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Peng Xue,1,2 Zbigniew Ficek,3 and Barry C. Sanders2

1Department of Physics, Southeast University, Nanjing 211189, People’s Republic of China
2Institute for Quantum Information Science, University of Calgary, Alberta T2N 1N4, Canada

3The National Centre for Mathematics and Physics, KACST, P.O. Box 6086, Riyadh 11442, Saudi Arabia
(Received 13 April 2012; published 16 October 2012)

We show how to probe multipartite entanglement in N coupled Jaynes-Cummings cells where the degrees
of freedom are the electronic energies of each of the N atoms in separate single-mode cavities plus the N

single-mode fields themselves. Specifically we propose probing the combined system as though it is a dielectric
medium. The spectral properties and transition rates directly reveal multipartite entanglement signatures. It is
found that the Hilbert space of the N cell system can be confined to the totally symmetric subspace of two states
only that are maximally entangled W states with 2N degrees of freedom.
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I. INTRODUCTION

A single two-level atom coupled to a single cavity, or
resonator, mode has been studied intensively since the intro-
duction of the “Jaynes-Cummings (JC) Model” independently
by Jaynes and Cummings [1] and by Paul [2] in 1963.
Quantum-field effects such as periodic spontaneous collapse
and revival [3] are now studied and observed in many systems
and as a multitude of manifestations [4]. Coupled JC systems
have been proposed as a basis for quantum networks [5] and
could behave as a novel condensed-matter system if enough
JC systems can be coupled together [6].

In a preliminary study we developed theoretical tools
for calculating the spectrum, stationary states, and dielectric
susceptibility [7]. Here we use and extend those tools,
especially to include the nontrivial open-system effects of
spontaneous emission and cavity losses. In particular, we
consider the problem of how to probe and characterize such
systems experimentally. Two quite different approaches are
evident. One approach is to probe each component in a
microscopic paradigm, namely, drive and detect the various
atoms and cavity modes. Another approach, which we favor,
is to treat the coupled JC system as a “black-box” model and
probe it as a single unit following a macroscopic paradigm.

Our concept is to regard the coupled JC system as a
dielectric medium whose susceptibility carries a signature of
the peculiarities of the coupled JC system. Diagonalizing the
Hamiltonian of the coupled JC system, we find entangled
states and their energies. Using the Fermi’s golden rule, we
calculate the transition rates between different manifolds of
the energy states of the system. In this paper, we restrict the
calculation to transitions from the single-excitation states to
the ground state of the system. In particular we show that the
dielectric susceptibility of the coupled JC medium reveals,
by probe-field spectroscopy, quadripartite entanglement of the
system comprising mutually coupled atoms and cavity modes.
Based on our theoretical framework for JC systems mutually
coupled by overlapping extra-cavity longitudinal fields, we
can calculate stationary states for the coupled system, energy
spectrum, and dielectric susceptibility.

The paper is organized as follows. In Sec. II we give a
qualitative discussion and a detailed calculation of radiative
properties of a single JC cell. Section III is devoted to

the discussion of the entangled and radiative properties of
two coupled JC cells. We derive single-excitation states
of the system and show that they are the W state class
corresponding to a superposition state of single excitations
amongst each of the two atoms and two modes. We then find
under which conditions the states reduce to the maximally
entangled four-qubit W states, and how to quantify the degree
of entanglement of the states using probe-field spectroscopy
methods. A generalization of the calculation to an arbitrary
number of mutually coupled JC cells is presented in Sec. IV.
Finally, in Sec. V, we summarize our results.

II. ENTANGLEMENT AND RADIATIVE PROPERTIES
OF THE SINGLE JC CELL

The JC cell (as we refer to a single JC system) is a com-
posite atom cavity-mode system that radiates via two distinct
channels. The closed coupled JC system is characterized by
just two parameters, namely, the atom-cavity coupling rate g

and the intercavity coherent hopping rate κ . One radiative
channel arises due to coupling of the atom to the cavity
side modes (free-space modes) causing spontaneous decay of
the atomic excitation with an inhibited spontaneous emission
rate γa. The inhibition refers to the fact that some free radiative
modes are suppressed by cavity confinement of the atom.
The other radiative decay mode is due to losses from one
or both mirrors of the optical cavity at rate γc. We assume
independence between these two radiative channels.

A single JC cell comprises a single cavity field mode of
frequency ωc and a two-level atom with energy states |gi〉 and
|ei〉 and corresponding energy difference

h̄ωa = Ee − Eg. (1)

The atom is coupled to the cavity mode with coupling constant
g, which we choose to be real with no loss of generality. We
assume that the atomic transition frequency is detuned from
the cavity frequency by � = ωa − ωc.

In the rotating-wave approximation, and using a system of
units in which h̄ ≡ 1, the Hamiltonian of the single JC system
is

Ĥ JC = ωc
(
â†â + 1

2

) + 1
2ωaσ̂z + g(â†σ̂− + âσ̂+), (2)
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FIG. 1. (Color online) Variation of the energy difference δω±1 =
ω±1 − ωc of the n = 1 eigenstates with the detuning � (in arbitrary
units); δω−1 (black solid line) and δω+1 (red dashed line) for a single
JC cell with (a) g = 0 and (b) g = 1.

with â† and â the creation and annihilation operators of the
cavity mode, respectively, and σ̂± and σ̂z, with spec(σ̂ i

z ) = ±1,
the spin operators for the atom.

A. Energy spectrum

The JC energy spectrum comprises a ground state of energy
ω0 = −�/2 and a ladder of doublets of energies

ω±n = nωc ±
√

ng2 + 1

4
�2, n = 1,2, . . . . (3)

The corresponding stationary energy states are the ground state
|0g〉 and the excited state doublets,

|+,n〉 = cos θn|e,n − 1〉 + i sin θn|g,n〉,
(4)

|−,n〉 = − sin θn|e,n − 1〉 + i cos θn|g,n〉,
with

2θn = tan−1

(
2g

√
n

�

)
. (5)

Note that the doublets are in a pure, bipartite entangled state
of the atom and the field. This entanglement is maximal (for
all the doublets) only when � = 0.

Figure 1 shows a variation of the energies ω±n of the n = 1
doublet |±,1〉 with the detuning � around the unperturbed
energy ωc. Notice the level crossing in the absence of the
coupling g at � = 0, and the appearance of the familiar
avoided crossing effect when g �= 0.

In the following we explore the radiative properties of this
single JC cell, in particular looking for signatures of this atom-
field entanglement in the transition rates between states with
different total number of excitations. Specifically, we search
for conditions that reveal whether the entanglement of the
eigenstates (4) is maximal or not.

B. Transition rates

As we have seen, each doublet has some fixed number
of quanta shared between the atom’s electronic state and
the cavity-mode field state. We employ the integer ν to
designate the number of quanta in the system. The ground state
corresponds to ν = 0, which means that the electronic state and
field state are both in the lowest level. The first doublet has ν =
1 quantum, the second doublet has ν = 2 quanta, and so on.

Consider first the case n = 1 with transitions from the
single-excitation states |±,1〉, with splitting due to the atom-
field interaction, to the ground state, which is a product state
not affected by the atom-field interaction. The transition rates
from the excited states to the ground state are given by Fermi’s
golden rule [8],


±,1 = γa|〈1,±|σ̂+|g,0〉|2 + γc|〈1,±|â†|g,0〉|2. (6)

These transition rates are a sum of transitions caused by
spontaneous emission from the atom, with rate γa, and by
damping of the cavity mode, with rate γc. Consequently
the coefficient γa quantifies the amount that the atomic
spontaneous emission contributes to the transition probability.
Similarly, γc quantifies how much the cavity losses contribute
to the transition probability.

From Eq. (4) we readily calculate the transition dipole
moments between the states |±,1〉 and |g,0〉 whence we obtain
the transition probabilities


+,1 = γc + (γa − γc) cos2 θ1, 
−,1 = γa − (γa − γc) cos2 θ1.

(7)

A number of interesting properties are immediately evident
from the expressions for these probabilities. For example, in
the absence of either atomic spontaneous emission (γa = 0)
or cavity dissipation (γc = 0), that is, when only a single
dissipation channel is present in the system, the transition
probabilities depend on the nature of the states from which
they originate, with this nature given by the parameter θ1 as
appears in Eqs. (4) and (5).

This dependence on θ1 causes the two transition probabili-
ties to be mutually correlated. For example, an increase of 
+,1

implies a decrease of 
−,1, and vice versa. The probabilities
become independent of each other and their magnitudes
equalize only when the states become maximally entangled.
Thus, we may infer from the transition probabilities to what
degree the states are entangled. However, this conclusion is
based on a simplified model of the system involving only a
single decay channel, which is incompatible with what one
encounters in practice. A practical JC system radiates through
both dissipation channels.

We distinguish here two parameter regimes with a qualita-
tively different behavior for the transition probabilities. These
two regimes are distinguished according to the magnitude of
γc relative to γa. When the dissipation rates are equal, γa =
γc ≡ γ , Eq. (7) yields that the probabilities are independent
of each other and have equal magnitudes, 
+,1 = 
−,1 = 2γ ,
regardless of the state of the system (i.e., θ1). In other words,
the transition probabilities tell us nothing about the nature of
the states involved. In physical terms, this is a consequence
of the fact that, for γa = γc, one cannot distinguish which
dissipation channel is used by the quantum leaving the JC
system, regardless of the initial state. Therefore, determining
the entanglement of the states |±,1〉 is not possible from
transition rates if γa = γc, so of course the setup must then
avoid this condition for entanglement to be measurable.

For γa �= γc, the transition rates depend explicitly on the
amplitudes of the states involved, thereby enabling the degree
of entanglement to be discerned from the transition rates, for
example, by measuring the difference or the ratio between
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+,1 and 
−,1. From Eq. (7) we see that, for nonmaximally
entangled states (cos2 θ1 �= 1/2), equality between 
+,1 and

−,1 cannot be achieved. However, when cos2 θ1 = 1/2,
which corresponds to the case of maximally entangled states,

+,1 and 
−,1 have the same magnitude. Equality between
the transition probabilities with γa �= γc can only occur for
maximally entangled states.

We now consider the case n � 2. In this case, transitions
occur between two neighboring doublets of entangled states
(n = 2 and n = 1). Notice that the transitions occur between
states of different degree of entanglement, and there are two
possible transition channels from each state of the upper
doublet to states of the doublet below. Transitions from the
ith to the j th state of the neighboring n and n − 1 doublets
occur with rate


i,jn = γa|〈n,i|σ̂+|j,n − 1〉|2 + γc|〈n,i|a†|j,n − 1〉|2. (8)

Using Eqs. (4) and (8), we readily find that the transitions
occur with probabilities


+,±n = 1
2 [(γa − γc) ∓ (γa + γc) cos 2θn−1] cos2 θn

+ 1
2nγc(1 ± cos 2θn cos 2θn−1)

± 1
2γc

√
n(n − 1) sin 2θn sin 2θn−1,

(9)

−,±n = 1

2 [(γa − γc) ∓ (γa + γc) cos 2θn−1] sin2 θn

+ 1
2nγc(1 ∓ cos 2θn cos 2θn−1)

∓ 1
2γc

√
n(n − 1) sin 2θn sin 2θn−1,

thereby yielding


+,n =
∑
j=±


+,jn = nγc + (γa − γc) cos2 θn,

(10)

−,n =

∑
j=±


−,jn = nγc + (γa − γc) sin2 θn,

for the total transition probabilities from the states |±,n〉.
Although the transitions occur between states of different

degrees of entanglement, the total transition probabilities are
determined only by the amplitudes of the states of the upper
doublet. The states of the lower doublet do not become in-
volved. The properties of the total probabilities are essentially
similar to those discussed above for the transitions from the
n = 1 doublet to the ground state. Indeed, for n = 1, the
probabilities (10) reduce to Eq. (7), and unequal damping rates,
γa �= γc, ensures the dependence of the transition probabilities
on the degree of entanglement.

Thus, transition rates of a combined quantum system
depend strongly on how the subsystems decay rather than on
the nature of states involved. The presence of the maximally
entangled states in a JC cell could be observed in principle
by measuring the transition rates between energy levels of the
system, subject to γa �= γc.

C. Absorption spectrum of a weak probe beam

There remains the question of how these properties of the
transition rates might be exhibited experimentally. Probe-beam
spectroscopy methods should be able to test these properties.
When a JC system is irradiated by a weak probe beam with
a frequency that is close to resonance, the rate at which the
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FIG. 2. (Color online) The absorption spectra Im[χ (1)
0 (ωp)] of a

probe beam monitoring a single JC cell for γa/g = 0.05, γc/g = 0.02,
γ /g = 0.01, and different detunings: �/g = 0 [red line (iii)],
�/g = 2 [black line (ii)], and �/g = 10 [blue line (i)].

probe beam is absorbed is proportional to the transition rates
between the energy states of the system.

We consider net absorption by the system of radiation from
a tunable beam probing the system. The probe-beam intensity
is assumed to be sufficiently weak such that the field is treated
to only first order in its amplitude so that it does not appreciably
perturb the system. The absorption spectrum is given by the
imaginary part of the linear susceptibility χ

(1)
0 (ωp) of the

system [9–11],

Im
[
χ

(1)
0 (ωp)

] =
∑
i,n

γ 
i,n

(ωin − ωp)2 + γ 2
, (11)

where ωp is the frequency of a probe beam, 
i,n is the total
transition rate from the state i (i = ±) of the manifold n, and γ

describes the width of a given transition. In writing expression
(11), we have used the fact that transitions from the excitation
states to states of the manifold below might not be purely
radiative [8,12], i.e., γ �= 
i,n/2, and the system was in the
n − 1 manifold before the probe was applied. To ensure that the
spectral lines are well resolved, we assume that the transitions
do not overlap. This is achieved assuming that the coupling
strength g is much larger than the transition rates 
i,n.

Figure 2 shows absorption spectra of a probe beam tuned
in the vicinity of the transition frequencies from the n = 1
doublet to the ground state of a single JC cell. We see
that as long as � �= 0, the spectrum of the single cell is
markedly asymmetric. This feature is associated with the
fact that at � �= 0, the transitions from the n = 1 doublet
to the ground state occur with different rates, 
+,1 �= 
−,1.
The spectrum becomes symmetric at resonance, where � = 0.
The symmetric spectrum is associated with the fact that at the
resonance, 
+,1 = 
−,1. As predicted by Eq. (7), the equality
of the total transition rates takes place only for the maximally
entangled states. Therefore, the symmetry of the spectrum can
be regarded as an indication of the presence of maximally
entangled states.

III. TWO MUTUALLY COUPLED JC CELLS

We now consider two neighboring JC cells coupled via
overlapping evanescent waves of the cavity modes. The
coupling results in a coherent hopping rate κ between cavities.
We designate âi and σ̂i as the field annihilation operator and
atomic electron energy lowering operator for the ith JC cell,
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and the double JC cell Hamiltonian is [7,13–16]

Ĥ = Ĥ JC
1 + Ĥ JC

2 − κ(â†
1â2 + â1â

†
2) =

⊕
ν

Ĥ (ν), (12)

with ν denoting the total number of quanta shared in the two-
cavity system.

The space of the system for any ν is spanned by product
states {|n1,c1,n2,c2〉} with ni a label for the number of
photons in the ith cavity and ci the label for whether
the state is in the excited (|e〉) or ground (|g〉) state. For
example, the ground state corresponds to ν = 0 with just one
dimension and hence contains one basis element {|0g0g〉}.
The single-excitation (ν = 1) basis comprises four states
{|0e0g〉,|1g0g〉,|0g1g〉,|0g0e〉}.

In the following, we limit ourselves to the subspace ν = 1
that only a single excitation is present in the system. The ν = 1
case is especially interesting as it corresponds to four qubits:
two two-level atoms and two field modes with superpositions
of vacuum and single-photon states. Also the ν = 1 case can
be solved in closed form yielding simple expressions [7].

A. Entangled four-qubit states

A diagonalization of the Hamiltonians Ĥ (ν) for ν = 0,1
yields the energy spectra ω(0) = −� for the ground state, and

ω(1)
εε = ωc − 1

2 (� + εκ) + ε

√
g2 + 1

4 (� + εκ)2 (13)

for the single excitation, with ε = ± and ε = ±. In the case of
independent cells, κ = 0, and then the upper spectral value is
degenerate,

ω(1)
εε

∣∣
κ=0 = ωJC(0) + ωJC(1)

ε , (14)

and the spectrum corresponds to what is expected for two
independent JC systems, with ε being irrelevant.

On the other hand, for g = 0 = �, the ν = 0 spectrum is
characterized by ω(0) = 0, whereas the ν = 1 is described by
ω(1)

εε |g=0=�, which is the doubly-degenerate ωc or ωc + εκ val-
ues as expected for coupled harmonic oscillators. Therefore,
a large intercavity hopping rate will push the coupled JC cells
to behaving closely like coupled harmonic oscillators with
atom-cavity perturbations. For small κ ,

ω(1)
εε ≈ ωc + εg − εκ

2
+ ε

κ2

8g
, (15)
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FIG. 3. (Color online) The dependence of the energy difference
δω(1)

εε = ω(1)
εε − ωc on the detuning � (in arbitrary units) of the ν = 1

states, |+,−〉 (black solid line), |−,−〉 (red long-dashed line), |−,+〉
(green short-dashed line), |+,+〉 (blue dotted line), for two coupled
JC cells with (a) g = 0,κ = 2 and (b) g = 1,κ = 2.

with shift ±g due to vacuum Rabi splitting, εκ/2 the normal-
mode splitting due to intercavity coupling, and εκ2/8g a
frequency pulling effect similar to the ac Stark shift.

Figure 3 shows the variation of the energies ω(1)
εε of the

single excitation ν = 1 states with the detuning � around
the unperturbed energy ωc. In the absence of the coupling
g, there are two crossing points at � = ±κ . The coupling lifts
the degeneracy resulting in four entangled states. The states
are eigenstates of the Hamiltonian (12) corresponding to the
energies ω(1)

εε , and are of the form [7]

|ε,ε〉 = uε,ε(|1g0g〉 − ε|0g1g〉) + wε,ε(|0e0g〉 − ε|0g0e〉),
(16)

where

uε,ε = −rε + ε
√

1 + r2
ε√

2 + 2
(
rε − ε

√
1 + r2

ε

)2
,

(17)

wε,ε = 1√
2 + 2

(
rε − ε

√
1 + r2

ε

)2
,

and

rε = (� + εκ)/(2g). (18)

The double JC states (16) are in the W state class corresponding
to a superposition state of single excitations amongst each of
the two atoms and two modes. These states are maximally
entangled only for uε,ε = wε,ε = ½, which requires that rε =
0. The condition that rε = 0 is met only if � = εκ . Radiative
properties of two coupled JC cells are studied in the next
section.

B. Transition rates and their collective properties

We can compute the transition probabilities [17–19]


ε,ε = γa|〈ε,ε|(σ̂+
1 + σ̂+

2 )|0〉|2 + γc|〈ε,ε|(a†
1 + a

†
2)|0〉|2

(19)

from the single-excitation states |ε,ε〉 to the ground state
|0g0g〉 ≡ |0〉, which yields


ε,ε = (1 − ε)2(γa|wε,ε|2 + γc|uε,ε|2). (20)

The dependence of the transition rates on ε signals the
existence of superradiant (ε = −) and metastable nonradiative
(ε = +) states in the system [20,21]. Note that the equality
of the superradiant rates, 
−,+ = 
−,−, is a signature of the
maximal entanglement present in the corresponding states.
However, this signature is not present for the other two states
|+ ,ε〉, as these do not imprint a signature on the radiation
properties of the system.

Notice that these collective radiative properties of the
system are independent of the ratio γa/γc and of the nature
of the states. These decay processes are due to losses of
the coupled cavity modes as well as by atomic spontaneous
emission. This latter feature is surprising because atoms are not
directly coupled to each other, and they behave independent
of the ratio κ/g. The existence of the metastable states
implies that the double JC system effectively behaves as a
single collective JC cell composed of a doublet consisting of
four-qubit entangled states |ε,−〉.
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The metastable states could be made radiatively active by
breaking the symmetry between the atoms and/or the cavity
modes of different JC cells, for example, by allowing the atoms
and the cavity modes to decay at different rates. It is easy to
show that when the atoms are damped with different rates, say
γa1 and γa2, and the cavity losses occur with rates γc1 and γc2,
respectively, then the transitions from the states |ε,ε〉 occur
with probabilities


ε,ε = (
√

γa1 − ε
√

γa2)2|wε,ε|2 + (
√

γc1 − ε
√

γc2)2|uε,ε|2.
(21)

Clearly, the transition probabilities are different from zero,
irrespective of ε. However, the states retain their collective
character with the ε = − states still behaving as a super-
radiant and the ε = + states now behaving as a subradiant
state.

There are some similarities in the properties of the transition
probabilities of the double and single JC cell systems, in
particular, when the atomic spontaneous emission and cavity
losses in a JC cell occur with the same rate. For example, in the
case of γa1 = γc1 and γa2 = γc2, the probabilities (21) become
independent of the amplitudes of the states, which is the same
property encountered for 
±1 of the single cell.

However, there are interesting differences. In the double JC
system, the condition γai �= γci is necessary but not sufficient
for the dependence of the transition rates on the amplitudes of
the states. There is also a rather subtle condition of the relation
between the damping rates of different cells to be satisfied.
Even though the spontaneous emission and cavity losses in a
given JC cell occur with different rates, γai �= γci, the transition
probabilities still could be independent of the amplitudes of the
states. This happens when γa1 = γc2 and γa2 = γc1, for which
Eq. (21) reduces to


ε,ε = 1
2 (

√
γa1 − ε

√
γc1)2. (22)

Evidently, the transition rates are independent of the
amplitudes of the states. The quantitative reason for this is that,
even if the cells are distinguished by different damping rates,
they are directly coupled to each other through the coupling κ .
This coupling creates entangled states between the cells that
in the case of γa1 = γc2 make indistinguishable through which
channel, γa1 or γc2, a photon leaving the system was emitted.
This property is characteristic of multicell JC systems and does
not exist in a single JC cell. Therefore, under the condition
that all the damping rates are different, equality between the
superradiant (subradiant) rates signals maximal entanglement
in the superradiant (subradiant) states, |−,ε〉 (|+,ε〉), which
generalizes the results of the single JC cell.

C. Absorption spectra

We now consider absorption spectra of a weak radiation
monitoring the transitions from the single-excitation (ν = 1)
states to the ground state |0〉 of two identical JC cells. To ensure
that the probe field couples exclusively to the single-excitation
states, we assume that the transitions do not overlap. This is
achieved assuming that the coupling strengths g and κ are
much larger than the transition rates 
m.
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FIG. 4. (Color online) The absorption spectra Im[χ (1)
0 (ωp)] of

a probe beam monitoring two coupled identical JC cells, for
γa/g = 0.05, γc/g = 0.02, γ /g = 0.01, κ/g = 2, and different
detunings: �/g = 1 [red line (iii)], �/g = 2 [black line (ii)], and
�/g = 10 [blue line (i)].

Figure 4 shows absorption spectra for γa �= γc and different
detunings �. We see that as long as � �= ±κ , the spectrum is
always asymmetric. The spectrum becomes symmetric when
� = κ . In this case, the states |±,−〉 are maximally entangled
states. Thus, similar to the case of a single JC cell, the
symmetry of the spectrum can be regarded as an indication
of the presence of maximally entangled states. Note that
the symmetric spectrum is observed at nonzero detunings,
� = ±κ , which is in contrast to the properties of the spectrum
of a single cell, where the symmetric spectrum is observed
only at resonance, where � = 0.

Figure 5 shows the absorption spectrum for a more general
case of unequal damping rates of the atoms (γa1 �= γa2) and
of the cavity modes (γc1 �= γc2). In this case, the spectrum
comprises four peaks corresponding to the transition rates
of the four eigenstates |ε,ε〉. Two of the peaks are high
(corresponding to the superradiant states |−,ε〉) and two are
short (corresponding to the subradiant states |+,ε〉). According
to our predictions, whenever the high (short) peaks have the
same height and are located in opposite sides around the
cavity frequency, this condition corresponds to a signature
of the underlying maximal entanglement of the superradiant
(subradiant) states. The joint γa1 = γa2 and γc1 = γc2 case is
special because, in this case, the subradiant states are optically
inactive and only the peaks corresponding to the superradiant
states are present in the spectrum. Therefore, the symmetry
of the spectrum around the cavity frequency increases as the
superradiant states |−,ε〉 become increasingly entangled. Note
that, in order to resolve the peaks, the linewidth of the probe

FIG. 5. The absorption spectra Im[χ (1)
0 (ωp)] of a probe

beam monitoring the system of two nonidentical JC cells for
(γa1/g,γa2/g) = (0.01,0.2), (γc1/g,γc2/g) = (0.2,0.05), κ/g = 4,
γ /g = 0.05, and different �: (a) �/g = −4 and (b) �/g = 4.
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FIG. 6. (Color online) Two distant cells with the cavity modes
overlapping in the shadow area. This area can also be treated as
a common reservoir for the cavity modes to which the modes are
damped with rate γc. The atoms located in the distance cavities are
damped by independent reservoirs (green areas) with rate γa .

beam has to be sufficiently narrow compared with the cavity
and atomic damping rates.

D. Atoms damped by independent reservoirs

In the above analysis we have assumed that the atoms and
the cavity modes are damped by common reservoirs. This
assumption is justified if the cells are quite close to each other
where the spatial variation of the field can be ignored. This
assumption may not always be true in practice as the cells could
be separated by a large distance. In this case, the assumptions
that the atoms are coupled to the same reservoir might not be
true. For this reason, we consider now a situation, illustrated
in Fig. 6, in which atoms located in distant cells are damped
by independent reservoirs.

In the case of independent reservoirs for the atoms, the
transition probabilities from the single-excitation states |ε,ε〉
to the ground state |0〉 are given by


ε,ε = γa(|〈ε,ε|σ̂+
1 |0〉|2 + |〈ε,ε|σ̂+

2 |0〉|2)

+ γc|〈ε,ε|(a†
1 + a

†
2)|0〉|2, (23)

which yields


ε,ε = 2γa|wε,ε|2 + (1 − ε)2γc|uε,ε|2. (24)

We see that, in the case of independent reservoirs for the atoms,
the transition probabilities 
ε,ε all become different from zero.
There are no trapping (subradiant) states that would form a
subspace of decoherence-free states. However, in the limit of
|wε,ε|2 = 0, the states ε = + would form a decoherence-free
subspace.

A close look at Eq. (17) reveals that the amplitudes |wε,−|2
vanish in the limit of rε 	 1. The condition of rε 	 1 is
met when (� + εκ) 	 g, which shows that either the atomic
transition frequencies differ significantly from the cavity
frequency, � 	 0, or the cells are strongly coupled to each
other, κ 	 0. Under this condition,

|wε,−|2 = |uε,+|2 ≈ 0, (25)

and

|wε,+|2 = |uε,−|2 ≈ 1
2 . (26)

As a consequence, the states of the system in Eq. (16) reduce
to

|ε,+〉 = 1√
2

(|eg〉 − ε|ge〉)|00〉,
(27)

|ε,−〉 = 1√
2

(|10〉 − ε|01〉)|gg〉,

with the corresponding transition probabilities


ε,+ = γa, 
ε,− = 1
2 (1 − ε)2γc. (28)

Clearly, the transition probability 
+,− = 0, so that the state
|+,−〉 is a decoherence-free state.

We stress that, in contrast to the states (16) damped by
a common reservoir, the states (27) are product states with
atom-cavity decoupling due to having independent reservoirs
and strong intercell coupling. Effectively, the system behaves
as a two-qubit system. Our prediction agrees with the results
of de Ponte et al. [16], who considered a system of coupled
resonators interacting with independent reservoirs and found
that the resonators must be strongly coupled to each other
for the accomplishment of the condition leading to the
decoherence-free states.

IV. GENERALIZATION TO AN ARBITRARY NUMBER
OF COUPLED JC CELLS

Although the focus of this work is on two coupled JC cells,
we can solve the problem more generally. In this section we
show how to solve elegantly the case of N mutually connected
JC cells with the Hamiltonian

ĤN =
N∑

i=1

Ĥ i
JC − κ

∑
i �=j

(â†
i âj + H.c.). (29)

The Hamiltonian describes a system composed of N identi-
cally coupled cells. While this description does not include
such features as the direct coupling between the atoms and the
spatial variation of the field modes, it is nevertheless of interest,
as the simplest model of a group of collective behaving cells.
This case is somewhat artificial for large N , but does yield
an instructive generalization of the formalism in addition to
providing some connection with condensed-matter studies of
coupled JC systems [6].

A. Energy spectrum

Restricting to the single excitation, ν = 1, the space of the
system is spanned by 2N product states

{|0g0g · · · 0e〉,|0g0g· · · 1g〉, . . . ,|0e0g · · · 0g〉,|1g0g · · · 0g〉}.
(30)

In the basis of these states, the Hamiltonian (29) can be
represented by a 2N × 2N matrix. Despite a large size, the
matrix can be directly diagonalized and results in N cell
superposition states (eigenstates). We find that among the
2N states, one can distinguish two sets of N − 1 degenerate

043826-6



PROBING MULTIPARTITE ENTANGLEMENT IN A . . . PHYSICAL REVIEW A 86, 043826 (2012)

antisymmetric eigenstates. These are

|φ1〉 = 1

N1

[
p+|0g0g · · · 0e〉 − |0g0g · · · 1g〉 + 1

p−
|0e0g · · · 0g〉 + |1g0g · · · 0g〉

]
,

|φ2〉 = 1

N2
[p+(|0g0g · · · 0e〉 − |0g · · · 0e0g〉) − |0g0g · · · 1g〉 + |0g · · · 1g0g〉],

(31)
...

|φN−1〉 = 1

N2
[p+(|0g0g · · · 0e〉 − |0g0e . . . 0g〉) − |0g0g · · · 1g〉 + |0g1g · · · 0g〉],

with corresponding eigenenergies

ω1 = z · · · = ωN−1

= ωc − 1
2 (� − κ) +

√
1
4 (� − κ)2 + g2, (32)

where

N1 =
√

p2+ + 1

p2−
+ 2, N2 =

√
2p2+ + 2,

(33)
p± = −r ±

√
r2 + 1, r = � − κ

2g
.

The other set of N − 1 degenerate antisymmetric eigen-
states is

|φN 〉 = 1

N3

[
p−|0g0g · · · 0e〉 − |0g0g · · · 1g〉

+ 1

p+
|0e0g · · · 0g〉 + |1g0g · · · 0g〉

]
,

|φN+1〉 = 1

N4
[p−(|0g0g · · · 0e〉 − |0g · · · 0e0g〉)

− |0g0g · · · 1g〉 + |0g · · · 1g0g〉], (34)
...

|φ2N−2〉 = 1

N4
[p−(|0g0g · · · 0e〉 − |0g0e · · · 0g〉)

− |0g0g · · · 1g〉 + |0g1g · · · 0g〉],
with eigenenergies

ωN = · · · = ω2N−2

= ωc − 1
2 (� − κ) −

√
1
4 (� − κ)2 + g2, (35)

where

N3 =
√

p2− + 1

p2+
+ 2, N4 =

√
2p2− + 2. (36)

The remaining two eigenstates of the system are fully
symmetric superposition states,

|φ±〉 = 1

N±

[
1

p′±
(|0g0g · · · 0e〉 + |0g0g · · · 0e0g〉 + · · ·

+ |0e0g · · · 0g〉) + |0g0g · · · 1g〉 + |0g0g · · · 1g0g〉
+ · · · + |1g0g · · · 0g〉

]
, (37)

with eigenenergies

ω± = ωc − 1
2 [� + (N − 1)κ]

±
√

1
4 [� + (N − 1)κ]2 + g2, (38)

respectively, where

N± =
√

N

p′2±
+ N, (39)

and

p′
± = −r ′ ±

√
r ′2 + 1, r ′ = � + (N − 1)κ

2g
. (40)

We note from Eqs. (32), (35), and (38) that for g = 0,
energies of the antisymmetric states cross at � = κ , whereas
energies of the two fully symmetric states cross at � =
−(N − 1)κ . When g �= 0, avoiding crossings occur at � = κ

for the antisymmetric states, and at � = −(N − 1)κ for the
symmetric states. If and only if � = −(N − 1)κ is true, do
the eigenstates |φ±〉 become W-type maximally entangled
states.

Figure 7 shows the dependence of the energies of the
eigenstates |φ±〉 on the detuning �. We see two crossing points
when g = 0 and the avoided crossing between the states when
g �= 0. It clearly illustrates the appearance of two separate
groups of degenerate antisymmetric states with the minimum
energy separation 2g at � = κ , and two symmetric states
with the minimum energy separation 2g at � = −(N − 1)κ .
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FIG. 7. (Color online) The dependence of the energy difference
δωi = ωi − ωc on the detuning � (in arbitrary units) of the ν = 1
eigenstates of N = 10 coupled JC cells for κ = 1 and (a) g = 0, (b)
g = 1. The green short-dashed line is for the set of antisymmetric
states |φi〉 (i = 1,2, . . . ,N − 1), the red long-dashed line is for the
set of antisymmetric states |φj 〉 (j = N,N + 1, . . . ,2N − 2), and the
blue dotted and black solid lines are for the symmetric states |φ+〉
and |φ−〉, respectively.
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Perhaps the most interesting aspects of the N cell system is that
the energies of the antisymmetric states are independent of N .
Adding more cells increases the number of the antisymmetric
states but does not affect their energies. Here the antisymmetry
is with respect to a permutation of the two entangled JC cells,
not of any pair of “qubits,” and it is exact only in the limit of
maximal entanglement, |p±| = 1. For the specific case N = 2,
the antisymmetric states |φ1,2〉 correspond to the (subradiant)
states | + ,i〉 introduced in Eq. (16), whereas the symmetric
states |φ±〉 correspond to the superradiant ones |−,i〉. Note
also that N = 2 is the only case in which the antisymmetric
and symmetric states have entanglement between the same
number of “qubits,” four in this case.

B. Transition rates

Having derived the explicit forms of the eigenstates |φi〉 of
the single-excitation sector ν = 1, we now turn to calculate
transition rates between the eigenstates |φi〉 and the ground
state |0〉 = |0g · · · 0g〉. We consider separately two cases. In
the first, we assume that the atoms are coupled to a common
reservoir. In the other case, we assume that the atoms are
coupled to independent reservoirs.

When the atoms are coupled to a common reservoir, the
transitions occur with rates


i =
∣∣∣∣∣

N∑
j=1

√
γaj 〈φi |σ̂ †

j |0〉
∣∣∣∣∣
2

+
∣∣∣∣∣

N∑
j=1

√
γcj 〈φi |â†

j |0〉
∣∣∣∣∣
2

. (41)

Applying Eqs. (31), (34), and (37), after straightforward
calculations we obtain


1 = 1

N 2
1

[(
p+

√
γa1 +

√
γaN

p−

)2

+ (
√

γcN − √
γ c1)2

]
,


i = 1

N 2
2

[p2
+(

√
γa1 − √

γai)
2 + (

√
γci − √

γ c1)2],

i = 2, . . . ,N − 1,


N = 1

N 2
3

[(
p−

√
γa1+

√
γaN

p+

)2

+ (
√

γcN −√
γ c1)2

]
, (42)


j = 1

N 2
4

[p2
−(

√
γa1 − √

γaj )2 + (
√

γcj − √
γ c1)2],

j = N + 1, . . . ,2N − 2,


± = 1

N 2±

[
1

p
′2±

(
N∑

i=1

√
γai

)2

+
(

N∑
i=1

√
γci

)2]
.

For the case of identical cells,

γa1 = · · · = γaN ≡ γa (43)

and

γc1 = · · · = γcN ≡ γc, (44)

it follows that the transition rates from all of the antisymmetric
states are zero,


1 = · · · = 
N = · · · = 
2N−2 = 0. (45)

Only the fully symmetric states |φ±〉 are optically active and
are damped at rates


± = N

(1 + p′2±)
(γa + p′2

±γc), (46)

in which we see the characteristic N time enhancement, i.e.,
the superradiant behavior [20,22].

From Eqs. (45) and (46) it is apparent that, just as in the
N = 2 case, the 2N − 2 antisymmetric states are all optically
inactive, whereas the two symmetric ones are superradiant.
The distinction is quite convenient because higher-dimensional
entanglement is present in the latter states, so a symmetric
absorption spectrum would reveal maximal 2N -partite W-like
entanglement shared among all the JC cells.

As the N cell system radiates only from the fully symmetric
states, the Hilbert space of the system is confined to the totally
symmetric subspace of two states |φ±〉. Given that there are
only two nonzero transition rates from the excited states to
the ground state, the absorption spectrum of a weak probe
beam monitoring the system is expected to be composed of
two peaks. This feature is seen in Fig. 8, which displays the
absorption spectrum for coupled N = 10 cells.

As expected, there are two peaks corresponding to transi-
tions from the states |φ±〉 to the ground state |0〉. The relative
peak amplitudes are a function of �, and if and only if
� = −(N − 1)κ , the amplitudes are equal and symmetrically
located about

ωc − ωp = ±g. (47)

When � = −(N − 1)κ , the states |φ±〉 reduce to maximally
entangled W states. Hence, a symmetric absorption spectrum is
a signature of a maximally entangled W state with 2N degrees
of freedom.

We close this section by evaluating the transition rates for
the case when the atoms are damped by independent reservoirs.
The total transition rate due to the interaction of the atoms
with independent reservoirs and the cavity modes damped by
a common reservoir is defined by


i =
N∑

j=1

γaj |〈φi |σ̂ †
j |0〉|2 +

∣∣∣∣∣
N∑

j=1

√
γcj 〈φi |â†

j |0〉
∣∣∣∣∣
2

. (48)

10 5 0 5 10
Ωc p g
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15
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Im
Χ 0

1

FIG. 8. (Color online) The absorption spectra Im[χ (1)
0 (ωp)] of

coupled N = 10 cells plotted as a function of (ωc − ωp)/g for γa/g =
0.05, γc/g = 0.02, κ/g = 2, and different detunings �: �/g = 1
[green line (iii)], �/g = 10 [black line (ii)], and �/g = −18
[red line (i)].

043826-8



PROBING MULTIPARTITE ENTANGLEMENT IN A . . . PHYSICAL REVIEW A 86, 043826 (2012)

When we make use of Eqs. (31), (34), and (37) in Eq. (48), we
readily obtain


1 = 1

N 2
1

[(
p2

+γa1 + γaN

p2−

)
+ (

√
γcN − √

γ c1)2

]
,


i = 1

N 2
2

[p2
+(γa1 + γai) + (

√
γci − √

γ c1)2],

i = 2, . . . ,N − 1,


N = 1

N 2
3

[(
p2

−γa1 + γaN

p2+

)
+ (

√
γcN − √

γ c1)2

]
, (49)


j = 1

N 2
4

[p2
−(γa1 + γaj ) + (

√
γcj − √

γ c1)2],

j = N + 1, . . . ,2N − 2,


± = 1

N 2±

[
1

p
′2±

N∑
i=1

γai +
(

N∑
i=1

√
γci

)2]
.

It is easy to see that the transition rates (49) differ significantly
from that which we encountered in Eqs. (42) for the decay
of the atoms in a common reservoir. Notice that all of the
transition rates are now different from zero, and none of
the rates can be reduced to zero, indicating no subradiance.
This principle also applies to the special case of identical
cells,

γa1 = · · · = γaN ≡ γa (50)

and

γc1 = · · · = γcN ≡ γc. (51)

However, despite the fact that the transition rates (49) are
different from zero, we find that in the case of identical cells
and under a strong coupling between the cells (κ 	 g), the
transition rates reduce to


1 ≈ γa, 
i ≈ 0, i = 2, . . . ,N − 1,


j ≈ γa, j = N, . . . ,2N − 2, (52)


± ≈ 1

(1 + p′2±)
(γa + p′2

±Nγc).

Clearly, in the limit of a strong coupling, the states |φi〉 (i =
2, . . . ,N − 1) do not decay, so they form a decoherence-free
subspace. The remaining states decay with nonzero rates.
The states |φ1〉,|φN 〉, and |φj 〉 decay with the rate equal to
the single atom decay rate γa, whereas the rates 
± show the
characteristic N times enhancement (superradiance), but only
with respect to the cavity damping. The contribution to 
±
from the atomic part, proportional to γa, is independent of N .
This is what one could expect, since the atoms are damped by
independent reservoirs. This is also consistent with the results
of de Ponte et al. [16].

V. CONCLUSIONS

We have studied a system of coupled Jaynes-Cummings
(JC) cells with coupling created by overlapping evanescent
cavity fields or by tunneling of photons between the cells.
This overlap or tunneling determines the coherent hopping
rate between the pair of cavities. This coherent hopping term
along with the strength of atom-field coupling within each

cavity determines the unitary dynamics of the closed coupled
system. Our analysis also includes incoherent cavity damping
and atomic spontaneous emission rates. These incoherent pro-
cesses are unavoidable in experiments but are sometimes not
considered in studies of condensed-matter types of properties
of such systems. We included these incoherent terms for
completeness and found that ensuring differences in incoherent
rates can be quite valuable in detecting entanglement of these
coupled atom-cavity systems.

The principal advantages of our treatment are that it allows
one to study the relation between the radiative properties of
the system and entanglement. For example, in the case of the
single JC cell, we have observed that the ratio of the transition
rates for the two lowest-doublet states directly reveals the
degree of entanglement between the atom and cavity mode
provided that the spontaneous emission rate γa is not equal to
the cavity loss rate γc. The degree of entanglement depends
on the values of atom-cavity coupling strength g in the JC
Hamiltonian.

We have also studied transition rates from the second
doublet to the first doublet for the single JC model. In this case,
we have transitions from an entangled n = 2 state to entangled
n = 1 states, in contrast to the n = 1 to n = 0 transition from
an entangled first-doublet state to a ground state, which is an
atom-cavity product state. We have found that the rates depend
explicitly on properties of states in both doublets, namely,
that it depends explicitly on both θn and θn−1, but adding the
transition rates together as in Eq. (10) only depends on θn. Thus
the transition rates directly reveal the degree of entanglement
of the nth doublet without being mixed up with the degree
of entanglement in the lower doublet. Direct measurement of
entanglement of the states is possible.

These results on entanglement in the single JC cell are
interesting and provide a foundation to study coupled JC cells.
For coupled JC cells, we focus only on the ν = 1 case. We
have derived the explicit analytical forms of the transition
rates between the ν = 1 quadruplet of states for the double
JC cell to the (product) ground state. There are four rates in
this case, and each of these rates conveys information about the
degree of entanglement in the state including whether the states
are maximally entangled. When loss rates from cells (both
spontaneous emission and cavity loss) are equal, information
about the degree of entanglement is not obtained by our method
but is obtained for unequal rates.

Finally, we have shown how to extend our two JC cell case
to an arbitrary number N of the JC cells such that each cell is
coupled to all other cells. We have established conditions for
maximal entanglement and calculate the susceptibility. This
N -cell case is likely only of theoretical interest as it is hard
to imagine how such a system would be configured in a real
experiment, but this general extension to N cells is interesting
nonetheless.
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