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Perfect invisibility cloaking by isotropic media
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In this paper the authors report that perfect invisibility cloaking could be achieved in a medium designed by
a non-Euclidean conformal transformation. Wave behaviors could be controlled as well as the cloaking device
configured by the general Euclidean approach dealing with the full Maxwell’s equations. The cloaking medium
proposed here is totally isotropic and can work in waves without the geometry and polarization limits; thus it is
very promising for applications to build a device to hide large objects.
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Research in invisibility cloaking using metamaterials has
grown rapidly after the two celebrated papers by Pendry
et al. [1] and Leonhardt [2] employing transformation optics
(TO). These two approaches were mathematically different
in the initial examples and gave cloaks of different index
profiles. Pendry’s approach is based on wave optics dealing
with Maxwell’s equations and thus is applicable to the
transforms with any situations in a Euclidean space, but as
a result it requires very complex cloaking structures with
inhomogeneous and anisotropic material properties [1,3–6].
Leonhardt’s approach works under geometrical optics dealing
with scalar Helmholtz equations and thus is applicable to
the transforms of very large structures satisfying adiabatic
conditions. It involves curved space transformation, so called
non-Euclidean transformation. This non-Euclidean conformal
transformation leads to a pure isotropic cloak and yet non-
experimental realization appears. Research efforts in the past
years have been mainly focused on the general approach and
have tried to improve the practical feasibilities with modified
algorithms [7,8] and demonstrated the cloaking effect from
microwave to visible light [9–16]. But there is still room
for theoretical and experimental cloaking-related research to
advance in order to reach or at least approach the final aim
of practical applications, in particular cloaking objects in full
electromagnetic space with no polarization limit.

The non-Euclidean conformal transformation enabling
adoption of isotropic cloaks is promising to fulfill this goal
and will receive more attention, but in a recent review article
conformal mapping was claimed not able to generate real
cloaking without suffering internal backscattering that would
make the cloak itself visible [17]. This problem has been
solved by including the non-Euclidean part to complete the
device within the valid range of geometrical optics resorting
to internal constructive light interference [18]. In the current
paper we will continue to show that the conformal cloaking
device can be properly configured to work perfectly for
geometric rays and even perfectly for waves. To do this we
need to avoid any internal discontinuity reflection and balance
the phase difference for lights traveling along different lines.

*Corresponding author: yungui@zju.edu.cn

An inside-out Eaton lens, as first proposed by Miñano [19],
is incorporated to yield an isotropic cloak that produces a
smooth refractive index profile. Negative index materials are
introduced in the cloaking core to cancel out the phase delay
and provide perfect wave cloaking.

We first briefly recall the conformal transformation tech-
nique for cloaking. This technique is generally based on a
coordinate mapping from a non-Euclidean virtual space (w)
into a planar physical space (z). The non-Euclidean space
employed, as shown in Fig. 1(a), consists of two Riemann
sheets connected through a branch cut (yellow lines). On the
upper sheet the incident light rays (short red arrows) touching
the cut line will be refracted onto the lower sheet and guided
back onto the upper sheet again by forming a closed loop
trajectory. This can be realized by placing a special focusing
lens on the lower sheet such as an Eaton lens [2]. The region
outside the lens on the lower sheet is optically screened and
thus objects placed there are invisible to an observer standing
far away on the upper Riemann sheet. This optical process
can be transformed into a two-dimensional physical space to
generate an invisibility cloak through a conformal mapping.
The simple Zhukovsky transform is often used to configure
the mapping process, i.e.,

w = z + a2

z
, (1)

where the constant a, equal to one fourth of the cut line length,
determines the final dimension of the cloaking device. One
can see w(z) is an analytical function and differentiable by
any order, thus satisfying the Cauchy-Riemann conditions for
a conformal mapping [3]. Through Eq. (1) the upper (lower)
Riemann sheet is mapped to be the region outside (inside) a
circle of radius a in the physical space, thus also called the
exterior (interior) Riemann sheet [2,18]. The isotropic cloak
index profile is calculated by

n(z) =
∣
∣
∣
∣

dw

dz

∣
∣
∣
∣
n′, (2)

where n′ represents the index profile of the original virtual
space. The upper sheet is often assumed to be empty space
with n′ = 1 and then the proper choice of n′ for the lower sheet
is important and it determines the final cloaking performance.
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FIG. 1. (Color online) Schematic of the virtual space. It consists
of two Riemann sheets with the upper one empty for air and the lower
one placed with a usual Eaton lens in (a) and an inside-out Eaton lens
in (b). On the upper sheet the incident light rays (short red arrows)
heading toward the branch cut (yellow lines) will fall off onto the
lower sheet and one loop later travel back onto the upper again. The
long green arrows represent light rays not entering the lower sheet.
Their interference with the light back from the lower sheet affects
the performance of the whole device. Note the cloaking medium in
(a) is pure dielectric but has equal magnetic and dielectric values
in (b) for the bottom lens consisting of one negative (−) and one
positive (+) half.

Here we first use a usual Eaton with the index profile
n′ = √

R/r ′ − 1, with R = 8a and r ′ = |w − i2a|. Outside
the Eaton lens n′ can take any value since no light enters there.
In our simulation it is filled by a perfectly conducting metal.
For this configuration internal backscattering will occur once
light hits the cut line due to the local impedance mismatch,
but this interface scattering will be minimized at certain
wavelengths where internal resonance is excited. The Eaton
lens belongs to one category of absolute optical instruments
that can be conformally constructed by mappings from non-
Euclidean geometries [19]. In the optical-mechanical analogy
the index profile of the Eaton lens corresponds to a Kepler
potential and light propagating inside it will form closed
trajectories [20]. Electromagnetically it behaves as a Fabry-
Perot waveguide that will induce a phase delay (�) in one
round of light travel. Constructive interference will happen
at some discrete wavelengths satisfying � = nπ with n an
integer and improve the cloaking effect by suppressing internal
reflection, as recently discussed by Chen et al. [18]. These
series wavelengths were further analyzed to correspond to
the harmonic eigenmodes of the Eaton lens described by
λ = 2πR/(2l + 1) with the integer l denoting the mode order.
We examined these eigenmode conditions and found that they
indeed led to perfect wave cloaking but only for some limit
cases at l � 3.

Figures 2(a) and 2(b) give the snapshots of the wave patterns
through a cloak at two Eigenmodes corresponding to l = 2 and
40, respectively. The incident wave comes from the left side
and the wave pattern is simulated by COMSOL Multiphysics.
The field intensity is normalized by the intensity of the incident
wave. Note that although conformal mapping usually yields
infinitely large samples, they can be effectively truncated to
have finite physical sizes through proper index approximation.
Here we define the cloak to have a total radius of 5a. As shown
in Fig. 2(a), good wave cloaking behavior is obtained for l = 2
except for slight wave-front deformation. Things placed inside
the black hole near the center are invisible. But for l = 40, as
shown in Fig. 2(b), the same index structure on the contrary
causes strong side scattering thus yielding a bad cloaking.

FIG. 2. (Color online) Cloaking effect with an Eaton lens incor-
porated. An Eaton lens is placed in the lower sheet to guide back the
incident light rendering the region outside cloaked as represented by
the black holes. The wave patterns in (a) and (b) are the snapshots
corresponding to the harmonic eigenmodes of the Eaton lens at the
order l = 2 and 40, respectively. The wave is denoted by the magnetic
component normalized by the incident field.

Similar wave patterns are observed for all the eigenmodes with
l > 3. This conflicting result cannot be interpreted from the
above theory. In addition we also notice that the backscattering
is not serious at the Eaton lens’s eigenwavelengths. This
indicates constructive wave interference does happen inside
the inner core of the cloak. But this alone does not grant the
cloaking performance because the out-of-phase interference
can happen outside the core between the light entering and not
entering the core (long green arrows in Fig. 1).

The phase change for light across the cloak core cannot be
predicted from geometrical optics, in particular considering
a wide incident angle. But in practice we can always choose
a lens with continuous boundary conditions and thus avoid
internal scattering. Here we choose a modified version of the
Eaton lens with the index profile defined by n′ = √

R/r ′ − 1 at
r ′ ∈ [R/2, R] and 1 at r ′ ∈ [0, R/2], also called the inside-out
Eaton lens [19,21,22]. This modified version still possesses
the same light refraction characteristics as the original one.
In this case light on the upper Riemann sheet will smoothly
transfer onto the lower sheet and then be smoothly refracted
back to the upper sheet, as shown in Fig. 1(b), without
causing any boundary scattering only if the branch cut line
is shorter than R/2. Undoubtedly this cloak should work
perfectly for rays. We examined this characteristic and the
wave pattern (not shown here) is found to be very similar
to that shown in Fig. 2(b) at the same l. Thus it once again
confirms our argument that the out-of-phase interference on
the upper Riemann sheet distorts the planar wave fronts near
the core edges and causes the unwanted side scattering. For
larger samples or at smaller wavelengths the edge influence
will be alleviated and acceptable cloaking performance can be
anticipated for most of the incident light.

It will still be interesting to inspect whether a conformal
cloak can work perfectly for waves with no limit and thus
could compete with an anisotropic counterpart designed by
the general Euclidean approach. From the pictures in Fig. 1,
we know that a usual conformal cloak fails to work for waves
due to the retardation of light traveling inside the inner core.
Ideal wave cloaking can happen only if this phase delay is made
to be zero. For this purpose hereafter we introduce negative
index materials and divide the inside-out Eaton lens into two
equal halves, e.g., the left half with negative index and the right
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FIG. 3. (Color online) Cloaking effect with an inside-out positive-
negative Eaton lens incorporated. The wave patterns in (a) and (b) are
simulated at wavelengths corresponding to the Eaton lens’s harmonic
order l = 2 and 4, respectively. In each group, the right (left) figure
represents the wave incident from the left (bottom) side. The inside-
out Eaton lens with half negative and half positive is employed here
to cancel out the phase delay in the inner cloak core.

half with positive index, as schematically shown in Fig. 1(b).
Flowing into this composite lens light rays can still form closed
loop trajectories but half in the positive region and half in the

negative region. As a result the total optical length or phase
delay is added to be zero no matter what the incident angle
is [23]. This idea is confirmed by the simulation as shown
in Figs. 3(a) and 3(b) for l = 4 and 40, respectively. In each
row, the left (right) figure represents light illumination from
the left (bottom) side. Compared with the wave patterns in
Figs. 2(a) and 2(b), the wave-front restoration capability after
the cloaked shell at both wavelengths is clearly improved,
especially for the shorter wavelength at which the strong side
scattering is totally suppressed. The observed minor scattering
could arise from the regions near the two ends of the branch
cut where splitting of light waves may raise certain scattering.
This is somehow similar to the phenomenon of inevitable
backscattering at the exact center of an ideal anisotropic cloak
designed by the general approach [1,3]. The term “perfect”
used in this paper does not strictly regard the final performance
but more emphasizes its important enhancement since it has
been generally accepted that there is no real perfect cloaking.
In addition, the quickly increased refractive index values near
the cloaked region will cause a technical difficulty in correctly
approximating these parts by extremely small simulation
meshes. This technical error becomes more serious at short
wavelengths and affects the numerical accuracy and the final
cloaking effect.

The concept of conformal cloaking was initially introduced
under the geometrical optics conditions that require that the
local index vary much slower than the operating wavelength,
thus corresponding to very large devices [2]. Embedding the
inside-out gradient-indexed Eaton lens can remove the internal
boundary scattering. But it is still an open question how the
wave cloaking will be at different wavelengths, especially

FIG. 4. (Color online) Cloaking effect of the device at different nonharmonic wavelengths. The cloak parameters are the same as discussed
in Fig. 3. The wavelength λ equals 5.5a (a), a (b), 0.25a (c), and 0.1a (d), respectively. In each group the right is the wave picture and the left is
the normalized corresponding biscattering figure. For the biscattering curve the polar angle starts from the x axis parallel to the incident wave
vector.
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where the adiabatic condition is not well satisfied at a
nonharmonic mode of the embedded Eaton lens. Figures 4(a)–
4(d) plot the snapshots of wave pictures and the corresponding
biscattering figures of the cloak device at different wavelengths
λ = 5.5a, a, 0.25a, and 0.1a, respectively. Each biscattering
curve is normalized by the peak intensity of the far-field
radiation field (magnetic component) and the polar angle
starts from the x axis parallel to the incident wave vector.
These figures show a prominent cloaking effect at different
wavelengths. But at the wavelength comparable with the
cloak device 5a, as shown in Fig. 4(a), the biscattering
figure does indicate a certain amount of side scattering
that leads to a relatively broad angular distribution for the
radiated wave. This angular distribution is quickly narrowed
at smaller wavelengths, as shown in Figs. 4(b)–4(d). This
improvement accords with the enhanced adiabatic conditions
generally required by a gradient index lens. Note at the
smallest wavelength 0.1a, as shown in Fig. 4(d), the increased
side scattering, as described above, is mainly caused by the
numerical error limited by our computation capability and
in principal it is reducible by refining the simulation meshes,
especially for the center region of the cloak where the refractive
index increases to very large values. In our current simulation
nearly 2 000 000 mesh elements have been used. Therefore
we predict our composite (positive and negative materials
incorporated) isotropic cloak should have no wavelength limit
regarding practical application.

In Figs. 5(a)–5(c) we check the loss influence on the
cloaking behavior at different loss levels for the negative
index core. This is essential because negative index material
is always fabricated with certain losses. The pictures show the
cloaking performance will be deteriorated when the imaginary
permittivity and permeability become larger than 0.01. This is
a very stringent condition for practical application. Ampli-
fication of the field intensity by embedding gain materials
is necessary to balance the loss influence, which is another
engineering challenge in addition to the fabrication of negative
index materials [24].

In conclusion, we have managed to prove that a non-
Euclidean conformal cloak in principle can work perfectly
for waves without the geometrical and polarization limits.
To do this a boundary-matched inside-out Eaton lens was
incorporated into the design for the inner cloaking core and
then equally divided into two parts of positive and negative
refractive indices to cancel out the phase delay. The final device
showed an elaborate wave cloaking behavior. This result is

FIG. 5. (Color online) Cloaking effect with loss media. Usage of
negative index materials will inevitably involve material loss issues.
The inner cloaking cores (the lower Riemann sheet part) in (a)–(d)
have imaginary permittivity and permeability of 0, 0.01, 0.03, and 0.1,
respectively. One sees that the cloaking performance is very sensitive
to signal attenuation.

instrumental and comparable with those designed by a general
Euclidean approach considering the full wave equations.
Although there could be many challenges for implementation,
the conformally designed cloak has its unique advantages
and will find important applications when large fabrication is
not an issue. The non-Euclidean transformation mathematical
approach developed in this paper could be extended to give
rise to multiple cloaking cavities, e.g., by introducing multiple
virtual Riemann sheets or increasing the number of branch
cuts. The same method can also be utilized to create some other
interesting devices such as super subwavelength absorbers
only if the waves flowing onto the other Riemann sheets can
be totally absorbed, which will be reported in the future.

M.Y.G. is partially supported by the NSFC (Grants No.
61271085 and No. 91130004), the Fundamental Research
Funds for the Central Universities of China, NCET, and MOE
SRFDP of China. Z.Y. is supported by the NSFC (Grants
No. 61108022 and No. 60990322). C.K.O. is supported by
the Defence Research and Technology Office (DRTech) of
Singapore.

[1] J. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780
(2006).

[2] U. Leonhardt, Science 312, 1779 (2006).
[3] U. Leonhardt and T. G. Philbin, Prog. Opt. 53, 69 (2009).
[4] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry,

A. F. Starr, and D. R. Smith, Science 324, 977 (2006).
[5] Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, Nat. Mater. 8,

639 (2009).
[6] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,

788 (2004).
[7] J. S. Li and J. B. Pendry, Phys. Rev. Lett. 101, 203901 (2008).

[8] U. Leonhardt and T. Tyc, Science 323, 110 (2009).
[9] J. Valentine, J. S. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat.

Mater. 8, 568 (2009).
[10] L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, Nat.

Photonics 3, 461 (2009).
[11] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith,

Science 323, 366 (2009).
[12] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener,

Science 328, 337 (2010).
[13] H. F. Ma and T. J. Cui, Nature Commun. 1, 124

(2010).

043827-4

http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1126493
http://dx.doi.org/full_text
http://dx.doi.org/10.1126/science.1133628
http://dx.doi.org/10.1038/nmat2489
http://dx.doi.org/10.1038/nmat2489
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1103/PhysRevLett.101.203901
http://dx.doi.org/10.1126/science.1166332
http://dx.doi.org/10.1038/nmat2461
http://dx.doi.org/10.1038/nmat2461
http://dx.doi.org/10.1038/nphoton.2009.117
http://dx.doi.org/10.1038/nphoton.2009.117
http://dx.doi.org/10.1126/science.1166949
http://dx.doi.org/10.1126/science.1186351
http://dx.doi.org/10.1038/ncomms1126
http://dx.doi.org/10.1038/ncomms1126


PERFECT INVISIBILITY CLOAKING BY ISOTROPIC MEDIA PHYSICAL REVIEW A 86, 043827 (2012)

[14] X. Z. Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and
S. A. Zhang, Nat. Commun. 2, 176 (2011).

[15] B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, Phys. Rev.
Lett. 106, 033901 (2011).

[16] M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak,
K. Y. Kang, Y. H. Lee, N. Park, and B. Min, Nature 470, 369
(2011).

[17] Y. A. Urzhumov, N. B. Kundtz, D. R. Smith, and J. B. Pendry,
J. Opt. 13, 024002 (2011).

[18] H. Y. Chen, U. Leonhardt, and T. Tyc, Phys. Rev. A 83, 055801
(2011).
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