observable, Af = ∑

n af
n�

f
n, is performed on S. The

probability of measuring af
n, conditioned on having first mea-

sured ai
m, is pn|m = tr{�f

n E(�i
mρ0�

i
m)}/pm. Accordingly, the

joint probability distribution pm→n reads

pm→n = pmpn|m = tr
{
�f

n E
(
�i

mρ0�
i
m

)}
. (2)

We are interested in the probability distribution of possible
measurement outcomes, P(�a) = 〈δ(�a − �an,m)〉, where
�an,m = af

n − ai
m is a random variable determined in a single

measurement run. Its probability distribution is given by
averaging over all possible realizations,

P(�a) =
∑
m,n

δ(�a − �an,m) pm→n . (3)

To derive the integral fluctuation theorem we follow the
standard approach and compute its characteristic function,
G(s), which is the Fourier transform of P(�a) [23]:

G(s) =
∫

d(�a)P(�a) exp (is �a)

= tr{exp (isAf)E(M i(ρ0) exp (−isAi))} . (4)

Choosing s = i, we obtain the general quantum fluctuation
theorem

〈exp (−�a)〉 = γ . (5)

Since it is explicitly dependent on the map E, the quantity
γ accounts for the information lost by not measuring the
environment. It plays a crucial role in the following discussion
and is given by

γ = tr{exp (−Af )E(M i(ρ0) exp (Ai))} . (6)

Similar fluctuation theorems of the form 〈exp (−�)〉 = γcl

have been derived in the context of classical feedback
processes, where � is an entropy production [34]. We note
that by appropriate choice of initial and final observables Ai

and Af , Eq. (6) reproduces many known quantum fluctuation
theorems [22–24,35–39], which we will discuss in detail
elsewhere.

A complementary result to the fluctuation theorem is
Jensen’s inequality, which states that for any convex function
φ′′(x) � 0 and random variable x, 〈φ(x)〉 � φ(〈x〉) [40].
Applying this to Eq. (5) yields

〈�a〉 � − ln (γ ) . (7)

For specific choices of thermodynamically relevant observ-
ables Ai and Af , this relation can be understood as a
formulation of the Clausius inequality. In particular, for a

unitary time evolution Uτ = T> exp[−i
∫ τ

0 H (t)dt], an initial
Gibbsian state ρ0 = exp[−βH (0)]/Z0, and corresponding
energy measurements, Ai = βH (0) and Af = βH (τ ), Eq. (5)
reproduces the quantum Jarzynski equality [22,41,42]. Ac-
cordingly, Eq. (7) reduces to the maximum work theorem,
β 〈W 〉 � β�F , where 〈W 〉 = 〈H (τ )〉 − 〈H (0)〉 = 〈�a〉 /β

and β�F = − ln (Zτ/Z0) = − ln(γ ).
Holevo’s bound. We now use the fluctuation theorem (5)

to derive a sharpened version of Holevo’s bound. This bound
sets a limit on how much classical information can be sent
through a (noisy) quantum channel. Let us consider a message
composed of code words wj that appear with probability
πj . A messenger (Alice) attempts to transfer this message
to a receiver (Bob) by encoding each word wj in a quantum
state and transmitting that state to Bob. We assume that Bob
receives the state ρj , which may have come through a lossy
medium and therefore may be different from the original state
prepared by Alice. Bob attempts to infer the word wj from
the encoding by making a generalized measurement of the
state ρj . This corresponds to introducing a probe, initially in a
pure state |0〉, and making an orthogonal measurement on the
compound state ρj ⊗ |0〉〈0| [43]. If {�k} represents the set of
orthogonal projectors corresponding to Bob’s measurement,
the probability of measuring �k , given message wj , is given
by

πk|j = tr{ρj ⊗ |0〉〈0|�k} = tr{ρjMk} , (8)

where Mk = 〈0|�k|0〉 are operators acting only on the
encoding degree of freedom. Although the operators {Mk}
are non-negative and

∑
k Mk = I, they are generally not

projectors, M2
k �= Mk . Such a collection {Mk} is called a

positive operator-valued measure (POVM) and describes the
most general measurement on a quantum system. The classical
message distribution {πj }, output quantum encoding {ρj },
and POVM elements {Mk} define a classical-quantum channel
[44].

A proper measure of how well Bob decodes Alice’s message
is the mutual information between the encoded message
and measurement distributions, I = ∑

jk πj πk|j ln (πk|j /πk),
where πk = ∑

j πj πk|j is the overall probability of measuring
�k . Note that I = ∑

j πjD(πk|j ||πk), where D(πk|j ||πk) =∑
k πk|j ln(πk|j /πk) is the (classical) relative entropy [45].

Hence I is a sum of non-negative terms and is zero if and
only if πk|j = πk for all k,j . That is, I vanishes only if all
outcomes of the measurement are independent of the encoded
word, so that Bob always learns nothing about the message.

The probability of the message being wj , conditioned on
Bob measuring �k , is πj |k = πk|j πj /πk . We have

I = S({πj }) +
∑

k

πk

∑
j

πj |k ln πj |k, (9)

where S({πj }) = −∑
j πj ln πj is the Shannon information of

distribution {πj }. Since x ln(x) � 0 for |x| � 1, with equality
only for x = 0 and x = 1, we observe that I � S({πj }), with
equality if and only if πj |k is 0 or 1 for all j,k. In other
words, the mutual information I is at most S({πj }), with
equality if and only if Bob correctly decodes the message

044302-2



BRIEF REPORTS PHYSICAL REVIEW A 86, 044302 (2012)

in every instance. If Alice’s encoded states are not perfectly
distinguishable (that is, if the supports of ρj and ρj ′ are not
orthogonal for some j �= j ′), then I can never equal S({πj }),
no matter what measurement Bob chooses to make. Holevo’s
theorem is then an upper bound for I , namely,

χ ≡ S(ρ̄) −
∑

j

πjS(ρj ) � I, (10)

where S(ρ) = −tr {ρ ln ρ} is the von Neumann entropy and
ρ̄ = ∑

j πjρj is the density matrix describing the statistics
of the encoding given no knowledge of the message word.
Heuristically, the Holevo quantity χ can be considered as the
uncertainty of the encoding with no knowledge of the message
minus the average remaining uncertainty given knowledge of
the message. Note that if the encoded states are distinguishable,
i.e., ρjρj ′ = O for all j �= j ′, then χ = S({πj }), so that with a
proper measurement Bob may always correctly decode Alice’s
message.

We now show how Holevo’s theorem (10) follows as
a consequence of the general quantum fluctuation theorem
(5). To do this we must appropriately choose the initial
state, evolution operation, and observables so that the random
variable 〈�a〉 averages to χ − I . In the language of the general
fluctuation theorem, let the initial state ρ0 reside in a composite
Hilbert space HE ⊗ HP ⊗ HM. HE represents the encoding
Hilbert space, which Alice prepares and Bob then measures,
HP is the probe Hilbert space accessible only to Bob, and
HM is a message Hilbert space. Note that HM is not a
real, physically accessible subspace, but rather a mathematical
construction denoting the memory for the classical information
of the message [44]. We have

ρ0 =
∑

j

πjρj ⊗ |0〉〈0| ⊗ |j 〉〈j | , (11)

where the states |j 〉, each corresponding to word wj , form an
orthonormal basis for HM. We see that, with probability πj ,
ρ0 corresponds to the message state |j 〉. The measured initial
and final observables are

Ai =
∑

j

ln
(
ρ̂−1

j

) ⊗ |0〉〈0| ⊗ |j 〉〈j |,
(12)

Af = − ln (ρ̄ ⊗ |0〉〈0|) ⊗ IM −
∑
k,j

Ik,j�k ⊗ |j 〉〈j | ,

where Ik,j = ln (πk|j /πk). Here ρ̂−1
j denotes the inverse within

the support of ρj , so that ρ̂−1
j |ψ〉 = 0 whenever ρj |ψ〉 = 0.

This form for Eq. (12) ensures that exp(Ai) and exp(−Af) are
bounded operators.

Note that the states ρj do not represent the original
encoding set up by Alice, but rather its time-evolved state
after undergoing dynamics in a quantum channel. To apply
the fluctuation theorem (5), we start with the output of
this channel and perform the two measurements, Ai and
Af , immediately after each other. The TCP map crucial for
Eq. (5) is thus the identity map E(ρ) = ρ. Ai commutes
with ρ0, so after measurement of Ai, measurement of Af

is carried out on the same state, M i(ρ0) = ρ0. Computing

〈�a〉 = tr{(Af − Ai)ρ0} = χ − I , Eq. (7) is

χ − I � − ln (γ ) , (13)

where the corresponding quantum efficacy is given by

γ = tr{exp (−Af)ρ0 exp (Ai)} . (14)

Equations (13) and (14) constitute the sharpened Holevo’s
bound as a consequence of the general quantum fluctuation
theorem (5). Indeed, our new bound is tighter than the usual
inequality (10), in the sense that the correction term, − ln (γ ),
is always non-negative. Consider

ρ0 exp (Ai) =
∑

j

πjρj exp
[
ln

(
ρ̂−1

j

)] ⊗ |0〉〈0| ⊗ |j 〉〈j |

=
∑

j

πj P̂j ⊗ |0〉〈0| ⊗ |j 〉〈j | , (15)

where P̂j is the projector into the support of ρj . We can rewrite
Eq. (14) with Eq. (15) as

γ = tr{exp (−Af ) ρ0 exp (Ai)}

= tr

⎧⎨
⎩exp (−Af)

∑
j

πj P̂j ⊗ |0〉〈0| ⊗ |j 〉〈j |
⎫⎬
⎭

�
∑

j

πj tr

{
exp

(
ln (ρ̄ ⊗ |0〉〈0|) +

∑
k

Ik,j �k

)}
,

(16)

where the inequality is justified by noting that
exp[ln (ρ̄ ⊗ |0〉〈0|) + ∑

k Ik,j �k] is non-negative and
P̂j ⊗ |0〉〈0| is a projection operator. We now use a
statement of the Golden-Thompson inequality [46,47];
that is, for any Hermitian operators A and B, we have
tr {exp (A + B)} � tr {exp (A) exp (B)}. Note that in the
present case, A and B are both logarithms of bounded
Hermitian operators and are only bounded from above,
although the Golden-Thompson inequality still holds [48].
Accordingly, we have

γ = tr{exp (−Af) ρ0 exp (Ai)}

�
∑

j

πj tr

{
exp[ln (ρ̄ ⊗ |0〉〈0|)] exp

(∑
k

Ik,j �k

)}

=
∑

j

πj tr

{
(ρ̄ ⊗ |0〉〈0|)

∑
k

πk|j /πk �k

}
. (17)

From the definition πk = ∑
j πjπk|j we finally obtain

γ � tr

{
ρ̄ ⊗ |0〉〈0|

∑
k

�k

}
= 1 , (18)

which shows that − ln (γ ) � 0, as desired. We note that our
derivation does not invoke the monotonicity of the relative
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entropy or equivalent statements [49]. Instead, we have used
only Jensen’s inequality and the Golden-Thompson inequality,
which are weaker results [50,51].

Equality conditions. Holevo’s bound (12) is obtained with
the help of Jensen’s inequality. For strictly convex functions
φ′′(x) > 0, the Jensen bound 〈φ(x)〉 � φ(〈x〉) achieves equal-
ity if and only if the random variable x is constant valued.
This allows us to derive the equality conditions for (13) in a
straightforward manner. Specifically, equality is achieved only
if(

− ln
(
ρ̂−1

j

) − ln(ρ̄) −
∑

k

Ik,jMk

)
P̂j = − ln(γ )P̂j (19)

for all j . This follows from a few simple observations.
First, assume that χ − I = − ln(γ ). As Ai, ρ0, and the

projectors I ⊗ |0〉〈0| ⊗ |j 〉〈j | mutually commute, we consider
a mutual eigenprojector Rmj = R

(j )
m ⊗ |0〉〈0| ⊗ |j 〉〈j | such that

AiRmj = ai
mRmj and ρ0Rmj �= 0. Since the function exp (x) is

strictly convex, the random variable �anm obtained from the
measurements of Ai and Af has to satisfy �anm = − ln(γ ) for
all measurements with nonzero probability. Hence an initial
measurement of ai

m implies with certainty a final measurement
ai

m − ln(γ ). Since Rmj is a projector into an eigenspace of ρ0,
any state satisfying Rmj |ψ〉 = |ψ〉 must therefore also be an
eigenstate of Af with eigenvalue ai

m − ln(γ ), so

(Af − Ai)Rmj = − ln(γ )Rmj . (20)

Using definition (12) and Mk = 〈0|�k|0〉, Eq. (19) follows by
summing on m, noting that

∑
m Rmj = P̂j ⊗ |0〉〈0| ⊗ |j 〉〈j |.

Conversely, assume that Eq. (19) holds for all j . Since Ai

and ρ0 commute, we have

χ − I = tr{ρ0(Af − Ai)}

=
∑

j

πj tr

{
ρj

(
ln(ρj ) − ln(ρ̄) −

∑
k

Ik,jMk

)
P̂j

}

=
∑

j

πj tr{ρj [− ln(γ )P̂j ]} = − ln(γ )
∑

j

πj

= − ln(γ ) (21)

We conclude that Eq. (19) is equivalent to equality in
Eq. (13). Observe that since χ − I � − ln(γ ) � 0, the equal-
ity condition for χ = I , Eq. (19) with ln(γ ) = 0, is ob-
tained as a corollary of our result [49]. Equation (19) may
be used to determine the bound saturating observable Af

self-consistently.
Concluding remarks. We developed a general framework

for quantum fluctuation theorems by explicitly accounting
for the back action of quantum measurements. With this
result, we showed that quantum-mechanical formulations of
the second law are intimately tied to quantum information
theory by deriving Holevo’s bound as a consequence of a
fluctuation theorem. The new approach provides not only
simple derivation but also a sharpened statement of the original
bound and a corresponding equality criterion.

Acknowledgments. The authors thank Jacob Taylor and Eric
Lutz for interesting discussions. SD acknowledges financial
support by a fellowship within the postdoc-program of
the German Academic Exchange Service (DAAD, contract
No D/11/40955). DK acknowledges financial support by a
fellowship from the Joint Quantum Institute.

[1] R. Clausius, Abhandlungen über die mechanische Wärmetheorie
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