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Quantifying non-Markovianity via correlations
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In the study of open quantum systems, memory effects are usually ignored, and this leads to dynamical
semigroups and Markovian dynamics. However, in practice, non-Markovian dynamics is the rule rather than
the exception. With the recent emergence of quantum information theory, there is a flurry of investigations of
non-Markovian dynamics, and several significant measures for non-Markovianity are introduced from various
perspectives such as deviation from divisibility, information exchange between a system and its environment, or
entanglement with the environment. In this work, by exploiting the correlations flow between a system and an
arbitrary ancillary, we propose a considerably intuitive measure for non-Markovianity by use of correlations as
quantified by the quantum mutual information rather than entanglement. The fundamental properties, physical
significance, and differences and relations with existing measures for non-Markovianity are elucidated. The
measure captures quite directly and deeply the characteristics of non-Markovianity from the perspective of
information. A simplified version based on Jamiołkowski-Choi isomorphism which encodes operations via
bipartite states and does not involve any optimization is also proposed.
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I. INTRODUCTION

Quantum dynamics is usually classified into Markovian
or non-Markovian according to the absence or presence of
memory effects. While realistic dynamics usually exhibits
memory effects, in the theoretical investigations, the Marko-
vian approximations are often adopted, and quantum dynamics
is often mathematically described by a quantum dynamical
semigroup, or equivalently, by a solution of the underlying
master equation of the Lindblad type [1,2]. This constitutes the
main content of the present theory of open quantum systems
[3–6]. Such a situation is not because the non-Markovian
dynamics is not important, but rather is essentially due to the
fact that, mathematically, it is usually difficult, if not totally
intractable, to treat non-Markovian dynamics in general.
However, since non-Markovian dynamics is responsible for
a wide variety of physically interesting effects, in recent years
it is attracting increasing attention in both theory and practice
[7–23], in particular in the context of quantum information
processing, due to their ability in regaining lost information
and recovering coherence for quantum technologies. Non-
Markovianity can be served as a resource in certain quantum
protocols, and can be exploited for quantum metrology and
quantum key distribution [16,17].

Although both Markovian and non-Markovian dynamics in
the classical setting are well defined, soundly constructed, and
widely studied [24], their quantum extensions remain elusive
and subtle. Various, even controversial in some sense, non-
Markovian criteria have been proposed in recent years, and
several measures for non-Markovianity are introduced based
on different considerations such as semigroups, divisibility, or
backflow of information: (i) In a rather abstract and general
framework, Wolf et al. identified non-Markovianity with the
breakdown of the semigroup property of the dynamical maps,
and introduced a measure for non-Markovianity in terms of
the deviation of the logarithm of dynamical maps from the
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canonical Lindblad generators [7]. (ii) Rivas et al. proposed
two measures for non-Markovianity based on dynamical
divisibility (which is a generalization of the semigroup
property) and entanglement with environment, respectively
[8]. (iii) Based on the trace distance which quantifies the
distinguishability of quantum states, Breuer et al. suggested
a measure for non-Markovianity in terms of the increasing
of distinguishability between different evolving states, which
may be interpreted as recovery of lost information (the flow
of information from the environment back to the open system)
[9]. (iv) Lu et al. quantified non-Markovianity in terms of the
quantum Fisher information flow [10]. (v) By use of the fidelity
between a dynamically evolved state and its earlier time state,
Rajagopal et al. proposed a signature for non-Markovianity,
which may also be formulated in terms of the Bures distance
[11]. (vi) Hou et al. introduced an alternative measure for
non-Markovianity in terms of the deviation from divisibility,
as quantified by the negative eigenvalues of the transition
maps [12]. (v) For continuous-variable open quantum systems,
Vasile et al. initiated the study of a measure for Gaussian non-
Markovianity by use of fidelity rather than the trace distance
in assessing distinguishability and information backflow [13].

In general, all these measures do not coincide exactly
in revealing non-Markovianity [25–27], although there are
many instances of coincidence [28]. A universal definition
for quantum (non-)Markovian dynamics is still lacking. At
present, we have several closely related, but conceptually
different definitions (or conventions) for non-Markovianity.

Motivated by the idea of exploiting the correlations between
the system and an arbitrary ancillary system (rather than
only the purification counterpart of the system), we will
introduce a conceptually simple, mathematically computable,
and physically intuitive measure for non-Markovianity by use
of quantum mutual information rather than entanglement. Its
significance is illustrated through several examples.

The work is organized as follows. In Sec. II, a measure for
non-Markovianity based on correlations flow is introduced.
We illustrate the concept by making comparison with other
measures in Sec. III. We conclude with discussion in Sec. IV.
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II. NON-MARKOVIANITY VIA CORRELATIONS

The precise setup is as follows. Consider a quantum system
with Hilbert space H and state space S(H ) (the set of all density
operators). Let � = {�t } be a quantum dynamical evolution
described by a family of quantum operations (channels,
or linear, completely positive, trace preserving maps) �t

on S(H ). Let Ha be an arbitrary ancillary system which
may be correlated with the system H . Thus the “system +
ancillary” space is H ⊗ Ha . In this context, recall that the
total correlations in a bipartite state ρsa shared between the
system and the ancillary is quantified by the quantum mutual
information

I (ρsa) := S(ρs) + S(ρa) − S(ρsa).

Here ρs = traρsa, ρa = trsρsa are the reduced states for the
system and ancillary, respectively, and S(ρs) := −trρs log2ρ

s

is the von Neumann entropy. The quantum mutual information
is an essential measure for total correlations [29–32].

If the dynamics {�t } is Markovian in the sense that

�t = �t,r�r, r � t

for some operations �t,r , then for any bipartite state ρsa on
the composite system H ⊗ Ha , put

ρsa
t := (�t ⊗ 1)ρsa,

where 1 is the identity operation on the ancillary state space
S(Ha), we have

I
(
ρsa

t

) = I ((�t,r�r ⊗ 1)ρsa) = I ((�t,r ⊗ 1)ρsa
r ) � I

(
ρsa

r

)
due to the monotonicity of the quantum mutual information
under local operations. Consequently, the quantum mutual
information I (ρsa

t ) is a monotonically decreasing function of
t � 0, which implies that d

dt
I (ρsa

t ) � 0 for any Markovian dy-
namics. Any violation of this monotonicity (i.e., d

dt
I (ρsa

t ) > 0)
is an indication for non-Markovianinty of the dynamics {�t }.
From this, we may introduce a measure for non-Markovianity
as follows:

N (�) := sup
ρsa

∫
(d/dt)I (ρsa

t )>0

d

dt
I
(
ρsa

t

)
dt.

Here ρsa
t := (�t ⊗ 1)ρsa and the sup is over all bipartite states

ρsa on H ⊗ Ha , with Ha an arbitrary ancillary space.
While the above measure is fundamental, its evaluation is

complicated due to the formidable optimization. Fortunately,
in practice we may use the following simplified version as
a significant substitute, which is intuitive in its own right:
We take Ha = H and let ρsa = |�〉〈�| be any maximally
correlated pure state between the system and the ancillary Ha ,
then we come to an alternative measure for non-Markovianity
as follows:

N0(�) :=
∫

(d/dt)I (ρsa
t )>0

d

dt
I
(
ρsa

t

)
dt.

Here ρsa
t := (�t ⊗ 1)|�〉〈�|, and in general, N0(�) is in-

dependent of the choice of |�〉. This procedure for obtain-
ing a simple measure for non-Markovianity has a twofold
meaning: First, mathematically, the correspondence between
an operation and a bipartite state as stipulated by the above
equation is precisely the Jamiołkowski-Choi isomorphism

[33,34], which implies that we could exploit the correlations
structure in a bipartite state in order to study an operation.
Second, physically, any mixed state of a system can be
viewed as the reduced state of a higher-dimensional pure state,
and the system is correlated (both classically and quantum
mechanically) with an ancillary, and thus the action of a
quantum operation on the system state can be studied via the
correlations between the system and the ancillary. The measure
N0(�) for non-Markovianity can be rather straightforwardly
evaluated for both discrete and continuous variable systems.

III. COMPARISON

In order to make comparison with other non-Markovian
approaches, let us first recall two celebrated non-Markovian
measures:

(1) As defined by Breuer, Laine, and Piilo (BLP) [9], a
dynamical evolution � = {�t } is Markovian in the sense
of decreasing distinguishability of evolving states if 1

2 tr|�t

(ρ − τ )| is a monotonically decreasing function of t � 0
for any states ρ and τ . Since the trace distance is funda-
mentally related to distinguishability of quantum states [35],
non-Markovianity in this sense indicates the increasing of
distinguishability, and thus may be interpreted as information
recovery as opposed to the information loss (memory loss)
in Markovian dynamics. The associated measure for non-
Markovianity is then defined as

NBLP(�) := sup
ρ,τ

∫
(d/dt)tr|�t (ρ−τ )|>0

1

2

d

dt
tr|�t (ρ − τ )|dt.

(2) According to the approach of Rivas, Huelga, and
Plenio (RHP) [8], a dynamical evolution � = {�t } is Marko-
vian in the sense of divisibility if there exist quantum
operations �t,r such that �t = �t,r�r for all 0 � r � t .
This clearly includes the dynamical semigroups as a par-
ticular case, and thus is more general than the dynamics
described by the master equation with canonical Lind-
blad generators [1,2]. In this context, let ρsa = |�〉〈�|
be a maximally entangled pure state between the system
and an ancillary, then for ε > 0, tr|(�t+ε,t ⊗ 1)ρsa| = 1
if and only if �t+ε,t is completely positive (noting that �t+ε,t is
trace preserving), and tr|(�t+ε,t ⊗ 1)ρsa| > 1 otherwise. The
RHP measure for non-Markovianity is defined as [8]

NRHP(�) :=
∫ ∞

0
lim
ε→0

tr|(�t+ε,t ⊗ 1)ρsa| − 1

ε
dt.

Since NRHP(�) = 0 implies that NBLP(�) = 0, any di-
visible dynamics is Markovian according to BLP. But the
converse is not true in general [25]. Both of these measures
are difficult to evaluate: The former involves a formidable
optimization over a pair of density operators, the latter
involves the transition map �t+ε,t which in general cannot
be computed. It is remarkable that RHP also proposed another
measure for non-Markovianity based on the consideration of
entanglement with an ancillary system [8]. However, since
an entanglement measure is usually very difficult to evaluate
by itself, and furthermore there is no compelling reason
for using entanglement rather than general correlations, this
alternative measure has attracted little attention, and needs
further investigation. Now, we compare the measure N0(�)
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with existing ones for revealing non-Markovianity through
several prototypical examples.

Example 1. Consider the dynamics ρt = �tρ0 on a qubit
system described by the differential equation

d

dt
ρt = γ (t)(σzρtσz − ρt ).

Here σz is a Pauli spin operator. If we denote the initial state
of the open quantum system as ρ0 = ( α β

γ δ ), then the dynamics
can be expressed as

ρt = �tρ0 =
(

α βf (t)

γf (t) δ

)
,

with f (t) := exp[−2
∫ t

0 γ (τ )dτ ]. After simple calculations,
we get

ρsa
t = (�t ⊗ 1)|�〉〈�| = 1

2

⎛
⎜⎜⎜⎝

1 0 0 f (t)

0 0 0 0

0 0 0 0

f (t) 0 0 1

⎞
⎟⎟⎟⎠ ,

where |�〉 is the canonical maximally entangled state for the
“system + ancillary.” Therefore

I
(
ρsa

t

) = 2 + 1 + f (t)

2
log2

1 + f (t)

2

+ 1 − f (t)

2
log2

1 − f (t)

2
,

and

d

dt
I
(
ρsa

t

) = −γ (t)f (t) log2
1 + f (t)

1 − f (t)
.

From the above expression and noting that f (t) > 0, we see
clearly that d

dt
I (ρsa

t ) > 0 is equivalent to γ (t) < 0, and

N0(�) = −
∫

γ (t)<0
γ (t)f (t) log2

1 + f (t)

1 − f (t)
dt.

From Ref. [26], we know that

NBLP(�) = −2
∫

γ (t)<0
γ (t)f (t)dt,

and from Ref. [9], we know that

NRHP(�) = −2
∫

γ (t)<0
γ (t)dt.

In this example, the three measures detect non-Markovianity in
an equivalent way, i.e., all lead to the same criterion γ (t) < 0.

Example 2. Consider the dynamics described by the time-
local master equation

d

dt
ρt = − i

2
s(t)[σ+σ−,ρt ] + γ (t)

(
σ−ρtσ+ − 1

2
{σ+σ−,ρt }

)
,

with s(t) = −2Im Ġ(t)
G(t) (imaginary part), γ (t) = −2Re Ġ(t)

G(t) (real
part), and the function G(t) is the solution of the integrodif-
ferential equation

d

dt
G(t) = −

∫ t

0
dt1f (t − t1)G(t1)

corresponding to the initial condition G(0) = 1, the kernel
f (t − t1) represents a certain two-point correlation function

f (t − t1) =
∑

k

|gk|2ei(ω0−ωk)(t−t1).

Further calculations show that

ρt =
(

α + (1 − |G(t)|2)δ G(t)∗β
G(t)γ |G(t)|2δ

)
.

Therefore, we have

ρsa
t = (�t ⊗ 1)|�〉〈�|

= 1
2

⎛
⎜⎜⎜⎝

1 0 0 G(t)∗

0 1 − |G(t)|2 0 0

0 0 0 0

G(t) 0 0 |G(t)|2

⎞
⎟⎟⎟⎠ ,

and

d

dt
I
(
ρsa

t

) = |G(t)| log2
[1 + |G(t)|2][2 − |G(t)|2]

|G(t)|2[1 − |G(t)|2]

d

dt
|G(t)|.

It is clear from the above expression that d
dt

I (ρsa
t ) > 0 is

equivalent to d
dt

|G(t)| > 0. This detects the non-Markovianity
in a similar fashion as BLP [9].

We have also treated several other examples, and find that
our measure detects the same non-Markovianity range as BLP
dose. However, from a general point of view, the measure
N (�) is different from other measures, and it is desirable to
illustrate the difference and links through simple examples.
We leave this as problems to the interested readers.

IV. SUMMARY

Based on essential features of non-Markovianity, we have
introduced a figure of merit for non-Markovianity from the
informational perspective. When particularized to a simple
yet fundamental setting, the measure does not involve any
optimization and can be evaluated rather straightforwardly.
Its significance and power are illustrated through prototypical
examples, and intrinsic relations with other approaches are
elucidated.

From a conceptual and intuitive point of view, the measure
N (�) for non-Markovianity captures fully the informational
aspect of the dynamics �. We have only explored some
elementary and preliminary features of this measure, and it is
desirable to further characterize and investigate its structure,
properties, applications, and relations with other measures for
non-Markovianity.

Since the central theme of modern quantum technologies
is the control of quantum coherence and quantum correla-
tions, which usually suffer from decoherence and decay, but
non-Markovianity entails new features of quantum effects
related to decoherence, dissipation, decay, and relaxation, non-
Markovianity may be exploited for the benefits of quantum
technologies. Our approach may be of theoretical interest in
such an endeavor of fighting decoherence and information loss.
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