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Effect of a magnetic field on a two-dimensional metallic photonic crystal
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We study the effect of a static magnetic field on the band structure of a two-dimensional metallic photonic
crystal (MPC). The band structure of the MPC has been calculated using the transfer matrix method. It is found
that the position of the photonic band gap and the band edges of the MPC depends on the polarization of the
incident light and intensity of the applied magnetic field. In our calculations we consider linearly polarized light
as well as right- and left-circularly polarized light. In the case of right-circularly polarized light it is found that
as the intensity of the magnetic field increases the width of the band gap of the crystal decreases. At a certain
magnetic field strength the band gap disappears altogether. In other words there is a transition from a metallic
photonic band gap material to a transparent dielectric material. This is an interesting effect which is similar
to the metal-insulator transition that occurs in semiconductors. On the other hand, for left-circularly and linear
polarized light the band edges shift to the higher energy and the band gap increases in the presence of a magnetic
field. This implies that the MPC switches from a transparent state to reflecting states due to the application of the
magnetic field. This is an interesting effect which might be used to make photonic switches.
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I. INTRODUCTION

A distinctive feature of photonic crystals is the presence of
one or more global photonic band gaps. It is known that a high
dielectric contrast is required to have a complete photonic
gap in dielectric photonic crystals [1]. These conditions
have severely restricted the set of dielectrics that exhibit a
photonic band gap. However, metals with energy-dependent
dielectric constants are the best alternative to overcome this
barrier [2,3]. These crystals, which are called metallic photonic
crystals (MPCs) or metallodielectric photonic crystals, are
more reflective over a broader range of frequencies than those
made of dielectric or semiconductor materials. Photons also
interact much more strongly with metals than with dielectrics.
Hence these structures are more likely to possess a complete
photonic band gap than their dielectric counterparts. The band
gap in these crystals is due to the plasma screening effects
and Bragg scattering. Therefore they are more useful for
developing integrated photonic devices [4,5].

Much experimental and theoretical research has been done
on two-dimensional (2D) MPCs because of their potential to
control electronic and photonic resonances simultaneously.
For example, Moroz [6] showed that small metal inclusions
can have a dramatic effect on the photonic band structure of
diamond and zinc-blende photonic crystals. Ustyantsev and
co-workers [7] theoretically studied the effect of the dielectric
background in 2D MPCs consisting of a square lattice of
circular metallic rods embedded into a dielectric background.
They showed that the band structures shift toward lower
frequencies and become flatter when the background dielectric
constant increases. However, there has been little work done
to investigate tunable MPCs whose characteristics can be
controlled by external factors. For example, Kee et al. [8]
investigated the heliconic band structure of one-dimensional
MPCs. They showed that the heliconic band structure can
easily be controlled by an external static magnetic field. Lim
et al. [9] studied the effects of liquid crystal infiltration on the

photonic band gaps (PBGs) of 2D square and triangular lattices
of metallic rods (tunable MPCs). The infiltration of liquid
crystals into the square lattice enlarges the PBG that already
exists in the air background and creates another higher-order
PBG. Figotin et al. [10] showed how the electromagnetic
spectrum of the photonic crystal can be altered over a wide
range by an external quasistationary uniform magnetic and
electric field.

Recently Wang et al. [11] demonstrated theoretically a
different mechanism for creating a one-way waveguide where
a magnetic field can lift the intrinsic degeneracy of photonic
bands, create a band gap, and generate reflection-free one-
way edge modes. They showed the existence of one-way
electromagnetic modes in a waveguide formed between a
semi-infinite photonic crystal structure and a semi-infinite
metal region under a static magnetic field. Fu and co-workers
[12], built a 2D square-lattice gyromagnetic photonic crystal
from the magneto-optical material yttrium iron garnet and
demonstrated its tunable electromagnetic properties by placing
the photonic crystal in a tunable dc magnetic field and
measuring the transmission spectra for microwaves.

In this paper we study the effect of a magnetic field on
the band structure of a two-dimensional metallic photonic
crystal. We consider 2D MPCs made from rectangular metallic
pillars arranged periodically in a 2D plane, where air is
taken as the background medium. The advantage of choosing
two metals lies in the fact that one can easily control the
size and location of the crystal’s band gap by manipulating
the plasma frequencies of two metals rather than one. This
structure has another advantage in that one can obtain
analytical expressions for the band structure and transmission
coefficient. We consider a MPC consisting of aluminum
(Al) with zinc (Zn) in an air background [13]. The band
structures for linearly polarized (LP), right-circularly polarized
(RCP), and left-circularly polarized (LCP) light are calcu-
lated. We also calculate the transmission coefficient for RCP
light.
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It is found that the positions of the photonic band gap and
the band edges of the MPC depend on the polarization of the
incident light and the intensity of the applied magnetic field.
For example, for LP and LCP light the band gap increases with
increase of the magnetic field. This is because the refractive
index of metals depends on the magnetic field. The band edges
shift to higher energy due to the magnetic field. This implies
that in the presence of a magnetic field the crystal switches
from a transparent state to reflecting states, and vice versa.
This effect can be used to make photonic switches. On the
other hand, for RCP light it is found that as the intensity
of magnetic field is increased the width of the band gap
decreases. At a certain magnetic field strength (called the
critical value) the band gap disappears altogether. In other
words, there is a transition from a 2D MPC to a transparent
material. In this case, the width of the band gap also decreases
with increasing magnetic field strength. This is an interesting
effect which is similar to the metal-insulator transition that
occurs in semiconductors.

II. THE EFFECT OF A MAGNETIC FIELD
ON THE PHOTONIC BAND STRUCTURE

We consider a 2D metallic photonic crystal made from two
rectangular metallic pillars B and C with dielectric constants
εb and εc, infinite in the z direction. The metallic pillars are
periodically arranged in a 2D (x-y) plane and the length of
the pillars lies along the z direction. In other words, the
structure is homogeneous in the z direction and periodic in
the x and y directions. The unit cells are arranged in a simple
tetragonal lattice. In each unit cell the opening domain has a
square shape, and is empty (i.e., an air space) with a dielectric
constant εa [13]. A schematic diagram of the MPC is shown in
Fig. 1. The cross-sectional area of the pillars is of the order of
40 000 nm2 and the length is of the order of several hundred
micrometers. These rods are generally treated as bulk metals in

FIG. 1. Schematic of the dielectric function in a 2D separable
rectangular MPC. The large white square regions have a dielectric
constant εa , while the small dark square and rectangular regions have
dielectric constants εb and εc, respectively. The parameters a and b

give the thicknesses of the layers and L = a + b is the lattice constant
in both the x and y directions.

the photonic crystal literature. Hence the structure considered
here is a three-dimensional system having periodicity in 2D.
It is well known that metals exhibit gyroelectric behavior in
the presence of a magnetic field, and we have included the
gyroelectric behavior in our formulation.

When an electromagnetic field is propagating in a metal,
the conductivity of the metal is energy dependent. Using
the Drude model we calculated the dielectric function of the
metallic pillars in the presence of an external field. We consider
that a magnetic field is applied along the z direction [i.e.,
B = (0,0,B)]. In this paper we study two field configurations.
In the first configuration, the k wave vector lies along the
direction of the magnetic field. This configuration is known as
the Faraday geometry. When right (+) and left (−) elliptically
polarized light is propagating in the metallic crystal the
dielectric function of metals is obtained as

ε±
b,c(B) = εL + 1

ω
(iσxx ∓ σxy),

σxx = ω2
p(γ − iω)

(γ − iω)2 + ω2
c

, (1)

σxy = ω2
pωc

(γ − iω)2 + ω2
c

,

where ωp is called the plasma energy and is obtained as ω2
p =

ne2/mε0εL. In the above equations, ε0 is the dielectric constant
of free space and n is the electron concentration. Here e is
the electronic charge, m is the mass of an electron, γ is the
relaxation rate of the electrons in a pillar, and εL is the static
dielectric constant of metals. The frequency ωc is called the
cyclotron frequency and is defined as ωc = eB/m. For linearly
polarized light the electric function can be written as

εl
b,c(B) = εL + i

1

ω
σxx. (2)

In the second configuration we consider that k is perpen-
dicular to B and it lies in the xy plane. This arrangement is
called the Voigt geometry. Let us consider that k lies along the
y direction, k = (0,k,0). Therefore in this configuration the
electric field vector can lie along the z direction, E = (0,0,E),
or the x direction, E = (E,0,0). When the electric field lies
along E = (0,0,E) the dielectric constant of the metallic rods
is obtained as

εb,c = εL + iεLω2
p

ω(γ − iω)
. (3)

Note that in this case the dielectric function does not depend
on the magnetic field. However, when the electric field lies
along E = (E,0,0) the dielectric constant is found as

εb,c = εL +
(
iε0εLωσxx − σ 2

xx

) − σ 2
xy

ε0ω(ε0εLω + iσxx)
. (4)

Note that in this case the expression of the dielectric constant
depends on the magnetic field.

The band structure of a 2D photonic crystal was calculated
by using the transfer matrix method in Ref. [13]. It is written
as

cos(kxL) = �x(ω,B,η),
(5)

cos(kyL) = �y(ω,B,η),

043839-2



EFFECT OF A MAGNETIC FIELD ON A TWO- . . . PHYSICAL REVIEW A 86, 043839 (2012)

where �x(ω,B,η) and �x(ω,B,η) are found as

�x(ω,B,η)

= cos

[
b

√(ω

c

)2 ζ (B)

2
− η2

]
cos

[
a

√(ω

c

)2 εa

2
− η2

]

−
⎛
⎝ (

ω
c

)2
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4
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ω
c
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c
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(6)
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(7)

In the above equations kx and ky are the Bloch wave vectors
along the x and y directions, respectively, and ω is the fre-
quency of the photons. Here a and b are the lattice parameters
and are related to the lattice constant as L = a + b. Here η

is the separation constant. The relation between the dielectric
constants is defined as ζ (B) = 2εc(B) − εa = εb(B).

Photons with energies lying within the band gap do not
propagate within a photonic crystal and photons with energies
lying within bands do propagate. Therefore, the transmission
coefficient T (ω) of the MPC can be calculated following the
method of Ref. [14] as

T (ω) = 1 − 	[1 − F (ω)], (8)

where the function F (ω) is obtained from Eq. (3) and is written
as

F (ω) = 1

L

√
[arccos(�x)]2 + [arccos(�y)].2 (9)

Here 	 is called the Heaviside step function and has the
following property: 	(x) = 1 for x > 1 and 	(x) = 0 for
x < 1.

III. RESULTS AND DISCUSSION

In this section we first calculate the behavior of the dielectric
function of a metal for different polarizations as a function of
the normalized frequency ω/ωp [15] for the Faraday geometry.
Note that for simplicity and the ease of calculations we
normalized all the frequencies by the plasma frequency (ωp)
where the relaxation rate (γ ) can be ignored. In Fig. 2, the solid
line shows the metal dielectric function versus the normalized
frequency in the absence of the magnetic field. This figure
shows that in the absence of the magnetic field all three
polarizations show the same behavior. On the other hand,

0
0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.8 0.9 1.0 1.1 1.2 1.3 1.4

−0.5

−1

0.5

1

0

−0.5

−1

0.5

1

0

−0.5

−1

0.5

1

FIG. 2. (Color online) Metal dielectric function versus normal-
ized energy. The solid, dashed, and dash-dotted curves are plotted
for the normalized cyclotron frequencies ωc/ωp = 0, 0.25, and 0.5,
respectively. (a) For right-circularly polarized light, the intercepts are
ω/ωp = 1, 0.88, and 0.78. (b) For left-circularly polarized light, the
intercepts are ω/ωp = 1, 1.13, and 1.28. (c) For linearly polarized
light, the intercepts are ω/ωp = 1, 1.03, and 1.12.

when a static magnetic field is applied all the curves shift.
In the right-circular polarization the normalized frequency
intercept shifts to the left, whereas in the left-circular and
linear polarizations the normalized frequency intercept shifts
to the right. For frequencies below the normalized frequency
intercept the dielectric function is negative and the refractive
index becomes an imaginary number; however, for frequencies
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greater than the normalized frequency intercept the dielectric
function is positive and the refractive index is real. We
calculate the band structure of the 2D MPC for different light
polarizations and magnetic field intensities. In our calculation
the crystal parameters are taken as a = 0.3L and b = 0.7L,
where L is the MPC lattice constant in the x and y directions.
The background material is taken as air. The metal refractive
index in our model is n2 = √

0.5ζ (B).
The band structure for right-circular polarization is shown

in Fig. 3(a) for two values of the normalized cyclotron
frequencies (ωc/ωp = 0 and 0.5) for the Faraday geometry.
In this figure the vertical axis shows the normalized frequency
ωn = ω/ωp and the horizontal axis shows the wave vector
K (π/L). The pale dotted curves show the band structure
in the absence of the magnetic field and the curves with
crosses show the band gap in the presence of the magnetic
field (i.e., ωc/ωp = 0.5). As one can see in the absence of a
magnetic field the MPC opens a band gap between ε0

L = 0.95
and ε0

U = 1.01. The band gap has the same value for all
polarizations. Here we denote by ε0

L and ε0
U the lower and

upper band edges, respectively, in the absence of a magnetic
field. For instance if the MPC is fabricated from aluminum
with plasmon energy εpb = 15.1 eV and zinc with plasmon
energy εpc = 10.1 eV, the photonic band gap lies in the
ultraviolet region of the electromagnetic spectrum between
ε0
L = 14.3 eV, and ε0

U = 15.3 eV. However, in the presence
of a static magnetic field the width of the band gap for the
normalized cyclotron frequency ωc/ωp = 0.3 lies between
εB
L = 0.90 and εB

U = 0.92. Here we denote by εB
L and εB

U the
lower and upper band edges, respectively, in the magnetic field.

Also, in the case of right-circular polarization the full band
gap disappears and the normalized cutoff frequency decreases
when the normalized cyclotron frequency increases. In this
case the critical normalized cyclotron frequency at which the
band gap completely disappears is ωc/ωp = 0.47, and the
width of the band gap decreases on increasing the intensity
of the magnetic field.

For the left-circular polarized light the band structure is
plotted in Fig. 3(b). In contrast to the case of right-circular
polarization, in the case of left-circular polarizations the
width of the photonic band gap and the cutoff frequency
increase on increase of the magnetic field. For example, the
width of the band gap for the normalized cyclotron frequency
ωc/ωp = 0.3 lies between εB

L = 1.03 and εB
U = 1.13 and the

cutoff frequency shifts toward the larger frequency. Note that
the frequencies of the spectra in Fig. 3 does not lie in the optical
frequency range. However, the frequency of the spectra can be
changed to the optical frequency range by changing the lattice
constant and the size of the rods.

For the linearly polarized light the band structure is plotted
in Fig. 3(c). Our calculations show that the band gap increases
with magnetic field but the rate of increase in the width
is lower than in the case of left-elliptically-polarized light.
In this case the width of the band gap for the normalized
cyclotron frequency ωc/ωp = 0.3 lies between εB

L = 0.96 and
εB
U = 1.04.

In Fig. 4 we plot the normalized photonic band gap width for
three polarizations as a function of the magnetic field (ωc/ωp).
Our calculations show that the normalized band gap width
varies linearly with the normalized cyclotron frequency for
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FIG. 3. Band structure of a 2D MPC with parameters n1 = √
0.5,

n2 = √
0.5ζ (B), a = 0.3L, and b = 0.7L for differently polarized

incident light. The vertical axis is the normalized frequency ωn =
ω/ωp and the horizontal axis is the normalized wave vector K/L.
The curves with crosses show the band structure in the presence of
the magnetic field, when ωc/ωp = 0.3. The second complete PBG
occupies the normalized frequency regions [0.90,0.92], [1.03,1.13],
and [0.96,1.04] for right-circularly (a), left-circularly (b), and linearly
polarized (c) incident light, respectively. The pale dotted curves
show the band structure when the normalized cyclotron frequency
is ωc/ωp = 0. In the absence of a magnetic field the MPC opens a
band gap in the [0.95,1.01] interval.

each polarization. In the case of right-circular polarization the
band gap width decreases linearly on increasing the normalized
cyclotron frequency (magnetic field strength). The slope of
this line is −12.6. In the case of left-circular and linear
polarization the band gap width increases on increasing the
normalized cyclotron frequency. The slope of the decrease
of the band gap width is 16 and 8.6 for left-circular and
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FIG. 4. (Color online) The normalized photonic band gap width
versus the normalized cyclotron energy for the Faraday geometry.

linear polarization, respectively. Note that in the absence of
the magnetic field the width of the band gap is the same for all
polarizations.

We have also calculated the normalized photonic band gap
for the Voigt geometry. The results are plotted in Fig. 5 as a
function of the normalized magnetic field. Our calculations
show that the photonic band gap width decreases with
increasing normalized cyclotron frequency when the electric
field is perpendicular to the magnetic field, whereas the band
gap does not change with the cyclotron frequency when the
electric field is parallel to the magnetic field. On the other
hand, in the Faraday rotation for the right- and left-circular
polarizations the band gap width increases and decreases,
respectively, linearly with the cyclotron frequency. In the case
of the linear polarization in the Faraday configuration we
have also an increasing trend for the band gap width. The
gyromagnetic effect [15–18] has been neglected since its effect
is negligible here.

The transmission coefficient is plotted in Fig. 6(a) as a
function of energy for LCP light. The dotted and dashed curves
in the figure correspond to ωc/ωp = 0 and ωc/ωp = 0.1,

FIG. 5. (Color online) The normalized photonic band gap width
versus the normalized cyclotron energy for the Voigt geometry.

FIG. 6. The transmission coefficient as a function of energy for
LCP and RCP light, respectively. The dotted and dashed curves
correspond to (a) ωc/ωp = 0 and 0.1 and (b) ωc/ωp = 0 and 0.5,
respectively.

respectively. Note that in the absence of magnetic field the
transmission coefficient is zero between the energies ε0

L =
0.95 and ε0

U = 1.01. This means that photons with energies
lying within the band gap do not propagate within a photonic
crystal. Similarly, the transmission coefficient is equal to 1
outside the band gap, and photons with energies lying within
bands propagate. In the presence of a magnetic field the
transmission coefficient edges for the LCP light shift to new
positions at εB

L = 0.98 and εB
U = 1.06 (see the dashed lines).

This means that LCP light with photon energy lying between
ε0
L and εB

L is totally transmitted in the presence of a magnetic
field, whereas in the absence of a magnetic field the photon is
totally reflected in this energy range. Similarly, LCP light with
photon energy lying between ε0

U and εB
U is totally reflected in

the magnetic field, whereas in the absence of a magnetic field
it is totally transmitted. This means that the transmission of
light can be switched on and off using the external field. This
effect might be used to make photonic switches.

For RCP light the transmission coefficient is shown in
Fig. 6(b) where the dotted and dashed curves are plotted
for ωc/ωp = 0 and ωc/ωp = 0.5, respectively. Note that for
ωc/ωp = 0 the transmission coefficient is zero between the
energies ε0

L = 0.95 and ε0
U = 1.01. In the presence of the

magnetic field the transmission coefficient edges located at
ε0
L and ε0

U disappear (see the dashed line). In other words, for
a certain value of the magnetic field the system switches to
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a transparent state for all energies of RCP light and the band
gap disappears. This effect is similar to the metal-insulator
transition which occurs in semiconductors and semiconductor
nanostructures.

In summary, we have studied the effect of a magnetic field
on the band structure of 2D MPCs. It is found that for LCP light
the band gap increases with increase of the magnetic field. The
band edges also shift to the right, and this implies that near
the band edges the system switched from a transmitting to a
reflecting state. This is an interesting effect which might be

used to make photonic switches. On the other hand, for RCP
light it is found that for a certain value of the magnetic field a
2D MPC transforms to a transparent material. This is similar
to the metal-insulator transition that occurs in semiconductors.
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