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Quantum simulation of Cooper pairing with photons
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We propose a scheme to observe the crossover from weakly to strongly bound pairs with stationary polaritons.
We first show how stationary light-matter excitations (polaritons) can realize an optically tunable two-component
Bose-Hubbard model with repulsive intraspecies interactions and attractive interspecies interactions. We then
discuss the feasibility of generating an effective Fermi-Hubbard model of polaritons exhibiting the crossover
behavior. The predicted behavior of the system characterized by a crossover from short- to long-range spatial
correlations as interactions are tuned can be efficiently observed by measuring correlation functions on the light
exiting the waveguide.
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I. INTRODUCTION

Superconductivity is undoubtedly one of the most fascinat-
ing phenomena in condensed matter systems [1–4]. Bardeen-
Cooper-Schrieffer (BCS) theory [5,6] provided the first sat-
isfying explanation of the effect by proposing that fermions
form long-range pairs (Cooper pairs) under an arbitrarily
weak attractive interaction. Cooper pairs are exhibited in the
attractive Fermi-Hubbard (FH) model, where the so-called
BCS-BEC crossover was shown to occur [7–13]. Due to the
remarkable progress in the field of ultracold atoms trapped
in optical lattices [14,15], the FH model has recently been
realized experimentally [16–18].

On the other hand, by using bosonic mixtures in a one-
dimensional (1D) optical lattice under the regime of strong
intraspecies repulsion, a realization of an effective FH model
has been proposed [19]. This is done by utilizing the well-
known mapping of 1D hard-core bosons into free spin-less
fermions [20,21]. In this setup, one could not only observe
the 1D version of the BCS-BEC crossover, but also a new
regime that appears as the interspecies attraction is increased
in comparison to the intraspecies repulsion. The system was
shown to move away from the fermionic BCS-BEC regime and
enter into a new strongly localized bosonic phase, termed “big
boson” (BB), where almost all the bosonic molecules occupy
the same site [19].

Working along the lines of the two-species-boson model
studied by the authors of [19], we introduce a quantum sim-
ulator made out of massless photons, instead of massive cold
atoms as in previous proposals, to probe the typical crossover
physics. In earlier works investigating the crossover using cold
atoms, only the density profiles and indirect measurements
of the gap are made using time-of-flight measurements.
Efficient correlation measurements, which would reveal more
information on the effects in question are still challenging to
obtain there. Our complementary system, of fundamentally
different origin, is able to provide such correlations via
standard measurements on optical coherence functions of the
emitted photons from the medium. Specifically, our work is
motivated by recent progress in the field of photonic quantum
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simulations using 1D nonlinear waveguides [22–24], where
photon crystallization, Luttinger liquids behavior, and the
“Pinning transition” have been predicted [25–29]. In this area,
it is still not clear how one could engineer the waveguide
system doped with four-level atoms to generate two-species
of polaritons obeying the Lieb-Liniger dynamics with repul-
sive intraspecies and attractive interspecies interactions, and
whether this system can be driven to the “weak interaction and
deep potential” regime, where the crossover occurs.

To answer the above questions, we first introduce the setup
and analyze the parameter regime for the generation of a
highly tunable two-component Bose-Hubbard (BH) model
of polaritons [30–36]. We then investigate the possibility of
tuning the polaritonic repulsive intraspecies interactions strong
enough to generate effective fermionic behavior. Next the
interspecies interactions are tuned to be attractive, allowing
for the observations of the (1D version of) BCS-BEC-BB
crossover by analyzing the spatial correlations of the trapped
excitations. The last of these can be efficiently performed by
coherently mapping the polaritons into propagating photons
which are then measured as they exit the waveguide.

II. MODEL SETUP

Our proposal exploits strong nonlinearities and wide tun-
ability available in photonic systems based on the electromag-
netically induced transparency (EIT) effect. Two experimental
candidates in this direction have been proposed recently,
where cold atomic ensembles are brought closer to the surface
of a tapered fiber [37,38] or are loaded inside the core of
a hollow-core waveguide [39–43] as depicted in Fig. 1(a).
Two species of cold atoms a and b with linear densities
na and nb are considered in our scheme. The procedure
to observe the desired phenomena can be summarized into
the following steps: preparation of laser-cooled atoms and
light fields, generation of stationary polaritons, and the lattice
potential, steering the system to a particular regime (phase)
and finally releasing the polaritons into outgoing photons to
measure characteristic correlations. In the first step, laser-
cooled atoms with four hyperfine levels are prepared in
the ground states and then transferred into the hollow-core
waveguide via cold atoms transferring techniques [41–43]
or brought closer to the surface of a nanofiber [37,38]. Two
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FIG. 1. (Color online) (a) A schematic diagram of the system
under study. In a fiber setup (a hollow core version is shown here [43]
but a tapered fiber approach [38] could also be used), cold atoms are
interacting with a pair of quantum fields Ê1,2, and a pair of classical
fields �a,b. The resulting stationary light-matter excitations in the
waveguide can be steered to a strongly interacting regime mimicking
an effective FH model with highly tunable attractive interactions.
(b) The atomic level structure for a type-a atom. Type-b atoms
have similar structure but primarily coupled to Ê2 (c) Schematic
illustration of interesting phases discussed in the text. Coherently
mapping the stationary excitations to propagating photon pulses
allows for the efficient probing of the BCS-BEC crossover by
measuring the temporal correlations of the photon pulses leaving the
fiber.

right-propagating quantum fields, Êj,+(z,t) with j = 1,2, and
two co-propagating classical fields, �x,+(t) with x = a,b, are
then injected into the waveguide. The two quantum fields
then interact with atoms as in the typical EIT-based scheme.
Here, the probe beams Êj,+(z,t) are coherently converted
into atomic excitations by adiabatically switching off the
control beams �x,+(t) after the quantum pulses Êj,+(z,t)
completely enter the medium. In the second step, the left-
and right-propagating control fields �x,−(t) and �x,+(t) are
slowly turned on to form two standing wave patterns. The
resulting Bragg gratings create stationary excitations [30–35].
Such a (coherent) stationary polaritonic state is the ground
state of the system as the initial state of the following process.
After tuning the parameters and achieving the desired state,
switching off �x,−(t) converts the polaritons into traveling
photons, measuring which establishes the density-density
correlation functions. Although a numerical analysis is needed
to obtain precise answers, during the whole adiabatic operation
process the initial state remains in the ground state of the
instantaneous Hamiltonian to a good approximation, so that
the final state is approximately the ground state of the final
Hamiltonian.

At the second stage, the Hamiltonian in the interaction
picture reads

H = Ha + Hb, (1)

with

Hx = −h̄nx

∫
dz

{
�x

2σ
x
22 + �x

3σ
x
33 + �x

4σ
x
44

+
√

2π

2∑
j=1

gx
j

(
σx

21 + σx
43

)
eiδx

j t

× (
Êj,+eik

(j )
qu z + Êj,−e−ik

(j )
qu z

)

+ [(
�x,+eik

(x)
cl z + �x,−e−ik

(x)
cl z

)
σx

23 + H.c.
]}

, (2)

where x = a,b. For simplicity, we omit the space and time
dependence of the operators. The continuous collective atomic
spin operators σx

pq ≡ σx
pq(z,t) give the averages of |p〉x〈q| over

the x-type atoms in a small but macroscopic region around
z. The wave numbers and central frequencies of the slowly
varying quantum and classical fields are denoted by k(1,2)

qu ,

k
(a,b)
cl and ω(1,2)

qu , ω
(a,b)
cl , and the quantum pulse detunings as

δa
2 = ω(1)

qu − ω(2)
qu , δb

1 = −δa
2 with δa

1 = δb
2 = 0. gx

j is the single-
photon-single-atom coupling constant between an x-type atom
and the j th quantum field. For simplicity Ê(1,2) are assumed to
be coupled to the transitions |2〉x〈1| and |4〉x〈3| with the same
strengths gx

(1,2). One-photon detunings are denoted by �x
2 and

�x
4 , and the two-photon detunings are �x

3 , where the detunings
for x = a,b are defined with respect to the probe fields 1,2,
respectively [see Fig. 1(b)].

The evolution of the quantum fields Êj,± in the nonlinear
medium is described by the Maxwell-Bloch equations

(∂t ± vj∂z)Êj,±

= −ivj�ωj Êj,± + i
√

2πnxj g
xj

j

× [
σ

xj

12,±(z,t) + σ
xj

34,±(z,t)
] + i

√
2πnxjg

xj

j

× [
σ

xj

12,±(z,t) + σ
xj

34,±(z,t)
]
e∓iδb

1 e±(k(2)
qu −k

(1)
qu ), (3)

where j = 1,2, x1 = a, x2 = b, and x1 = b, x2 = a. Here
the slowly varying collective atomic operators σ

xj

pq(z,t) =
eik

(xj )

cl σ
xj

pq,+(z,t) + e−ik
(xj )

cl σ
xj

pq,−(z,t) have been introduced.

vj = ω
(xj )
qu /k

(j )
qu is the speed of the quantum fields Êj,± in an

empty waveguide and �ωj = ω
(xj )
cl − ω

(j )
qu is the frequency

difference between the classical and quantum fields. The
collective atomic operators obey the usual Langevin-Bloch
equations that can be solved following the standard method
in the literature [34,44,45]. After adiabatic elimination of
the fast-decaying operators, slowly varying operators can be
solved in terms of the right- and left-propagating polariton
operators 	j,± = g

xj

j

√
2πnxj Êj,±/�xj

that describe the long-
lived stationary light-matter excitations of the system. Note
that we have assumed �xj

= �xj ,±. Substituting the result
into the Maxwell-Bloch equations, we find that the stationary
polariton operators 	j = (	j,+ + 	j,−)/2 obey two coupled
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nonlinear Schrödinger equations [25–29]

i∂t	j = − 1

2mj

∇2	j + Vj	j + 2χj	
†
j	

2
j + χ12	j	

†
j
	j

(4)

with j �= j . This equation can be derived from a two-
component Lieb-Liniger (LL) Hamiltonian

H =
∫

dz

2∑
j=1

{
	

†
j

[
1

2mj

∇2 + Vj

]
	j + χj	

†
j	

†
j	j	j

}

+χ12

∫
dz	

†
1	1	

†
2	2. (5)

The one-photon detunings �x
2 lead to a quadratic dispersion

of the polaritons where the effective polaritonic masses are

mj = − �1D
j nxj

4�
xj

2 v
g
j

. (6)

Here, v
g
j = vj�

2
xj

/(πg2nxj ) is the group velocity of j -type
polaritons in the nonlinear medium where we have assumed
that g

xj

j = g for simplicity. �1D
j = 4πg2/vj is the spontaneous

emission rate of a single xj -type atom into the waveguide
modes. The second term in Eq. (5) gives an effective potential

Vj = �ωjv
g
j

vj

− �xj �1D
j �

xj

3 v
g
j n

xj

4�2
xj

. (7)

Normally, this term is reduced to zero by tuning �ωj , but
in this work we will utilize this term to produce a lattice
potential as shown below. The nonlinear terms corresponding
to intraspecies and interspecies interactions are given by

χj = (�xj )2xj �1D
j v

g
j

2�
xj

4

(8)

and

χ12 = na(�a�b)2a�1D
1 v

g
1

nb�2
a

(
�a

4 − δa
2

) + nb(�b�a)2b�1D
2 v

g
2

na�2
b

(
�b

4 − δb
1

) , (9)

where two dimensionless quantities �x = �2
x/(�2

x −
�x

3�
x
2/2) and x = (�x

4 − �x
3/2)/(�x

4 − �x
3) are introduced.

As one would expect, the above nonlinear terms are inversely
proportional to the single photon detunings of the quantum
fields with respect to the transitions |3〉x ↔ |4〉x .

To add effective polaritonic lattices commensurate to each
of the photonic densities n

ph
j , we follow the method outlined

in [28] for single species of photons. By applying standing
microwave fields, some atoms are transferred from the ground
state |1〉x to an irrelevant state |u〉x , thus creating slightly
modulated atomic densities in the ground state |1〉x

nxj = n
xj

0 + n
xj

1 cos2
(
πn

ph
j z

)
, (10)

where we have assumed that n
xj

0 
 n
xj

1 . For standing mi-
crowave fields, the transfer rate px

u from |1〉x to |u〉x is
(�x

M.W.)
2 cos2(πn

ph
j z)t2 [46]. Switching on two microwave

fields for t ∼ 6 ns transfers ten percent of atoms from |1〉x
to |u〉x , corresponding to n

xj

1 � 0.1nxj . For n
ph
j = 300 m−1,

the wavelengths of the microwave fields should be 2–3 cm,
which indicates that the frequency difference between states

|1〉x and |u〉x should be around 45 GHz. With the modulation,
the potentials Vj become

Vj = �ωv
g
j

vj

− �xj �1D
j �

xj

3 v
g
j n

xj

0

4�2
xj

− �xj �1D
j �

xj

3 v
g
j n

xj

1 cos2
(
πn

ph
j z

)
4�2

xj

. (11)

Choosing �ω = �xj �1D
j �

xj

3 vjn
xj

0 /(4�2
xj

), the effective po-

tentials reduce to Vj = μj cos2(πn
ph
j z) with lattice depths

μj = −�xj �1D
j �

xj

3 v
g
j n

xj

1

4�2
xj

. (12)

For simplicity, we assume the symmetric situation where all the
species-dependent parameters are identical: �x = �, n

ph
j =

nph, nx = n, nx
1 = n1, vj = v, vg

j = vg, �1D
j = �1D, and �x

k =
�k for k = 2,3,4. The interaction parameters thus lose their
subscript j in the following.

III. DECOHERENCE

We first recall that the parameters in the coupled nonlinear
Schrödinger equations, Eq. (4), have nonzero imaginary parts
that describe photon losses [25]. These as we show can be
ignored in the limit of large single photon detunings and as
long as the evolution time does not exceed the coherence time
defined by the total loss rate. We show that both conditions are
satisfied in our setup. Including photon losses the parameters
read

m = − �1Dn

4(�2 + i�)vg
, (13)

χ � �1Dvg

2(�4 + i�)
, (14)

χ12 � 2�1Dvg(�4 + i�)

(�4 + i�)2 − (
δb

1

)2 . (15)

The potential V also has a nonzero imaginary component, but
the loss term is negligible compared to other terms. The linear
loss term, which results from a finite bandwidth of the EIT
transparency window, can be written as

∂	j

∂t
∼ vg�

n�1D

∂2	j

∂z2
. (16)

The loss terms coming from the nonlinear intraspecies and
interspecies interactions are given by

∂	j

∂t
∼ 1

2

�1D�vg	
†
j	

2
j

�2
4

, (17)

∂	j

∂t
∼ 2

�1D�
[
�2

4 + (
δb

1

)2 + �2
]
vg	j	

†
j
	j[

(�4)2 − (
δb

1

)2][
�2

4 − (
δb

1

)2 + �2
] . (18)

In the strong coupling regime, the largest spatial compo-
nents are given by �z ∼ (nph)−1, where nph is the polaritonic
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density. Then the loss rates are given by

κl = (nph)2vg�

n�1D
, (19)

κns = 1

2

�1D�vgnph

�2
4

, (20)

κnd = 2
�1D�

[
�2

4 + (
δb

1

)2 + �2
]
vgnph

[
(�4)2 − (

δb
1

)2][
�2

4 − (
δb

1

)2 + �2
] . (21)

κl denotes the linear loss rate and κns, κnd denote the
nonlinear loss rates coming from intraspecies and interspecies
interactions.

For the parameters given in Fig. 2 (i.e., n/nph = 104, nph =
300 m−1, � � 20 MHz, η = �1D/� = 0.2, vg ∼ 100 m/s,
�2 = −5�, �3 = −0.01�, 15� � �4 � 30�, and 1.5�4 �
δb

1 � 5.5�4), the maximum total loss rate κtotal = κl + κns +
κnd is 140 Hz, giving the decoherence time of 7 milliseconds.
We note that this is long enough to allow for the entire
processes of preparation, evolution, and readout.

IV. TWO-COMPONENT POLARITONIC BH AND
EFFECTIVE FH MODELS

To map the LL Hamiltonian (5) to a two-species BH model,
we assume the control lasers during the second step are ramped
up to � � �, and the detunings are set to the values �2 =
−5�, �3 = −0.01� (see Fig. 2). As shown in [28] for a single
species, when the external microwave fields are slowly turned
on to make n1/n larger than 0.05, the lattices are sufficiently
deep to map the LL Hamiltonian (5) to a two-species BH model

H = −
∑

〈i,j〉,σ
tσ a

†
iσ ajσ +

∑
i,σ

Uσn2
iσ + V

∑
i

ni↑ni↓, (22)

where aiσ is the annihilation operator of a σ -type polariton at
the ith site and 〈i,j 〉 stands for nearest neighbors. The hopping
and coupling strengths are given as

tσ = 4√
π

μ3/4E
1/4
R exp(−2

√
μ/ER), (23)

Uσ =
√

2π

2
χnph(μ/ER)1/4, (24)

t/U=0.1
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FIG. 2. (Color online) Achievable polaritonic (a) interspecies
interaction V/U and (b) hopping strength t/U as functions of the
quantum pulse frequency difference δb

1 , single photon detuning �4,
and the atomic distribution modulation n1/n. Here the parameters
are set as �1D = 0.2�, n/nph = 104, �2 = −5�, � = �, and �3 =
−0.01�.

and

V =
√

2π

2
χ12n

ph(μ/ER)1/4, (25)

where ER = π2(nph)2/(2m) is the recoil energy. As t↑ = t↓
and U↑ = U↓, we drop their subscripts in the following.

Based on the above expressions, the ratios of interspecies
to intraspecies interaction

V

U
= 2�2

4

�2
4 − (

δb
1

)2 , (26)

and the hopping to repulsion

t

U
= 4μ1/2E

1/2
R exp(−2

√
μ/ER)√

2πχnph
(27)

are plotted in Fig. 2. We have chosen the atomic and photonic
densities to give n/nph = 104 and the single atom cooperativity
as η = �1D/� = 0.2 with the typical atomic decay rate for
the Rb transition given by � � 20 MHz. These correspond to
optical depths of roughly 1000.

The two-component polaritonic BH model described by the
Hamiltonian (22) can be mapped to an effective FH model ex-
hibiting the (1D version of) fermion-like BCS-BEC crossover
by tuning t/U � 1 − |V |/U with U > 0 and V < 0, where
the strong intraspecies repulsion U enforces an effective Pauli
exclusion principle. The validity of boson-fermion mapping
has been discussed in detail in [19] and although one-body
correlations always show bosonic behaviors, density-related
observables give the same results for fermions and hard-core
bosons. The necessary regime for the mapping can be achieved
in our case by setting χ > 0 and χ12 < 0 which, assuming
m > 0, means setting the detunings �2 < 0 and 0 < �4 < δb

1 .
The ratio t/U � 1 − |V |/U can be tuned by controlling �4

and n1/n as shown in Fig. 2, where t/U can be as small as
0.01 while keeping the tunability range of |V |/U relatively
large. Beyond this fermion-like limit, when the ratio |V |/U

becomes larger, the highly bosonic BB behavior is expected to
appear [19]. We would like to point out that different regimes
leading to effects such as spin-charge separation or Kondo
physics are also accessible.

V. CROSSOVER WITNESS

In BCS- and BEC-like phases, the polaritons form extended
Cooper-pair-like objects and localized bosonic molecules,
respectively. The correlations which are directly related to
these different pairing phenomena can be straightforwardly
observed in our system by switching off either the two left-
or right-propagating classical fields, hence coherently map-
ping the stationary polaritonic correlations into propagating
photons in the usual slow-light manner [30–35].

In Fig. 3, we calculate the second-order cross-species
density-density correlation, g

(2)
↑↓(l) = ∑

i〈ni↑ni+l↓〉, and the
density-density correlation between cross-species popula-
tion differences, g

(2)
− (l) = ∑

i〈(ni↑ − ni↓)(ni+l↑ − ni+l↓)〉, as
functions of V/U for the same (l = 0), and neighboring (l =
1) sites, for two different values of hopping strengths. These
correlations can be measured by collecting the component-
resolved photon-counting records and analyzing the collected
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(a) (b)

(c) (d)

FIG. 3. (Color online) Correlation functions for polaritons: In
(a) and (b) the second-order cross-species correlations g

(2)
↑↓(l) are

plotted as functions of the interspecies interaction for the same site
(l = 0) and neighboring sites (l = 1), for two values of hopping
strengths t = 0.01 and t = 0.1. The colored gradient background,
proportionate to the on-site cross-species correlation, portrays the
BCS-BEC-BB crossover. (c,d) show the correlation between the
difference in populations for the two species. Note the sensitivity
to the BCS-like phase. The coherent transfer of the polaritonic
correlations to propagating photonic ones allows for witnessing the
different phases of the system using photon coherence measurements
and energy resolving photodetectors.

data. For example, one could use a beam splitter and energy-
resolving photon detectors to collect the required data, or one
could even make the two species travel in different directions
in principle.

More specifically, we numerically compute for illustration
(and as a guide for a possible experimental implementation)
the ground state of the Hamiltonian (22) for six polaritons in
eight sites (i.e., three photons in each quantum pulse and a
polaritonic potential modulation with the wave vector km =
2π ∗ 8/L). Here L is the waveguide length taken to be a few
centimeters.

The signatures of the BCS-BEC-BB crossover is apparent
from the on-site correlation g

(2)
↑↓(0) as shown in Figs. 3(a) and

3(b). Abrupt changes in g
(2)
↑↓(0) (normalized to the value at

|V |/U = 1.5) at |V | = U indicate a transition from the BB
state, where all the polaritons pair up at a single site, to the
localized pairing (BEC) state, where different pairs prefer to
space out. The curves also indicate a crossover from the locally
paired (BEC) state (when |V | 
 t) to the long-range paired
(BCS) state (|V | � t) which takes place in the Fermionic
regime. The colored background portrays the different phases
and how they cross over. The black dashed curves show the
correlations at l = 1, indicating that the photonic BEC pairs
space out in the BEC region as t/|V | is increased until the
system crosses over to the BCS regime. Figures 3(c) and 3(d)
illustrate g2

(−)(0) and g2
(−)(1), respectively, normalized to their

values at |V |/U → 0. These show high sensitivity to the BCS-
BEC crossover (left side of the subfigures), but are not suitable
for observing the BB-BEC crossover. In the photon correlation

FIG. 4. (Color online) Cross-species second-order correla-
tion function for t/U = 0.01 and different values of |V |/U =
1.4,0.99,0.5,0.001 as a function of the distance l in units of the
effective photonic lattice spacing.

measurements of g
(2)
↑↓(0), the BCS-BEC-BB crossover appears

as a transition from a strongly antibunched behavior in the
BCS regime to a highly bunched behavior in the BB regime.

While the correlation functions at l = 0,1 give good
signposts for the three phases we have discussed, correlations
at longer distances need to be considered, especially in the
BCS regime, to completely describe the physics. Figure 4
shows g

(2)
↑↓(l) for different values of |V |/U with t/U = 0.01

fixed as a function of the distance. The expected short-range
to long-range correlations are clearly visible in the expected
regimes which can also be related to the size of the effective
pairs in each case.

VI. CONCLUSION

In conclusion, we have shown that slow-light-EIT-based
techniques can be used to controllably prepare and observe
strongly correlated states of photons, which makes the realiza-
tion of two-species polaritonic BH, and thereby effective FH
models, possible. The wide tunability of parameters such as
interaction strengths and lattice depths allows the BCS-, BEC-
like, and BB regimes to be achieved in our photonic system,
where, counterintuitively, the physics of massive fermions are
simulated using massless photons. After achieving a desired
phase, the polaritons are released as outgoing photons for
read-out by turning off the classical lasers traveling along
one direction. The density-density correlations can provide
extremely interesting information on the BCS, BEC, and BB
phases of the system, but they are still challenging to obtain
in other BCS-BEC-BB crossover proposals. In our system,
however, they can be readily measured through the density-
density coherence functions of emitted photons using energy
resolving photodetectors. The experimental accessibility of
correlation functions also makes our scheme an excellent
candidate for efficient observations of other fermionic effects
such as the Kondo effect and spin-charge separations.
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