
PHYSICAL REVIEW A 86, 043841 (2012)

Propagation and collisions of semidiscrete solitons in arrayed and stacked waveguides
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We consider shapes and dynamics of semidiscrete solitons (SDSs) in the known model of the set of linearly
coupled waveguides with intrinsic cubic nonlinearity. The model applies to the description of a planar array of
optical fibers or of a stack of parallel planar waveguides, in the temporal and spatial domains, respectively, as
well as to the self-attractive Bose-Einstein condensate (BEC) loaded into an array of parallel tunnel-coupled
cigar-shaped traps. It was found previously that the interplay of the group-velocity dispersion, discrete diffraction
(in the longitudinal and transverse directions, respectively), and intrinsic self-focusing gives rise to SDSs in the
array. We here develop the variational approximation (VA) and additional analytical methods for the description
of the SDSs, and study their mobility and collisions by means of systematic simulations. The VA and an exact
solution of the linearized equation in the cores adjacent to the central one produce an accurate description for the
family of stable fundamental on-site-centered SDS solutions, as well as of surface SDSs in the semi-infinite array.
The VA is also presented for transversely unstable intersite-centered solitons. In simulations, the solitons are
not mobile in the discrete direction (nonsoliton semidiscrete modes may be mobile across the array). Collisions
between SDSs traveling in the longitudinal direction feature a threshold separating the passage and merger
or destruction. The exact shape of the threshold, considered as a function of the solitons’ energy, features
irregularities, while its average form is explained analytically. “Shifted” collisions between SDSs centered at
adjacent cores are also studied.
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I. INTRODUCTION AND THE MODEL

Waveguiding arrays offer a basis for the design of a great
variety of nonlinear optical [1–9], nanooptic [10–12], and
plasmonic [13–16] media, in which many types of discrete and
quasi-discrete solitons can be created. Tremendous progress
made in experimental and theoretical studies of these areas in
the course of the last decade has been surveyed in a number of
reviews [1–16]. Among other media created and investigated
in this context, arrays of tunnel-coupled optical fibers [6]
and nanowires [11] enable many fundamental and applicative
effects.

The most fundamental patterns predicted [17] and realized
experimentally [18] in planar waveguiding arrays with the Kerr
nonlinearity are discrete solitons, a well-established theoretical
model of which is based on the discrete nonlinear Schrödinger
equation (NLSE) [19]. More recently, many theoretical results
have been published for discrete solitons in similarly organized
arrays of plasmonic waveguides [20].

Fiberoptic arrays may give rise to more complex modes,
in the form of two-dimensional (2D) semidiscrete solitons
(SDSs), which are built as continuous temporal solitons in the
longitudinal direction (along the array), and, simultaneously,
as discrete solitons in the transverse direction (across the
array). Solitons of this type in planar fiber arrays had been
studied theoretically some time ago, starting from Ref. [21],
with expected applications to the collapse-effect compression
of the solitons [22] (in the fully continuous limit, the SDSs
go over into the Townes solitons [23] of the 2D NLSE, which
are subject to the critical collapse in two dimensions) and
all-optical switching and steering in the arrays [24].

Recently, settings similar to three-dimensional (3D) fiber
bundles have been created in the form of a set of parallel
waveguides written by means of femtosecond pulses in bulk
silica, which has made it possible to observe 3D semidis-

crete spatiotemporal solitons, which are discrete in the two
transverse directions [25] (see also Ref. [8] for a review).
Two-component solitons of a different type, which may also be
considered as semidiscrete modes, were predicted in systems
with the quadratic (second-harmonic-generating) [26] and
cubic [27] nonlinearities, with the continuous component
propagating in a slab waveguide, and the other one carried
by a discrete array attached to the slab.

The subject of the present work is the investigation of the
shape, mobility, and interactions of SDSs in the model of the
arrayed waveguides. The model is based on the well-known
system of linearly coupled NLSEs for envelopes un(τ ) of the
electromagnetic waves in this system [21,22,24]:

i
∂un

∂z
+ 1

2

∂2un

∂τ 2
+ 1

2
(un+1 + un−1 − 2un) + |un|2 un = 0,

(1)

where n is the number of the individual fiber (guiding core),
τ the reduced temporal variable [28], and z the propagation
distance. In the present notation, the group-velocity dispersion
(GVD) and nonlinearity coefficient, as well as the nonlinear-
coupling constant accounting for the tunneling of light between
adjacent waveguiding cores, are all scaled to be 1, assuming the
anomalous sign of the GVD and self-focusing sign of the Kerr
nonlinearity (alternatively, the normal GVD may be combined
with the self-defocusing nonlinearity). The total energy of the
wave field, which is a dynamical invariant of Eq. (1), is

E ≡
+∞∑

n=−∞

∫ +∞

−∞
dτ |un(τ )|2. (2)

In addition to E, the system conserves the total momen-
tum in the τ direction, i

∑+∞
n=−∞

∫ +∞
−∞ dτun(∂u∗

τ /∂τ ) (where
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the asterisk stands for the complex conjugate), and the
Hamiltonian [see Eq. (35) below].

The same system of equations (1) admits an alternative
realization in terms of the spatial-domain propagation, for
a set of stacked planar waveguides with the self-focusing
intrinsic Kerr nonlinearity. In that case, n is the number of
the core in the stack, τ denotes the transverse coordinate, the
term (1/2)∂2un/∂τ 2 represents the paraxial diffraction in the
transverse direction, and Eq. (2) defines the total power of
the spatial beam.

Further, Eq. (1) may also be realized as a system of coupled
Gross-Pitaevskii equations for a set of parallel cigar-shaped
traps confining a self-attractive Bose-Einstein condensate
(BEC), which are coupled by the tunneling of atoms across
potential barriers separating the individual traps. This setting
can be implemented by means of a combination of optical
lattices [29], namely, a very deep one isolating the planar
layer, and a moderately strong perpendicular lattice splitting
the layer into the quasidiscrete set of trapping cores [30]. In
terms of the BEC model, Eq. (2) defines the total number of
atoms in the condensate.

In previous works [21,22,24], the SDSs in system (1)
were constructed in a numerical form. Our first objective
is to develop a variational approximation (VA) for them.
This is a natural approach, which was elaborated in detail
for fully discrete solitons in various models based on the
one-dimensional (1D) discrete NLSE [31–37], as well as for
the symmetry-breaking and switching dynamics of temporal
solitons in dual- [38,39] and triple- [40] core fibers. However,
this method was not previously applied to SDSs. Actually, it
may be quite relevant not only for the model based on Eq. (1),
but also for SDSs in other systems. Results produced by the VA
are reported in Sec. II, and their comparison with numerical
solutions is presented in Sec. III, demonstrating a reasonably
good agreement. The VA is applied to the on-site-centered
fundamental solitons and surface solitons in the semi-infinite
version of the system [41] (in terms of static states, the
surface solitons are tantamount to twisted, i.e., antisymmetric,
solitons). For the completeness of the description, we also
apply the VA to intersite-centered SDSs, which are unstable
in the transverse direction (twisted solitons turn out to be
unstable too, while their surface counterparts are stable in
the semi-infinite system). In the limit case when almost all the
energy of the SDS is trapped in the central core, the form of
the components in the adjacent cores is directly found in an
analytical form.

An issue of fundamental significance is the mobility of
discrete solitons [19] and, accordingly, of their semidiscrete
counterparts. Furthermore, in case the solitons are mobile,
it is relevant to study collisions between them [32,42]. It
is well known that sufficiently broad discrete solitons, if
kicked, feature efficient mobility in the framework of the 1D
discrete NLSE with the on-site cubic nonlinearity [42], and
this property may be studied by means of the VA [32,36].
Moreover, collisions between moving discrete solitons may
also be analyzed with the help of this method, although in a
rather cumbersome form [32].

The second major objective of the present work is to study
the mobility and collisions of SDSs in the framework of Eq. (1),
chiefly by means of systematic simulations. Numerical results

concerning the mobility are reported in Sec. III. The first
conclusion is that, unlike the fully discrete solitons in the
1D discrete NLSE, the SDSs are not mobile in the discrete
direction (across the array). This is explained by the fact that
discrete solitons tend to be mobile when they are broad enough,
which corresponds to the quasicontinuum limit [32,43], while,
as mentioned above, the 2D continual counterpart of the SDS is
the Townes soliton, that, in turn, is subject to the collapse, i.e.,
the catastrophic self-compression [23]. Thus, the onset of the
collapse converts broad quasicontinual solitons back into the
essentially discrete (narrow) ones [44]. The self-compression
eventually arrests the collapse, making the SDSs strongly
pinned to the underlying lattice structure, i.e., immobile. For
the same reason, fully discrete 2D solitons in lattices with
the cubic on-site nonlinearity demonstrate no mobility either.
2D discrete solitons are effectively mobile in settings with the
saturable [45] or quadratic (second-harmonic-generating) [46]
nonlinearity, where the collapse does not occur (in the contin-
uum limit), allowing for the existence of stable broad solitons.

On the other hand, the SDSs are obviously mobile in the
continual direction, which suggests the possibility to consider
collisions between them. This possibility is pursued in Sec. IV,
both head-on collisions and those with a transverse shift
between the solitons being investigated. In the former case,
the collisions are quasielastic if the initial kick, which sets
each soliton in motion, exceeds a certain critical value; below
the critical value, which decreases inversely proportional to
the soliton’s energy, the collisions lead to a merger of the two
solitons into a single mode, or their destruction, if the solitons’
energy is too small. In Sec. IV, the dependence of the critical
kick on the energy is explained by means of an analytical
estimate. A minimum value of the kick necessary to make
the collision elastic is identified too for collisions between
solitons with a transverse shift, whose centers are placed at
adjacent cores of the array. However, in this case the collision
does not cause the merger of the solitons below the critical
value. Rather, the collision features inelasticity in the form of
a conspicuous transfer of the energy from one soliton to the
other. The latter regime is very sensitive to small changes in
the initial conditions.

II. THE VARIATIONAL APPROXIMATION

A. Fundamental on-site-centered solitons

Stationary solutions to Eq. (1) with propagation constant k

are looked for as

un(τ,z) = exp (ikz) Un(τ ),

with real functions Un(τ ) obeying the following coupled
equations:

−kUn + 1

2

d2Un

dτ 2
+ 1

2
(Un+1 + Un−1 − 2Un) + U 3

n = 0, (3)

which can be derived from the corresponding Lagrangian,

L = 1

2

+∞∑
n=−∞

∫ +∞

−∞
dτ

[
− (k + 1) U 2

n

− 1

2

(
dUn

dτ

)2

+ UnUn+1 + 1

2
U 4

n

]
. (4)
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Approximate solutions for stationary on-site-centered
SDSs are sought for in the form of the following variational
ansatz, which is a product of the usual ones adopted for
discrete [31] and continual [39] solitons:

Un = A exp (−α|n|) sech (ητ ) . (5)

Here α−1, η−1, and A are, respectively, widths of the soliton
in the discrete and continual directions, and its amplitude. The
total energy of the ansatz, calculated as per Eq. (2), is E =
(2A2/η) coth α, which suggests to eliminate the amplitude in
favor of the energy:

A2 = 1
2ηE tanh α. (6)

The substitution of ansatz (5) into Eq. (4) and straightforward
calculations lead to the following effective Lagrangian, as a
function of E, η, and α:

Leff = − (k + 1) E − 1
6η2E + Esech α

+ 1
12ηE2(1 + tanh2 α) tanh α. (7)

Next, the corresponding Euler-Lagrange equations,
∂Leff/∂α = 0 and ∂Leff/∂η = 0, take the following form:

sinh α = 1
12ηE(4 − 3sech2α), (8)

η = 1
4E tanh α(1 + tanh2 α). (9)

The third variational equation, ∂Leff/∂E = 0, yields an
expression for the propagation constant,

k = −1 − η2

6
+ sech α + ηE

6
tanh α(1 + tanh2 α). (10)

Using Eqs. (8) and (9), one can eliminate η to derive an
expression for E in terms of α:

E2 = 48 cosh5 α

(2 cosh2 α − 1)(4 cosh2 α − 3)
. (11)

A straightforward analysis of Eq. (11) demonstrates that
the soliton’s energy takes values above a finite threshold
(minimum),

E(VA)
min ≈ 4.076. (12)

This minimum energy may be compared to the constant
energy of the Townes solitons in the 2D NLSE with two
continuous coordinates [23],

ETownes ≈ 5.75. (13)

Note that the variational prediction for the Townes-soliton
energy, produced by the isotropic Gaussian ansatz [47], is

E
(VA)
Townes = 2π. (14)

The global characteristic of the soliton family predicted by
the VA is dependence E(k), as obtained from Eqs. (9)–(11),
which is displayed in Fig. 1. This dependence allows one to
predict the stability of the solitons by means of the well-known
Vakhitov-Kolokolov (VK) criterion [23,48]: The branch of the
plot with the positive slope, dP/dk > 0, i.e., at k > kmin ≈
0.56 (as seen in Fig. 1), may be stable. Strictly speaking, the
VK criterion yields only a necessary stability criterion, but, in
the present relatively simple system, it is a sufficient one too,
as confirmed by numerical simulations, see below.
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FIG. 1. (Color online) The energy of the fundamental on-site-
centered semidiscrete soliton versus its propagation constant, as
produced by the variational approximation.

An additional straightforward analysis of the variational
results demonstrates that the stable branch corresponds to
narrow SDSs (i.e., strongly pinned ones, which prevents their
mobility in the discrete direction; see below), while the short
unstable branch, predicted by the VA at k < kmin (see Fig. 1),
is comprised of broad solitons, which might be mobile, but the
instability annuls this possibility. In particular, in the limit of
k → 0, a very broad SDS goes over into the Townes soliton
[its energy, as given by Eq. (11), E(α = 0) = 4

√
3 ≈ 6.93, is

different from the numerical value (13) due to the approximate
form of ansatz (5); cf. the other approximate value given
by Eq. (14). In fact, it is shown below that more relevant
characteristics of the SDSs, such as Emin, are predicted by the
VA with much better accuracy; cf. Eqs. (12) and (33)].

On the other hand, in the limit of k → ∞, i.e., E ≈
2
√

2(k + 1) → ∞, the narrow soliton sits, chiefly, in the
central core [40],

U0(τ ) ≈
√

2(k + 1)sech[
√

2(k + 1)τ ], (15)

with small-amplitude tails in two adjacent cores determined
by the linearized version of Eq. (3) at n = ±1,

−(k + 1)U±1 + 1

2

d2U±1

dτ 2
= −1

2
U0. (16)

Substituting expression (15) into Eq. (16), it is straightfor-
ward to obtain an exact solution for the tail, valid under these
assumptions:

U±1(τ )= τe−√
2(k+1)τ

+ 1√
2(k + 1)

cosh[
√

2(k + 1)τ ]ln(1 + e−2
√

2(k+1)τ )

(17)

[In spite of its apparently asymmetric form, solution (17) is an
even function of τ , and the solution is exponentially localized,
although it might seem divergent at τ → ∞].

To assess the degree of the self-compression of the SDS in
the transverse direction, we define R0 as the share of the total
soliton’s energy concentrated in the central core. Together with
Eq. (6), ansatz (5) yields

R0 ≡ En=0/E = tanh α. (18)
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Naturally, R0 → 1 at α → ∞, as the soliton gets completely
confined at n = 0.

B. Twisted and surface solitons

It is well known that, in addition to the fundamental
solitons, the discrete NLSE gives rise to twisted solitons,
i.e., antisymmetric (odd) modes [49] and [19]. In the present
system, twisted solitons can be naturally defined as those
with U−n(τ ) = −Un(τ ), which remain even functions of the
continuous coordinate, τ . In fact, the shape of the stationary
twisted soliton is tantamount to that of a surface soliton in
a semi-infinite array, which is defined as a solution to the
modification of Eq. (3), with the cores existing only at n � 1:

−kUn + 1

2

d2Un

dτ 2
+ 1

2
(Un+1 + Un−1 − 2Un) + U 3

n = 0,

at n � 2, (19)

−kU1 + 1

2

d2U1

dτ 2
+ 1

2
(U2 − 2U1) + U 3

1 = 0, (20)

which can be derived from the accordingly truncated version
of Lagrangian (4):

L = 1

2

+∞∑
n=−∞

∫ +∞

−∞
dτ

[
− (k + 1) U 2

n

− 1

2

(
dUn

dτ

)2

+ UnUn+1 + 1

2
U 4

n

]
. (21)

The studies of surface solitons in various settings have
recently attracted a great deal of attention [41,50–52]. In
particular, the semi-infinite version of the present model gives
rise to SDSs that may be considered as surface light bullets
[41,52].

It is relevant to apply the VA to the description of the
twisted and surface solitons too. To this end, the ansatz can
be adopted in the form of Eq. (5) at n � 1, which implies
that the soliton is attached to the edge of the array, n = 1.
Solutions with a finite distance between the soliton’s peak and
the edge are possible too [41], but we do not consider them
here, as the respective VA would be rather cumbersome. Then,
a straightforward calculation yields the corresponding energy
[cf. Eq. (6)] and the effective Lagrangian [cf. Eq. (7)]:

E = 2A2/[η(e2α − 1)], (22)

Leff = − 1
2 (k + 1) E − 1

12η2E + 1
12ηE2 tanh α + 1

2e−αE.

(23)

The variational equations following from this expression,
∂Leff/∂α = ∂Leff/∂η = ∂Leff/∂E = 0, take the following
form:

ηE = 6e−α cosh2 α, η = (E/2) tanh α,
(24)

k = −1 − η2

6
+ 1

3
ηE tanh α + e−α.

A corollary of Eq. (24) is the following expression for the
energy:

E2 = 12e−α (coth α) cosh2 α; (25)

cf. Eq. (11). It gives rise to a minimum value of the energy of
the surface SDS,

(Esurf)min ≈ 3.7147, (26)

which is attained at α = (1/2)ln(4 + √
13) ≈ 1.0144. Ac-

cordingly, the minimum energy of the twisted soliton is
twice as large, (Etwist)min ≡ 2(Esurf)min ≈ 7.4294. Finally, the
dependence E(k), as predicted by the VA for surface solitons,
is presented in Fig. 2(a).

C. Intersite-centered solitons

The VA can also be applied to the intersite-centered solitons
(in the full lattice), which are well known as unstable stationary
modes of the discrete NLSE [19]. Although the intersite SDSs
are unstable too (see below), for the sake of completeness it is
relevant to briefly present the VA results for them as well.

The corresponding ansatz is [cf. Eq. (5)]

Un = A exp [−α (n + 1)] sech (ητ ) , at n � 0, (27a)

Un = A exp (−α|n|) sech (ητ ) , at n � −1, (27b)

with total energy E = 4A2/[η(e2α − 1)], effective Lagrangian

Leff = − 1
2

(
k + 1

2

)
E − 1

12η2E + 1
24ηE2 tanh α

+ 1
2e−αE − 1

4e−2αE,

and the variational equations

ηE = 12e−α(1 − e−α) cosh2 α, η = (E/4) tanh α,
(28)

k = − 1
2 + 1

32 (E tanh α)2 + e−α − 1
2e−2α.

An equation for the energy, following from Eq. (27),
is [cf. Eq. (25)] E2 = 48e−α(1 − e−α) (coth α) cosh2 α. This
expression attains a minimum at α ≈ 0.6183,

(Einter)min ≈ 5.576. (29)

The fact that the threshold value (29) for the intersite SDS is
larger than the minimum energy (12) for its on-site counterpart
complies with the fact that the intersite-centered solitons are
dynamically unstable against spontaneous transformation into
the on-site states. The dependence E(k) predicted by the VA
for the intersite modes is displayed in Fig. 2(b).

FIG. 2. (Color online) The energy of the surface (a) and intersite-
centered (b) semidiscrete solitons versus its propagation constant, as
per the variational approximation. The energy of the twisted solitons
is twice that shown in (a).
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III. NUMERICAL RESULTS FOR SINGLE SOLITONS

A. The numerical method

Simulations of Eq. (1) were performed by means of
an advanced version of the symmetrized split-step Fourier-
transform method [28] for a 2D system, with each step
separated into five computational stages. The ones handling
the transverse coupling were added before and after the usual
stages which implemented the longitudinal-dispersion and
nonlinearity terms. This method is accurate up to the fifth order
in the stepsize, O(�z5). In the course of the simulations, �z

was adjusted to particular configurations, with the objective
to support the necessary accuracy and computation speed.
Absorbers of radiation were installed at edges of the simulation
domain, in both the τ and n directions.

Stationary solutions of Eq. (1) for the SDSs were produced
by means of the imaginary-distance-propagation algorithm,
built similarly to the well-known imaginary-time algorithm
[53]. To this end, the simulations were started with input

un (z = 0,τ ) = A sech

(
n

�n0

)
sech

(
τ

�τ0

)
, (30)

with some amplitude A and widths �n0, �τ0, and were run
forward in the imaginary distance, keeping the constant value
of total energy E [see Eq. (2)], until the procedure would
converge to a stationary SDS mode parametrized by the given
value of E. Iterating this process for a range of energies, we
have generated a family of the stationary SDS solutions for
those energies at which they exist, E > Emin; cf. Eq. (12). If
the fixed energy was too small for the existence of the SDS
(E < Emin), the simulations lead to decay (spreading out) of
the pattern. The stability of the soliton family produced by this
algorithm at E > Emin was then tested by simulations of the
perturbed evolution in the real propagation distance.

Further, the mobility of the solitons and collisions between
moving ones were simulated by kicking a previously found
stable SDS, un(τ ), in the discrete or continuous direction:

u(n−kick)
n (z = 0,τ ) ≡ un(z = 0,τ )eian, (31)

u(τ−kick)
n (z = 0,τ ) ≡ un(z = 0,τ )e−iωτ . (32)

Note that, due to the periodicity of exp (ian), a may be
limited to interval 0 < a � π . The application of the largest

possible n kick, amax = π , actually does not set the soliton
into motion, but rather converts it into a staggered object [19],
with un = (−1)n|un|.

Due to the Galilean invariance of Eq. (1) in the τ direction,
the strength of the respective kick, −ω, is precisely the velocity
which the kick imparts to the soliton. Collisions of SDSs
moving in the continuous direction were initiated by applying
opposite τ kicks to soliton pairs.

B. Families of on-site-centered semidiscrete solitons
and comparison to the analytical results

The family of stationary on-site-centered SDSs was con-
structed with energies exceeding a minimum value, whose
numerically found value is

Emin = 4.087, (33)

which is almost identical to the VA prediction given by
Eq. (12). Real-z simulations confirm the dynamical stability
of the entire soliton family found at E > Emin.

On the other hand, the short VK-unstable branch of the
broad SDSs, predicted by the VA to the left of E = Emin in
Fig. 1, is not produced by the numerical procedure. More
specifically, the imaginary-z simulations, initiated by inputs
corresponding to the VA-predicted shapes of the solitons which
belong to the unstable branch, quickly transform them into the
stationary SDSs with the same energy, but pertaining to the
stable branch of E(k) (at k > kmin in Fig. 1). This outcome of
the simulations may indeed imply the instability of the
corresponding branch, rather than its nonexistence.

As an example, in Fig. 3 we present a stable soliton
obtained at E = 5.85, which exceeds Emin, see Eq. (33). It
was generated by input configuration (30) with amplitude
A = 2.8 and widths �n0 = 0.32, �τ0 = 0.35. The figure
shows longitudinal profiles of the SDS in five central cores
of the array, i.e., at n = 0, n = ±1, n = ±2. The comparison
with the analytically predicted profiles (15) and (17) is shown
as well, for k = 3.1, which corresponds to the sum of the
energies of the U0 and U±1 components equal to the energy of
the numerical solution, i.e., E = 5.85. In fact, the numerically
found and analytically predicted profiles are indistinguishable.
To characterize the degree of the self-compression of this SDS,
we note that the amplitude in the central core is larger than at

FIG. 3. (Color online) Longitudinal profiles of the stable on-site-centered semidiscrete soliton with energy E = 5.85 in cores n = 0 (a),
n = ± 1 (b), and n = ± 2 (c). The blue continuous line and the chain of red stars show, severally, the numerical results and analytical predictions
(15) and (17).
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FIG. 4. (Color online) The amplitude (a), temporal width (b),
spatial width (c), and the share of the total energy trapped in the
central core (d) of the on-site semidiscrete solitons versus the energy.
The blue circles and red lines show, severally, the numerical results
and predictions of the variational approximation.

n = ±1 by a factor of 11.6, and the latter amplitude is 10.2
times larger than its counterpart at n = ±2.

The entire SDS family is characterized, in Fig. 4, by depen-
dences of the amplitude, temporal width, spatial discrete width,
and ratio R0 [see Eq. (18)] on the total energy, E. The numeri-
cal widths, �n and �τ , were defined in accordance with initial
ansatz (30), so that U1(τ = 0)/U0(τ = 0) ≡ sech (1/�n), and
U0(τ = �τ )/U0(τ = 0) ≡ sech(1) ≈ 0.648.

The plots also display the comparison with the results
produced by the VA [see Eqs. (6), (9), (11), and (18)]. It is
seen that the amplitude and temporal width, as well as R0, are
predicted by the VA very accurately, while the prediction of
the spatial width features a discrepancy, which is explained
by the fact that variational ansatz (5) was defined with the
exponential form along n, whereas the actual shape of the
soliton in the discrete direction is found to be closer to sech
[for this reason, the input used in the simulations was taken
in the form of Eq. (30)]. Generally, we conclude that the VA,
in combination with the additional analytical results given by
Eqs. (15) and (17), produces a reasonably accurate description
of the SDS family.

C. Surface solitons

The family of stationary surface SDSs attached to the
edge of the semi-infinite array was found, by means of the
imaginary-z simulations, for energies exceeding a minimum
value,

E(surface)
min = 3.78,

which is very close to the VA prediction given by Eq. (26).
Real-z simulations of the perturbed evolution confirm the
stability of the entire surface-SDS family.

This family is characterized by dependences displayed in
Fig. 5; cf. Fig. 4 for the fundamental on-site SDSs. It is seen
here as well that the VA predictions are reasonably accurate.

FIG. 5. (Color online) The amplitude (a), temporal width (b),
discrete spatial width (c), and the share of the total energy trapped
in the central core (d) of the semidiscrete surface solitons versus the
energy. The blue circles and red lines show, severally, the numerical
results and predictions of the variational approximation.

Apart from the stable on-site-centered and surface SDSs,
the possibilities of the existence of families of the inter-
site modes [see Eq. (27)] and twisted SDSs were also
investigated. In the course of the imaginary-z propagation,
the intersite-centered input spontaneously shifts in either
direction, converting into a stable on-site soliton (as might
be naturally expected, in view of the well-known instability
of intersite-centered solitons in the discrete NLS equation
[19]). On the other hand, the twisted input, in the form
of Un = An exp (−α|n|) sech (ητ ), with constants A, α, η,
and the zero set at n = 0, is spontaneously transformed by
the imaginary-z simulations into a stable fundamental SDS
centered at either n = + 1 or n = − 1.

D. Transverse immobility of the solitons

Systematic simulations of Eq. (1) in real z demonstrate that
true stationary SDSs, produced by the imaginary-propagation-
distance method, cannot be set in motion across the array by
the application of the n kick as per Eq. (31): The kick either
initiates oscillations of the pinned soliton, or destroys it. A
boundary between the different outcomes of the application of
the kick has been identified in the plane of (E,a), as shown
in Fig. 6. The cause of the effective transverse immobility of
the stable SDSs is that in most cases they all are quite narrow
objects, being effectively localized in the discrete direction
over ∼3 cores, hence they are strongly pinned to the underlying
discrete structure. On the other hand, essentially broader
solitons, although being stable against small perturbations,
turn out to be fragile against the application of the hard
kick.

Nevertheless, it is possible to find nonsoliton but quasistable
broad semidiscrete localized patterns which, in the kicked
form, feature effective transverse mobility, as shown in Fig. 7,
for a semidiscrete pulse with energy E = 4. This pattern
is spread over approximately 13 cores, and in the case
shown in Fig. 7, being kicked with strength a = 1.5, it
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FIG. 6. (Color online) Regions in the plane of the soliton’s energy,
E, and strength of the n kick, a, where the stable on-site-centered
soliton reacts to the kick by oscillations or destruction. Note that
the picture is periodic in the vertical direction—actually, with period
�a = π (taking into regard that positive and negative values of a are
mutually equivalent). Values of the energy start from threshold (33).
The destruction does not occur at E > 5.3.

travels distance �n = 10 across the array, within propagation
interval �z = 10. It should be stressed that the energy of
this pulse is below the threshold value Emin of the true
stationary SDSs [see Eq. (33)] therefore, it eventually (but
quite slowly) decays after passing a sufficiently long distance:
The peak power of the field falls to half of its initial value
at z1/2(a = 1.5) = 87. For comparison, in the case where no
kick is applied to the same pattern, the half-decay distance is
essentially shorter, z1/2(a = 0) = 28, i.e., the kick effectively
stabilizes the nonsoliton mode. Because the action of the
nonlinearity on such low-energy modes is weak, they can
collide quasielastically, readily passing through each other
(which was verified in simulations, but is not shown here in
detail).

A similar numerical experiment can be carried out for an
initially broad semidiscrete pulse, whose total energy exceeds
Emin. As shown in Fig. 8, the application of the transverse

FIG. 7. (Color online) Quasistable transverse motion of nonsoli-
ton semidiscrete broad mode with energy E = 4, kicked with a = 1.5.
The figure shows intensity contour plots.

FIG. 8. (Color online) The evolution of an initially broad semidis-
crete pulse, spread over approximately eight cores, with energy
E = 6.67 > Emin, which was kicked in the transverse direction by
a = 1.5; see Eq. (31). The figure displays the evolution of the pulse
in its central cross section, τ = 0. At first, the pulse is mobile and
its center travels from n = 0 to n = − 10, where it experiences the
quasicollapse and abrupt transition into the pinned mode.

kick to such a “protosoliton” sets it in motion across the
array. However, the onset of the quasicollapse causes the
self-compression of the pattern, and it comes to a halt after
passing a finite distance, then features strong oscillations in
the pinned state.

IV. COLLISIONS BETWEEN SOLITONS
IN THE LONGITUDINAL DIRECTION

The mobility of SDSs in the continual (τ ) direction is an
obvious consequence of the Galilean invariance of Eq. (1)
in this direction, which suggests that we consider collisions
between the solitons moving in opposite directions along axis
τ , i.e., collisions of SDSs kicked as per Eq. (32), with velocities
±ω. In addition to the fundamental interest, such collisions
may have potential applications to all-optical steering of
nonlinear signals in photonic devices. We here focus on the
on-site-centered solitons in the full array. Collisions between
surface SDSs is a relevant problem too, which will be
considered elsewhere.

A. Head-on collisions: The merger

The most natural case corresponds to the head-on collision
between identical solitons, with equal energies E, moving in
opposite directions along the same central core. Systematic
simulations demonstrate that there is a critical value of the
kick’s strength, ωc(E), such that the collision is quasielastic at
ω > ωc(E), while the two solitons merge into a semidiscrete
bound state at ω < ωc(E). At energies E < 5.2, the inelasti-
cally colliding solitons do not merge, but rather suffer mutual
destruction; see below.

In fact, the very existence of the threshold, below which the
collisions lead to the merger, is a noteworthy finding. Indeed,
the stable SDSs are, typically, strongly localized objects,
with �85% of their total energy actually concentrated in
the central core; see Fig. 4(d). Therefore, one might expect
that the collision between them may be almost tantamount
to a collision of two solitons of the integrable NLSE which
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FIG. 9. (Color online) The broken blue line shows the critical ve-
locity ωc, separating quasielastic head-on collisions between identical
solitons with energy E, and their collision-induced merger, versus the
soliton’s energy E, at E > 5.2 (see Fig. 10 for Emin < E < 5.2). The
inset depicts this dependence with a higher resolution for 6 < E < 8,
providing a better look at irregularities in the dependence. The red
dashed line is the power-law best fit to the dependence at E > 5.8.

describes the central core in isolation, the collisions being
completely elastic in that limit. Nevertheless, the merger,
which is a typical manifestation of the nonintegrability (in
particular, in the 1D discrete NLSE [32]), is readily revealed
by the simulations. Naturally, ωc(E) decreases with the
increase of the energy of the colliding solitons (i.e., with
the strengthening of the self-compression of the semidiscrete
soliton towards the single core), as shown in Fig. 9.

We stress that irregularities in the ωc(E) curve, clearly
observed in Fig. 9, are a genuine feature of the dependence,
rather than a manifestation of numerical inaccuracies (see
a closeup of this feature in the inset). Qualitatively similar
fine-scale irregularities (which may manifest the existence
of an underlying dynamical fractal structure) in the depen-
dence of the critical velocity, separating quasielastic and
inelastic collisions, are known in other nonintegrable systems
[54].

FIG. 10. (Color online) Regions of the quasielastic and destruc-
tive head-on collisions between identical solitons, in the plane of the
energy, E, and velocities, ±ω, at Emin < E < 5.2, where Emin is the
existence threshold; see Eq. (33); irregularities of the boundary exist
here too, but are not shown.

FIG. 11. (Color online) The merger following multiple head-on
collisions of identical solitons. The contour plot of the field amplitude
is shown in the central core, n = 0 (brighter colors correspond to
higher amplitudes). Two solitons, each with energy E = 6, are kicked
at z = 0 by ω = ± 0.5, and propagate until they collide at z = 8.8,
bouncing several times and eventually merging into the breather with
energy E = 11.9 at z = 15. The critical velocity in this case is
ωc = 0.62.

Apart from the irregularities, the smoothed ωc(E) depen-
dence at E > 5.8 may be fitted to a power-law curve, which is
found to be

ωc(E) ≈ 4.7E−1.1, (34)

i.e., the critical velocity is almost exactly inversely propor-
tional to the solitons’ energy (at E < 5.8, the dependence is
strongly affected by transition to the regime of the collision-
induced destruction of broad solitons; see below). The latter
dependence can be easily explained. Indeed, the Hamiltonian
of system (1) is

H = 1

2

n=+∞∑
n=−∞

∫ +∞

−∞

[∣∣∣∣∂un

∂τ

∣∣∣∣
2

− u∗
n(un+1 + un−1) − |un|4

]
dτ .

(35)

FIG. 12. (Color online) An example of the merger between slowly
moving solitons, produced by the single collision. The solitons are the
same as in Fig. 11, but kicked by ω = ± 0.01. The collision occurs
at z = 300.
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FIG. 13. (Color online) An example of quasielastic collisions.
The solitons are the same as in Figs. 10 and 11, but kicked by
ω = ± 0.8. They collide at z = 5.8 and quickly separate afterwards.

In the case of the collision between two solitons strongly
confined to the central core, where their shapes are close to
that of the usual NLSE soliton, given by Eq. (15), and the
weaker components in adjacent cores are approximated by
Eq. (17), the main contribution to the nonintegrable part of the
interaction between such solitons is produced by the first term
in the Hamiltonian density on the right-hand side of Eq. (35).
Taking into regard that E ≈ 2

√
2k for such high-amplitude

narrow solitons, it is easy to estimate the largest value of
the interaction term, at the point of the full overlap between
the colliding solitons, which plays the role of the potential
barrier impeding the passage of the solitons through each other,
Hint ∼ 1/E (the estimate follows from those for the width of
the soliton in the τ direction, T ∼ 1/E, and the amplitude
of the weaker component, a ∼ 1/E). On the other hand, the
net kinetic energy of the colliding solitons is Hkin ≈ 2Eω2.
Thus, the critical velocity, which is determined by equating the
kinetic energy to the potential barrier, Hint = Hkin, is estimated

as ωc(E) ∼ 1/E, in agreement with the numerically generated
fit (34).

As the energy of the SDS decreases, it becomes less
confined in the central core, and ωc exhibits in Fig. 9 a
transition from the approximate power-law dependence (34)
to a steep rise close to E = 5.2. Moreover, at E < 5.2 inelastic
collisions lead to destruction of the solitons immediately after
the collision, rather than their merger. As shown in Fig. 10,
the critical value of the kick’s strength, below which the
collision results in the destruction and above which it is
quasielastic, grows very steeply as the energy approaches
Emin, the minimum energy necessary for the existence of the
on-site-centered solitons [see Eq. (33)].

To analyze the merger in more detail, we will now focus
on the case of E > 5.2, where the collisions do not cause
the destruction. At velocities sufficiently close to (but smaller
than) ωc, the merger proceeds through multiple collisions,
which eventually give rise to a breather (an oscillating localized
mode), as shown in Fig. 11. Such multiple interactions, which
demonstrate repeating attempts of the solitons to separate, are
a feature known in other nonintegrable systems [54]. Note
also that the collision shown in Fig. 11 gives rise to a very
small amount of radiative energy loss (see values of the energy
indicated in the caption to the figure).

The effect of the multiple collisions disappears at small
values of the velocity. Figure 12 displays the merger between
the same solitons as in Fig. 11, but this time kicked by
ω = ± 0.01. In this case, the merger occurs immediately after
the first collision, while the radiative losses remain negligible.

B. Quasielastic head-on collisions

A typical example of the quasielastic collision between
solitons moving at velocities ω > ωc is shown in Fig. 13. It is
seen that the collision brings about a change in velocities of
the colliding solitons. In Fig. 13, the velocities are reduced by
55% after the collision. The collision-induced changes of the
velocities are summarized in Fig. 14. Here too, irregularities

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

ω

v f / 
v i

 

 

E=6.5

E=7.3

E=8.5

E=11.7

FIG. 14. (Color online) The collision-induced velocity change for the colliding solitons. The plots show the ratio of the final velocity to its
initial value versus the kick’s strength (at E ω > ωc), for different soliton energies E.
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FIG. 15. (Color online) The collision with the transverse shift. Shown are contour plots of the field amplitude in the central cores of the
two solitons, n = 0 (a), n = 1 (b). The solitons, each with energy E = 6, are kicked at z = 0 by ω = ± 0.6. The interaction causes a significant
velocity change, by 62%.

appearing in the plots are genuine features, rather than
numerical artifacts; cf. Fig. 9.

C. Soliton collisions with the transverse shift

Collisions between counterpropagating identical solitons
centered in adjacent cores, rather than in a common one, were
studied too. An example is displayed in Fig. 15, for the solitons
centered at n = 0 and n = 1.

As in the case of the head-on collisions, the outcome
of the “shifted” collision is also characterized by a critical
velocity, ωc, quasielastic collisions taking place at ω > ωc(E).
However, the difference is that the interaction does not lead to
a merger at ω < ωc(E). In fact, the outcome of the interaction
is not well defined in the latter case, small changes in the
energy or velocity producing significantly different results.
The cause of this effective instability is that, at the exact
“moment” of the collision, with both solitons centered at
τ = 0 (in the longitudinal direction), the resulting field in the

FIG. 16. (Color online) The critical velocity for the collisions
between solitons with the transverse shift, versus the solitons’ energy,
at E > Emin.

arrayed waveguide resembles that of an intersite soliton in the
corresponding discrete NLSE, which is unstable, as discussed
above (on the contrary, head-on collisions produce wave fields
resembling stable on-site solitons). Below, we consider the
well-defined region of quasielastic collisions.

The dependence of the critical velocity on the solitons’
energy for the present case, produced by systematic
simulations, is presented in Fig. 16. As in Figs. 9 and 14, the
irregular shape of the line is a true dynamical feature, rather
than a result of an insufficient numerical accuracy. From
Figs. 16 and 9 we conclude that ωc is smaller for the “shifted”
collisions, in comparison with the head-on configuration. This
conclusion is natural, as the interactions between two solitons
centered in the same core are stronger than between solitons
propagating in adjacent cores. Finally, similar to the case of the
head-on interactions, the “shifted” elastic collisions give rise
to a change of velocities of the involved solitons (not shown
here in detail, as this effect is quite similar to that displayed in
Fig. 14).

V. CONCLUSION

In this work, we have revisited the previously known model
of the tunnel-coupled array of parallel waveguides, which
has realizations in optics (in both the temporal and spatial
domains), as well as in BEC. It was known [21,22,24,40] that
the arrest of the 2D collapse by the transverse discreteness
gives rise to SDSs (semidiscrete solitons) in this system. In
the present work, we aimed to develop the VA (variational ap-
proximation) and other analytical methods for the description
of the SDSs, and to study, by means of systematic simulations,
their mobility and collisions. It has been found that the
VA yields quite accurate results for the families of stable
on-site-centered and surface-mode SDSs. The exact solution
of the linearized equations for the cores adjacent to the central
one [see Eqs. (15) and (17)] provides a good approximation
for very narrow solitons too. The simulations have shown
that the true solitons have no mobility across the array
(nonsoliton semidiscrete patterns may be efficiently mobile
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in the transverse direction, and may actually be temporarily
stabilized by the corresponding kick). The systematic analysis
of the collisions between the on-site-centered SDSs moving
in the continual direction clearly shows a sharp boundary
between quasielastic interactions and merger. The exact form
of the boundary contains irregular features, but its average
shape can be explained by means of an analytical estimate.
The very fact of the merger caused by the collision between
the SDSs, which are strongly localized in the transverse
direction, is a noteworthy finding, as, in the limit when
almost all the energy is trapped in the central core, one might
expect completely elastic collisions governed by the usual
NLSE. Collisions between solitons centered at two adjacent
cores, rather than in the same one, have been considered
too.

As the next step of the analysis, it is possible to look for
higher-order modes, built as N -solitons (actually, breathers),
produced by multiplying the stationary SDS by integer factor
N . Such exact solutions of the single-core NLSE are well-
known objects [28]. We have checked that SDSs for N = 2 are
robust breathing modes, which are similar to their counterparts
in the single-core NLSE. It remains to study interactions
between them in the framework of the present system.

A more challenging generalization may be a semidiscrete
array in the form of a fiber bundle with the structure of a
discrete 2D lattice in the transverse plane, similar to the one
which was recently used to create the semidiscrete spatiotem-
poral solitons [25]. In particular, it would be interesting to
study the corresponding SDSs with the structure of discrete
vortices [55, 19] in the transverse lattice.
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