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We derive the stochastic master equations, that is to say, quantum filters, and master equations for an arbitrary
quantum system probed by a continuous-mode bosonic input field in two types of nonclassical states. Specifically,
we consider the cases where the state of the input field is a superposition or combination of (1) a continuous-mode,
single-photon wave packet and vacuum, and (2) any continuous-mode coherent states.
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I. BACKGROUND AND MOTIVATION

The production and verification of nonclassical states of
light, such as single-photon states [1] and superpositions of
coherent states (also known as Schrödinger cat states) [2–4],
has become routine. In particular, the production of single-
photon states has been achieved in a variety of experimental
architectures, such as cavity quantum electrodynamics (QED)
[5], quantum dots in semiconductors [6], and recently in
circuit QED [7]. Such nonclassical states have been considered
in connection with quantum computing [8,9] and secure
communication [10] over quantum networks [11].

A basic problem in quantum optics concerns the extraction
of information about a system of interest (two-level atom,
cavity mode, etc.) from light scattered by the system (Fig. 1).
Based on measurements of the scattered, or output, light, one
can determine a conditional state from which one can make
estimates of observables of the system. A general approach
to estimation problems of this kind, called filtering problems,
was developed by Belavkin et al. [12–15] within a framework
of continuous nondemolition quantum measurement in the
case where the input probe field, B(t) in Fig. 1, is a quantum
white noise with vacuum state (or more generally, Gaussian
state, see [16–19]). Belavkin’s formulation, which generalizes
the classical nonlinear filtering theory [20], is quite general.
For example, in the schematic representation of a continuous
measurement process shown in Fig. 1, the measurement signal
Y (t) produced by a detector (e.g., photon counter or homodyne
detector) may be the number of quanta in the output field, or
alternatively, it may be a quadrature of the output field.

One obtains a filtering equation which is a stochastic
differential equation of the state �(t) conditioned on Y (t); in
the later terminology employed in quantum optics, the output
is referred to as a quantum trajectory and the filtering equation
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as a stochastic master equation [21–23]. Averaging over the
measured output is equivalent to a nonselective measurement,
and the corresponding state will satisfy the corresponding
master equation. The choice of detection scheme on the output
field determines the particular selective evolution, usually
referred to as an unravelling of the master equation in quantum
optics. To date, quantum trajectories and quantum filtering
have only been developed for input fields that are in a Gaussian
state, with specific cases being coherent state fields (this
includes vacuum fields as special case), thermal fields, and
squeezed fields [24–26]. While the resulting equations allow
us to estimate noncommuting observables of the monitored
system, the Gaussian nature of the inputs ensures that they
appear formally similar to the classical equations. The aim
of the present paper is to extend the theory to classes of
nonclassical inputs.

In this article we extend Belavkin’s quantum filtering
theory and the input-output theory of quantum optics [21,26]
to non-Gaussian continuous-mode states ρfield which are
superpositions or combinations of

(a) a continuous-mode single photon and vacuum, and
(b) continuous-mode coherent states, i.e., continuous-

mode cat states.
The problem to be tackled here is to derive the master and

stochastic master equations for a “system”⊗“field,” with initial
state ρ0 ⊗ ρfield and unitary evolution process U (t) when the
field state is one of the states above. To make the problem
tractable, we seek a larger representation of the form “extended
system”⊗“field,” where

“extended system” = “ancilla” ⊗ “system”

such that, for all system observables X,

tr{ρ0 ⊗ ρfield U (t)† (X ⊗ I ) U (t)}
= tr{ρa ⊗ ρ0 ⊗ Pvac

× Ũ (t)† (R (t) ⊗ X ⊗ I ) Ũ (t)}, (1)

where Ũ (t) is a unitary evolution process coupling the ancilla,
system, and field; ρa is a fixed state of the ancilla; Pvac = |0〉〈0|
is the vacuum state (projection) for the continuous-mode field;
and R (t) is some process taking values in the observables of
the ancilla. The filtering problem may then be solved for the
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FIG. 1. (Color online) A schematic representation of a continuous
measurement process, where the measurement signal produced by a
detector is filtered to produce estimates X̂(t) = πt (X) = tr[ρ(t)X] of
system operators X at time t .

extended system with reference to the vacuum state for the
field using traditional techniques.

The extension to single-photon states is interesting for
foundational reasons [27], as well as the aforementioned
technological reasons [8]. Likewise, quantum filtering for
cat states is of foundational importance, while practical uses
would be toward quantum-enhanced metrology [28]. One
possible application would be to quantum-enhanced metrology
of a time-varying parameter [29,30].

This article is structured as follows. In Sec. II we review
standard input-output theory. Specifically, we consider the
idealized quantum white-noise model of a quantum stochastic
differential equation (QSDE) and use it to derive the master
equations and quantum trajectories for Gaussian fields. Then
we review a general parametrization to specify the system
environment coupling for input-output systems. Using this
parametrization we review the methods, recently introduced
[31–33], to simplify and formalize the network theory of cas-
caded open quantum systems and quantum feedback networks.

Section III is focused on deriving the master equation
and stochastic master equation (quantum filter) driven by
continuous-mode single-photon wave packets. We generalize
the single-photon filter to any superposition or combination
of single-photon and vacuum-input field. The system that is
probed is left arbitrary, so in general our filter can apply to
qubits, qudits, and mechanical oscillators. As an example, we
calculate the single-photon filter for a two-level atom (or qubit)
coupled to a single photon field. We derive the trajectories for
both a homodyne-type measurement and a photon-counting
measurement.

In Sec. IV we present the extension to superpositions of
coherent states. We derive the cat-state filter for an arbitrary
quantum system and an arbitrary cat state. Again, we illustrate
the filtering equations with a qubit system and homodyne and
photon counting measurements.

In Sec. V we conclude and discuss our future research and
some open questions.

Notation. The commutator and anticommutator will be
denoted as [A,B] = AB − BA and {A,B} = AB + BA, re-

system outputinput

FIG. 2. (Color online) An open quantum system. The input field
(before interaction) is represented by the operator B(t) and output
field (after interaction) is denoted by Bout(t).

spectively. We set DAB ≡ A†BA − 1
2 (A†AB + BA†A) and

D�
AB ≡ ABA† − 1

2 (A†AB + BA†A).
The scattering, coupling, and Hamiltonian operators

describing a given Markovian open system will be written
as a triple G = (S,L,H ), to be explained in more detail in
Sec. II A, and this provides an operator-valued parametrization
of the system. The associated superoperators are

Lindbladian : LGX ≡ −i[X,H ] + DLX,

Liouvillian : L�
Gρ ≡ −i[H,ρ] + D�

Lρ,

and note that for traceclass ρ and bounded X,

tr{ρLGX} = tr{XL�
Gρ}.

II. MODELS OF OPEN QUANTUM SYSTEMS

In this section we briefly review quantum stochastic calcu-
lus (input-output theory) and quantum filtering (trajectories)
for a system coupled to a heat bath modeled as a boson field
in the vacuum state, Fig. 2.

A. Input-output model using QSDEs

Hudson and Parthasarathy [34,35] showed how to dilate a
dissipative completely positive semigroup evolution, with a
Lindblad generator, to a unitary model on the system space
with a (Bose) Fock space ancilla. Here they developed an
analog to the Itō theory of stochastic integration with respect to
creation, annihilation, and scattering process B† (t) ,B (t) and
� (t). They showed the existence and uniqueness of solutions
to unitary quantum stochastic differential equations of the form

dU (t) = {
(S − 1)d�(t) + LdB†(t)

−L†SdB(t) − (
1
2L†L + iH

)
dt

}
U (t), (2)

where

G = (S,L,H )

consists of a unitary S describing the photon scattering phase,
a bounded operator L describing coupling to the creation mode
of the field, and a bounded Hermitian operator H describing
the system Hamiltonian. (The result has been extended to
nonbounded coefficients.) The increments are future-pointing
operator-valued Itō increments, that is, dB(t) ≡ B(t + dt) −
B(t) and d�(t) = �(t + dt) − �(t) are forward increments
of the quantum noise. In particular, we have [U (t),dB(t)] =
[U (t),dB†(t)] = [U (t),d�(t)] = 0. The full quantum Itō table
is

× dt dB d� dB†

dt 0 0 0 0
dB 0 0 dB dt

d� 0 0 d� dB†

dB† 0 0 0 0

. (3)

More generally, for quantum stochastic integral processes
X(t),Y (t), one has the Itō product rule

d[X(t)Y (t)] = [dX(t)] Y (t) + X(t) dY (t) + dX(t) dY (t).

Independently, Gardiner et al. developed an equivalent
quantum input-output theory [25,26] based on Lehmann-
Symanzik-Zimmermann scattering theory of Bose white noise
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FIG. 3. Relationship between QSDEs for the unitary, system and environment; master equation; and stochastic master equation (filter) for
open quantum systems (HL is given by Eq. (14). The difference between the master equation and stochastic master equation is due to the
difference in the type of expectation take, i.e. unconditioned or conditioned, respectively.

processes. Formally, one begins with singular fields, satisfying

[b (t) ,b† (s)] = δ (t − s) ,

with the connection to the regular processes being formally

B† (t) =
∫ t

0
b† (s) ds, B (t) =

∫ t

0
b (s) ds,

� (t) =
∫ t

0
b† (s) b (s) ds.

The quantum stochastic calculus may then be understood as
effectively arising through Wick ordering of the singular fields.

The multiple input version is relatively straightforward. We
have n independent inputs bj and with Bj (t) = ∫ t

0 bj (s) ds,

�jk (t) = ∫ t

0 b
†
j (s) bk (s) ds, etc., we have

dU (t)=
{∑

jk

(Sjk − δjk)d�jk (t) +
∑

j

LjdB
†
j (t)

−
∑
jk

L
†
j SjkdBk(t) −

(
1

2

∑
j

L
†
jLj + iH

)
dt

}
U (t),

where we now have parameterizing operators

S =

⎛
⎜⎝

S11 . . . S1n

...
. . .

...
Sn1 . . . Snn

⎞
⎟⎠ , L =

⎛
⎜⎝

L1
...

Ln

⎞
⎟⎠ , H,

with S unitary and H self-adjoint. For simplicity we treat the
case of a single input and output.

B. Heisenberg-Langevin equations

The Heisenberg dynamics of an arbitrary system operator
X is defined by transforming to the Heisenberg picture

jt (X) = U †(t)(X ⊗ Ifield)U (t).

(We will usually drop the subscripts “system” and “field” when
there is no confusion.) From the quantum Itō product rule and
table one deduces the QSDE for a system operator jt (X) =
X(t), with all system operators transformed to the Heisenberg

picture:

djt (X) = jt (LX)dt + dB†(t)jt (S
†[X,L])

+ jt ([L
†,X]S)dB(t) + jt (S

†XS − X)d�(t). (4)

C. Derivation of the master equation

Suppose that the system is in an initial state ρ(0) = ρ0 and
that the joint state of the system and bath is ρ0 ⊗ Pvac, where
Pvac = |0〉〈0| is projection onto the vacuum state of the field.
The state of the system �(t), obtained by averaging over the
environment at a given time t , is then

�(t) = trfield[U (t)(ρ0 ⊗ Pvac)U †(t)]. (5)

We wish to obtain a differential equation for the average of an
observable X of the system at time t ,

�t (X) = tr {jt (X) �0 ⊗ Pvac} ≡ tr {� (t) X} ,

and from the Heisenberg-Langevin equation (4) we have

d�t (X) = tr {djt (X) ρ0 ⊗ Pvac}
= tr {jt (LGX) ρ0 ⊗ Pvac} dt,

as the increments dB,dB†,and d� vanish in the vacuum state.
We therefore obtain the equation

d�t (X)

dt
= �t (LGX) , �0 (X) = tr {ρ0X} ,

which may then be expressed as the master equation

d�(t)

dt
= L�

G�(t) ≡ −i[H,�(t)] + D�
L�(t), (6)

with initial data ρ0. Note that the master equation (6) is a
consequence of the QSDE model.

D. The input-output relations

The output field Bout is obtained from the input by moving
into the Heisenberg picture:

Bout (t) = U (t)† [I system ⊗ B (t)]U (t)

≡ U (τ )† [Isystem ⊗ B (t)]U (τ )
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for any τ � t . Again, from the quantum Itō calculus we find

dBout (t) = jt (S) dB (t) + jt (L) dt. (7)

Note that the output field again satisfies the canonical commu-
tation relations.

E. Derivation of the quantum filter (stochastic master
equation)–quadrature case

We suppose that we continuously monitor the quadrature
phase using perfect (100% efficiency) homodyne detection.
This entails measurement, for each t � 0, of the field

Y (t) = Bout(t) + B
†
out(t) ≡ U (t)† [Isystem ⊗ Q (t)]U (t) ,

where Q (t) = B (t) + B† (t). We note that the set of observ-
ables {Y (t) : t � 0} is self-commuting and we may simultane-
ously diagonalize (and measure!) all observables. At any time
t , we may additionally estimate an observable that commutes
with the observables up to time t . This includes observables
X (τ ) for τ � t , since

[X (τ ) ,Y (t)] = U (τ )∗ [X ⊗ Ifield,Isystem ⊗ Q (t)]U (τ ) ≡ 0.

This is the nondemolition property. Quantum filtering is the
estimation of jt (X) based on observations of the output
processes {Y (s) : 0 � s � t}. Figure 1 depicts the scenario
we are considering. From the Itō calculus we see that

dY (t) = [L(t) + L†(t)]dt + dQ(t).

Defining the expectation

E[·] = tr{ρ0 ⊗ ρfield (·)}
for a given state ρ0 ⊗ ρfield, we seek to minimize

E[{X̂(t) − jt (X)}2]

over all observables X̂ (t) in the algebra Yt generated by
{Y (s) : 0 � s � t}. The minimizer is called the least-squares
estimator for X (t) given {Y (s) : 0 � s � t} and will be
denoted as

X̂(t) = πt (X) = E [jt (X) |Yt ] . (8)

The later notation suggests that πt (X) is the conditional
expectation of jt (X) given the past history, which would
be the classical interpretation. While conditional expectations
generally do not exist in the quantum probabilistic setting,
the nondemolition property above suffices to allow one to
realize precisely this interpretation (see, for instance, [18,36]).
The conditional expectation can indeed be interpreted as an
orthogonal projection onto a subspace of commuting operators
Yt . This means that jt (X) − πt (X) is orthogonal to this
measurement subspace Yt , that is,

E[{jt (X) − πt (X)}C] = 0 (9)

for all operators C belonging to the measurement subspace
Yt [18]. Setting C = I shows that

E[πt (X)] = E[jt (X)].

Now let us return to the vacuum state for the field ρfield =
Pvac. We shall recall a simple derivation of the filter using an
analog of the characteristic function technique of classical

filtering [37]. We introduce a process C (t) satisfying the
QSDE,

dC (t) = g (t) C (t) dY (t) , (10)

with the initial condition C (0) = I . Here we assume that g is
integrable, but otherwise arbitrary. The technique is to make
an ansatz of the form

dπt (X) = αtdt + βt (X) dY (t) , (11)

where we assume that the processes αt and βt are adapted and
lie in Yt . These coefficients may be deduced from the identity

E [{πt (X) − jt (X)} C (t)] = 0,

which is valid since C(t) is in Yt . We note that the Itō product
rule implies I + II + III = 0, where

I = E [{dπt (X) − djt (X)} C (t)]

= E [αtC (t) + βtjt (L + L†)C (t)]dt

−E [jt (LGX) C (t)] dt,

II = E [{πt (X) − jt (X)} dC (t)]

= E [{πt (X) − jt (X)} g (t) C (t) jt (L + L†)]dt,

III = E [{dπt (X) − djt (X)} dC (t)]

= E [βtg (t) C (t)] dt − E[g(t)jt ([L
†,X])C(t)]dt.

Now from the identity I + II + III = 0 we may extract
separately the coefficients of g (t) C (t) and C (t) as g (t) was
arbitrary to deduce

πt (πt (X) jt (L+ L†)−jt (X)jt (L)−jt (L
†)jt (X)) + πt (βt )=0,

πt (αt + βtjt (L + L†) − jt (LGX))=0.

Using the projective property of the conditional expectation
πt ((πtX)) = πt (X) and the assumption that αt and βt lie in Yt ,
we find after a little algebra that

βt = πt (XL + L†X) − πt (X) πt (L + L†),

αt = πt (LGX) − βtπt (L + L†),

so that Eq. (11) reads as

dπt (X) = πt (LGX)dt + [πt (XL + L†X)

−πt (L + L†)πt (X)]dW (t), (12)

where the innovations process W (t) is a Wiener process. It is
related to the measurement process Y (t) by the equation

dY (t) = πt (L + L†)dt + dW (t) (13)

and has the interpretation as the difference between the
observed change dY (t) and the expected change πt (L + L†)dt

in the measured field immediately after time t . Note that the
increment dW (t) of the innovations process is independent of
πs(X) for all 0 � s � t .

It is important to note that Q(t) (equivalent to a Wiener
process) and W (t) (also a Wiener process) are distinct, and that
Q(t) is not in the commutative observation subspace. Some
care is needed in interpreting Eq. (12) for the quantum filter.
All of the terms in this equation belong to the commutative
subspace Yt and so (by the spectral theorem [18]) are
statistically equivalent to classical stochastic processes.
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The stochastic master equation may be expressed in terms
of the density operator-valued stochastic process ρ(t):

dρ(t) = L�
Gρ(t)dt + HLρ(t) dW (t),

where we introduce

HLρ = Lρ + L†ρ − tr{(L + L†)ρ} ρ. (14)

The increments dW (t) can be generated independently of
ρ(s) for all 0 � s � t , and the stochastic master equation
above driven by the generated increments can thus act as a
simulated quantum trajectory of the state conditioned upon the
measurement outcomes {y(s); 0 � s � t}. The relationship
between the quantum stochastic differential equation, the
master equation, and the quantum filter is illustrated in
Fig. 3.

F. Photon-counting case

If instead we measure the number observable Y (t) =
U †(t)�(t)U (t) = �out(t) = ∫ t

0 b
†
out(s)bout(s)ds, then the quan-

tum filter is (see the survey paper [18] for the derivation)

dρ(t) = L�
Gρ(t)dt + JLρ(t) dN(t),

where

JLρ = LρL†

tr{ρL†L} − ρ,

and the innovations process in this case is given by dN(t) =
dY − tr{ρ(t)L†L}dt and is a compensated Poisson process of
intensity tr{ρ(t)L†L}.

G. Cascade connections

A simple quantum network may be formed by connecting
the output of one system to the input of another system
[31,33,38,39]. Figure 4 illustrates the open quantum system
G = (S,L,H ) equivalent to the cascade of systems G1 =
(S1,L1,H1) and G2 = (S2,L2,H2). This equivalent system can
be described in terms of the series product G = G2�G1 [33],
defined by

G2�G1 = (S2S1,L2 + S2L1,H1 + H2 + Im{L†
2S2L1}).

(15)

Note in Eq. (15) that the order of the operators is important. The
series product provides the three parameters for the combined
or total open system G in terms of the parameters for each of
the systems G1 and G2.

FIG. 4. Two quantum systems cascaded, so that the output of
system G1 becomes the input of system G2. Importantly the flow of
information is directional. In (b) the circuit has been simplified using
quantum network theory to an equivalent system G = G2�G1. This
type of network topology is called a cascade or series connection.

III. SINGLE-PHOTON FIELDS

The master equation for a Markovian coupling of a system
to a boson field in a continuous-mode one- or two-photon state
was first treated in Ref. [40]. In this section, we review the
problem of determining the associated filter (stochastic master
equation) for an arbitrary system G = (S,L,H ) driven by a
single-photon field [41]. In Sec. III G we generalize the master
equation and filter to include any combination of single-photon
and vacuum as a probe field. The final section, Sec. III H,
is an explicit example of homodyne single-photon filtering
equations for a two-level atom.

A. Continuous-mode single-photon states

There are many ways to generate single-photon states [42].
One common technique for creating heralded single-photon
states is by spontaneous parametric downconversion (SPDC).
The photons from such a process are inherently multimodal
[43], and spectral filtering is typically performed to get a
single-mode photon.

The creation operator for a photon with one-particle state
ξ is

B† (ξ ) =
∫ ∞

0
ξ (t) dB† (t) , (16)

normalized so that ‖ξ‖2 = ∫ ∞
0 |ξ (t)|2 dt = 1. The single-

photon state is then defined to be

|1ξ 〉 = B†(ξ )|0〉. (17)

One may interpret this as the frequency domain |1ξ 〉 =∫ ∞
−∞ ξ̂ (ω)b̂†(ω)|0〉, where ξ̂ is the Fourier transform of ξ

and b̂ (ω), the formal transform of the input process. This
representation is often referred to as the multimode, or
continuous-mode, single-photon state (see, for instance, [[44],
Sec. 6.3], [[45], Sec. 14.2], [[46], Eq. (9)]).

Many of the calculations that follow will involve the
identities

dB(t)|1ξ 〉 = ξ (t)|0〉dt,
(18)

d�(t)|1ξ 〉 = ξ (t)dB†(t)|0〉,
and this will be the origin of the departure of the master and
filter equations from the vacuum case.

B. Single-photon master equation

Without loss of generality we fix the initial state of the
system to be a pure state ρ0 = |η〉〈η|, and our aim is to obtain
a differential equation for the expectation

� 11
t (X) = 〈η1ξ |jt (X) |η1ξ 〉

for arbitrary system operator X. Starting from the Heisenberg-
Langevin equation as before, but now using the identities (18),
we find
d

dt
� 11

t (X) = E11[jt (LGX)] + E01[jt (S
†[X,L])] ξ ∗(t)

+E10[jt ([L
†,X]S)] ξ (t)

+E00[jt (S
†XS − X)] |ξ (t)|2

= � 11
t (LGX) + � 01

t (S†[X,L]) ξ ∗(t)

+� 10
t ([L†,X]S) ξ (t)+� 00

t (S†XS−X) |ξ (t)|2,
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where

Ejk[A] = 〈ηφj |A|ηφk〉, �
jk
t (X) = Ejk[jt (X)],

with

φj =
∣∣∣∣ |0〉, j = 0;
|1ξ 〉, j = 1.

}
Rather than finding a single master equation as in the vacuum
case, we end up with a system of equations

�̇ 11
t (X) = � 11

t (LX) + � 01
t (S†[X,L])ξ ∗(t)

+� 10
t ([L†,X]S)ξ (t) + � 00

t (S†XS − X)|ξ (t)|2,
�̇ 10

t (X) = � 10
t (LX) + � 00

t (S†[X,L])ξ ∗(t),
(19)

�̇ 01
t (X) = � 01

t (LX) + � 00
t ([L†,X]S)ξ (t),

�̇ 00
t (X) = � 00

t (LX),

with initial conditions

� 11
0 (X) = � 00

0 (X) = 〈η,Xη〉, � 10
0 (X) = � 01

0 (X) = 0.

(20)

The main feature here is that the differential equation for
expectations �jk depends on lower order �jk , allowing us
to solve for � 11 inductively. Likewise, defining the traceclass
operators �jk via

tr{�jk(t)†X} = �
jk
t (X), (21)

we obtain a system of equations

�̇11(t) = L��11(t) +[Sρ01(t),L†]ξ (t) +[L,�10(t)S†]ξ ∗(t)
+ (Sρ00(t)S† − �00(t))|ξ (t)|2,

�̇10(t) = L��10(t) + [Sρ00(t),L†]ξ (t), (22)

�̇01(t) = L��01(t) + [L,�00(t)S†]ξ ∗(t),

�̇00(t) = L��00(t),

with

�11(0) = �00(0) = |η〉〈η|, �10(0) = �01(0) = 0.

Note �jk(t)† = �kj (t).

C. An input-output model of single-photon signal generation

In Sec. III E we will set up a general technique for
deriving the filtering equations for situations including the
single-photon input field. It is possible to give an alternate
derivation in this case, motivated by the idea of using a
preinteraction preparation where a vacuum input is first
passed through a fixed system in order to generate the one-
photon field. Our motivation for considering such a scenario
stems from statistical and engineering modeling, where it is
common practice to use “signal-generating filters” [37] driven
by white noise to represent colored noise. Analogously, in
this section we construct a quantum signal-generating filter
M = (SM,LM,HM ). Cascading the single-photon generating
filter M with the quantum system G we wish to probe
(Fig. 5), we create an extended system. Because this extended
system GT = G�M is driven by vacuum, the master equation
and quantum filter follow from the known vacuum case
upon substitution of the parameters for the cascade system
(Sec. III E). We stress that the signal generation model here

signal
model

HD
measurement

signal
white
noise

vacuum

detector

FIG. 5. (Color online) An ancilla system M is used to model the
effect of the single photon state for B(t) on the system G.

(and in Sec. IV C for the case of a system driven by a
superposition of continuous-mode coherent states) serves only
as a convenient theoretical mathematical device to derive the
quantum filtering (or stochastic master) equations. It is not
suggested that single photons with a given wave-packet shape
are to be generated in practice with physical devices that
implement this particular generator.

The idea behind the signal-generating filter M is simple.
We take the filter to be a two-level atom initially prepared in
its excited state |↑〉. The interaction with the vacuum input is
taken to be

(SM,LM,HM ) = (I,λ (t) σ−,0), (23)

which means that at some stage the atom decays into its
ground state |↓〉, creating a single photon in the output.
The mechanism for producing the single photon is therefore
spontaneous emission due to the coupling to the vacuum
fluctuations. Here σ− is the lowering operator from the upper
state |↑〉 to the ground state |↓〉. The Schrödinger equation for
|ψt 〉 = V (t)|↑〉 ⊗ |0〉 then becomes d|ψt 〉 = [λ(t)σ−dB∗

t −
1
2 |λ(t)|2σ+σ−dt] |ψt 〉, and it is an elementary calculation to
see that this has the exact solution

|ψt 〉 =
√

w (t)|↑〉 ⊗ |0〉 + |↓〉 ⊗ B∗
t (ξ )|0〉, (24)

where B∗
t (ξ ) = ∫ t

0 ξsdB∗
s , and (to preserve normalization)

w (t) = ∫ ∞
t

|ξ (s)|2 ds with the complex-valued function ξ (·)
related to λ (·) by

λ (t) = 1√
w (t)

ξ (t) . (25)

Since w (0) = ‖ξ‖2 = 1, we therefore generate the limit
state

|ψ∞〉 = |↓〉 ⊗ B† (ξ ) |0〉 ≡ |↓〉 ⊗ |1ξ 〉.
Thus the generator model will output the desired single-

photon state |1ξ 〉 provided that we choose the (time-dependent)
coupling strength λ(t) according to Eq. (25).

D. The extended system

We now define our extended system as the cascade system
GT = G�M , as in Fig. 5, where using the cascade connection
formalism from Sec. II G we have

GT = G�M

=
(

S,L+ ξ (t)√
w(t)

Sσ−,H + ξ (t)√
w(t)

Im(L†Sσ−)

)
. (26)

Let us denote by Ũ (t) the unitary for the extended
system driven by vacuum for the parameters GT on the
ancilla + system Hilbert space. Specifying an initial state
|↑〉 ⊗ |η〉 ⊗ |0〉, we consider the expectation

�̃t (A ⊗ X) = E↑η0[Ũ †(t)(A ⊗ X)Ũ (t)] (27)

(here A is an ancilla operator, and X is a system operator).
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In order to be useful, the extended system GT (driven by
vacuum) must be capable of capturing expectations of X(t),
for arbitrary operator X of the system G, at time t as if it were
driven by the single-photon field. That is, we must have

Eηξ [X(t)] = E↑η0[Ũ †(t)(I ⊗ X ⊗ I )Ũ (t)], (28)

the situation outlined in Eq. (1), with

ρa = |↑〉〈↑|, R(t) = I.

We are required to show that

Eηξ [X(t)] = E↑η0[Ũ †(t)(I ⊗ X)Ũ (t)] (29)

holds for any operator X of the system G.
Our verification of Eq. (29) is to compare the differentials

of both sides. Now the left-hand side of Eq. (29) is just the
single-photon expectation � 11

t (X) = E11[X(t)] = Eηξ [X(t)],
whose differential equation is determined from the system
(19). The differential of the right-hand side of Eq. (29) may be
found using the Lindblad superoperator LGT

[A ⊗ X] for the
extended system, which may be expressed in the form

LGT
[A ⊗ X] = A ⊗ LGX + (

DLM
A

) ⊗ X

+L
†
MA ⊗ S†[X,L] + ALM ⊗ [L†,X]S

+L
†
MALM ⊗ (S†XS − X),

for any ancilla operator A and system operator X. We first
observe that

DLM
(I ) = 0, DLM

(σ−) = −|ξ (t)|2
2w(t)

σ−,

DLM
(σ+) = −|ξ (t)|2

2w(t)
σ+, DLM

(σ+σ−) = −|ξ (t)|2
w(t)

σ+σ−,

where w(t) = ∫ ∞
t

|ξ (s)|2ds. Then we have

d

dt
E↑η0[Ũ †(t)(I ⊗ X)Ũ (t)]

= �̃ 11
t (LGX) + �̃ 01

t (S†[X,L])ξ ∗(t)

+ �̃ 10
t ([L†,X]S)ξ (t) + �̃ 00

t (S†XS − X)|ξ (t)|2, (30)

where

�̃
jk
t (X) = �̃t (Qjk ⊗ X)

wjk(t)
, (31)

with

(Qjk) =
(

Q00 Q01

Q10 Q11

)
=

(
σ+σ− σ+
σ− I

)
,

(wjk) =
(

w00 w01

w10 w11

)
=

(
w(t)

√
w(t)√

w(t) 1

)
.

Notice that Eq. (30) for �̃ 11
t (X) has the same form as the

� 11
t (X) equation in Eq. (19). In general, the equations for

�̃
jk
t (X) have the same form as equations (19) for �

jk
t (X).

Since at time t = 0 we have �̃
jk

0 (X) = �
jk

0 (X), it follows
that �̃

jk
t (X) = �

jk
t (X) for all t . This establishes the identity

(29).

E. Single-photon stochastic master equation (filter)
for quadrature phase measurements

In this section we explain how the quantum filter for the
conditional expectation

π11
t (X) = Eηξ [X(t)|Y (s),0 � s � t]

for the system G driven by a single-photon field may now
be obtained from the quantum filter for the conditional
expectation

π̃t (A ⊗ X) = E↑η0[Ũ †(t)(A ⊗ X)Ũ (t)|I ⊗ Y (s),0 � s � t]

(32)

for the extended system GT = G�M driven by vacuum.
Indeed, we have

dπ̃t (A ⊗ X) = π̃t (LGT
(A ⊗ X))dt

+ [π̃t (A ⊗ XLT + L
†
T A ⊗ X)

− π̃t (LT + L
†
T )π̃t (A ⊗ X)]dW (t), (33)

where dW (t) = dY (t) − π̃t (LT + L
†
T )dt . If we define

π
jk
t (X) = π̃t (Qjk ⊗ X)

wjk(t)
, (34)

where Qjk and wjk(t) were defined in the previous section, we
obtain the coupled system of nonlinear stochastic differential
equations:

dπ11
t (X) = {

π11
t (LX) + π01

t (S†[X,L])ξ ∗(t) + π10
t ([L†,X]S)ξ (t) + π00

t (S†XS − X)|ξ (t)|2}dt

+ {
π11

t (XL + L†X) + π01
t (S†X)ξ ∗(t) + π10

t (XS)ξ (t) − π11
t (X)Kt

}
dW (t),

dπ10
t (X) = {

π10
t (LX) + π00

t (S†[X,L])ξ ∗(t)
}
dt + {

π10
t (XL + L†X) + π00

t (S†X)ξ ∗(t) − π10
t (X)Kt

}
dW (t), (35)

dπ01
t (X) = {

π01
t (LX) + π00

t ([L†,X]S)ξ (t)
}
dt + {

π01
t (XL + L†X) + π00

t (XS)ξ (t) − π01
t (X)Kt

}
dW (t),

dπ00
t (X) = π00

t (LX)dt + {
π00

t (XL + L†X) − π00
t (X)Kt

}
dW (t).

Here,

Kt = π11
t (L + L†) + π10

t (S)ξ (t) + π01
t (S†)ξ ∗(t), (36)

and the innovations process W (t) (given above) may be expressed as

dW (t) = dY (t) − Ktdt. (37)

We have π01
t (X) = π10

t (X†)†, and the initial conditions are π11
0 (X) = π00

0 (X) = 〈η,Xη〉, π10
0 (X) = π01

0 (X) = 0.
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In order to see that the single-photon quantum filter is given
by the system of coupled equations (35), we must show that
the conditional expectation for the system driven by the single-
photon field is given by

πt (X) = Eηξ [X(t)|Y (s),0 � s � t]

= E↑η0[Ũ †(t)(A ⊗ X)Ũ (t)|I ⊗ Y (s),0 � s � t]

= π11
t (X). (38)

To obtain the filter, we again apply the characteristic func-
tion technique, setting C = cg(t) as before with dcg(t) =
g(t)cg(t)dY (t). We need to verify that

Eηξ [jt (X)cg(t)] = Eηξ [πt (X)cg(t)]. (39)

For the extended system we have

E↑η0[Ũ †(t)(A⊗X)Ũ (t)cg(t)] =E↑η0[π̃t (A⊗ X)cg(t)], (40)

for all functions g, arbitrary ancilla, and system operators A

and X, respectively. Hence (39) will follow, provided we can
show that

Ejk[X(t)cg(t)] = E↑η0[Ũ †(t)(Qjk ⊗ X)Ũ (t)cg(t)]

wjk(t)
. (41)

However, Eq. (41) may be verified in exactly the same
way we proved that �̃

jk
t (X) = �

jk
t (X) in the previous

section, that is, by comparing the differentials of both
sides of Eq. (41). The details of this calculation are
omitted.

Now, write π
jk
t (X) = tr[(�jk(t))†X] . Then from the dif-

ferential equations for π
jk
t (X) and the definition �jk(t) we

immediately get the differential equations for the evolution of
�jk(t) as follows:

dρ11(t) = {L�ρ11(t) + [Sρ01(t),L†]ξ (t) + [L,ρ10(t)S†]ξ ∗(t) + [Sρ00(t)S† − ρ00(t)]|ξ (t)|2}dt

+{Lρ11(t) + ρ11(t)L† + ρ10(t)S†ξ ∗(t) + Sρ01(t)ξ (t) − Ktρ
11(t)}dW (t),

dρ10(t) = {L�ρ10(t) + [Sρ00(t),L†]ξ (t)}dt + {Lρ10(t) + ρ10(t)L† + Sρ00(t)ξ (t) − Ktρ
10(t)}dW (t), (42)

dρ01(t) = {L�ρ01(t) + [L,ρ00(t)S†]ξ ∗(t)}dt + {Lρ01(t) + ρ01(t)L† + ρ00(t)S†ξ ∗(t) − Ktρ
01(t)}dW (t),

dρ00(t) = L�ρ00(t)dt + [Lρ00(t) + ρ00(t)L† − Ktρ
00(t)]dW (t),

where

Kt ≡ tr{(L + L†)ρ11(t)} + tr
{
Sρ01(t)

}
ξ (t) + tr

{
S†ρ10(t)

}
ξ ∗(t),

with the initial condition

ρ11(0) = ρ00(0) = |η〉〈η|, ρ10(0) = ρ01(0) = 0.

F. Single-photon stochastic master equation (filter) for photon-counting measurements

In this section we briefly derive the filtering equations for photon-counting measurements. The quantum filter for the
photon-counting case is given by the system of equations

dπ11
t (X) = {

π11
t (LX) + π01

t (S†[X,L])ξ ∗(t) + π10
t ([L†,X]S)ξ (t) + π00

t (S†XS − X)|ξ (t)|2}dt

+ {
ν−1

t

[
π11

t (L†XL) + π01
t (S†XL)ξ ∗(t) + π10

t (L†XS)ξ (t) + π00
t (S†XS)|ξ (t)|2] − π11

t (X)
}
dN(t),

dπ10
t (X) = {

π10
t (LX) + π00

t (S†[X,L])ξ ∗(t)
}
dt + {

ν−1
t

[
π10

t (L†XL) + π00
t (S†XL)ξ ∗(t)

] − π10
t (X)

}
dN(t),

dπ01
t (X) = {

π01
t (LX) + π00

t ([L†,X]S)ξ (t)
}
dt + {

ν−1
t

[
π01

t (L†XL) + π00
t (L†XS)ξ (t)

] − π01
t (X)

}
dN(t),

dπ00
t (X) = π00

t (LX)dt + {
ν−1

t

[
π00

t (L†XL)
] − π01

t (X)
}
dN(t),

or in the Schrödinger-picture

dρ11(t) = {L�ρ11(t) + [Sρ01(t),L†]ξ (t) + [L,ρ10(t)S†]ξ ∗(t) + [Sρ00(t)S† − ρ00(t)]|ξ (t)|2}dt

+ {
ν−1

t [Lρ11(t)L† + Lρ10(t)S†ξ ∗(t) + Sρ01(t)L†ξ (t) + Sρ00(t)S†|ξ (t)|2] − ρ11(t)
}
dN(t),

dρ10(t) = {L�ρ10(t) + [Sρ00(t),L†]ξ (t)}dt + {
ν−1

t [Lρ10(t)L† + Sρ00(t)L†ξ (t)] − ρ10(t)
}
dN(t), (43)

dρ01(t) = {L�ρ01(t) + [L,ρ00(t)S†]ξ ∗(t)}dt + {
ν−1

t [Lρ01(t)L† + Lρ00(t)S†ξ ∗(t)] − ρ01(t)
}
dN(t),

dρ00(t) = L�ρ00(t)dt + {
ν−1

t [Lρ00(t)L†] − ρ00(t)
}
dN(t),

where

νt = π11
t (L†L) + π01

t (S†L)ξ ∗(t) + π10
t (L†S)ξ (t) + π00

t (I )|ξ (t)|2
= Tr[ρ11(t)L†L] + Tr[ρ10(t)S†L]ξ ∗(t) + Tr[ρ01(t)L†S]ξ (t) + Tr[ρ00(t)I ]|ξ (t)|2,
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and the innovations process N (t) is given by

dN(t) = dY (t) − νtdt.

G. Combination of one-photon and vacuum states

In this section we take the state of the field to be in a state
defined by the density operator

ρfield =
∑
jk

γkj |φj 〉〈φk|, (44)

where we use the notation introduced above for the photon
|φ1〉 = |1ξ 〉 and vacuum |φ0〉 = |0〉 states. The coefficients γjk

must of course satisfy the condition that the 2 × 2 complex
matrix

ρa =
∑
jk

γkj |j 〉〈k| =
(

γ11 γ10

γ01 γ00

)
(45)

is a density matrix, i.e., ρa � 0, Tr[ρa] = 1. By choosing the
coefficients γjk appropriately we can model an input field
that is any combination of single photon and vacuum. For
example, the single-photon field is given by γ11 = 1 and
all other coefficients are zero; a superposition like |ψ〉f =
α1|1ξ 〉 + α0|0〉 is obtained by setting γ11 = |α1|2, γ10 =
α1α

∗
0 , γ01 = α0α

∗
1 , γ00 = |α0|2; and a simple combination is

ρfield = η|1〉〈1| + (1 − η)|0〉〈0|, where γ11 = η, γ00 = 1 − η,
and γ10 = γ01 = 0.

1. The master equation

The expectation �t (X) = 〈X(t)〉 of the system operator
X(t) when the system and field are initialized in the state
|η〉〈η| ⊗ ρfield is given by

�t (X) = Eηρfield [X(t)] =
∑
jk

γjkEjk[X(t)]

=
∑
jk

γjk�
jk
t (X), (46)

where �
jk
t (X) are defined in Sec. III B. While there is no

differential equation for �t (X), it can be computed from
the weighted sum (46) (Fig. 6). From Eq. (46) we see that
the density operator for the expectation �t (X) = tr {�(t)X} is

master
equations

weighting

FIG. 6. The expectation �t (X) = 〈X(t)〉 of the system operator
X(t) = jt (X) when the system and field are initialized in the state
|η〉〈η| ⊗ ρfield may be calculated by weighting the solutions �

jk
t (X)

from the single photon master equations (19).

given by

�(t) =
∑
jk

γkj�
jk(t), (47)

where �jk(t) are the density operators introduced in Sec. III B.

2. The stochastic master equation

Turning now to the problem of determining the filter, we
again make use of the cascade extended system from Sec. III D.
Now we have

�
jk
t (X) = �̃t (Qjk ⊗ X)

wjk(t)
, (48)

and so if we define the matrix

R(t) =
∑
jk

γjk

wjk(t)
Qjk, (49)

where wjk(t) and Qjk are as defined in Sec. III D, we have
[using (27), (46) and (48)]

�t (X) = �̃t (R(t) ⊗ X). (50)

Note that the definition (27) of �̃t (R(t) ⊗ X) involves the
ancilla system initialized in the excited state |e〉 = |↑〉.

The conditional expectation

πt (X) = Eηρfield [X(t) | Y (s),0 � s � t] (51)

corresponding to the field in the state ρfield is related to the
conditional expectation π̃t (A ⊗ X) for the extended system
[see (32)] by the Bayes relation

πt (X) = π̃t (R(t) ⊗ X)
π̃t (R(t) ⊗ I )

. (52)

Division by the denominator in Eq. (52) is needed to ensure
the normalization πt (I ) = 1. To prove (52), we need to show
that π̃t (R(t) ⊗ X) = π̃t (R(t) ⊗ I )πt (X), or equivalently,

E↑η0[π̃t (R(t) ⊗ X)cg(t)] = E↑η0[π̃t (R(t) ⊗ I )πt (X)cg(t)]

for all choice of characteristic functions cg (t). How-
ever, E↑η0[π̃t (R(t) ⊗ X)cg(t)] equals E↑η0[Ũ †(t)(R(t) ⊗ X ⊗
I )Ũ (t)cg(t)], but by the extended system representa-
tion this is just Eηρfield [X(t)cg(t)], which in turn equals
Eηρf

[πt (X)cg(t)] ≡ E↑η0[Ũ †(t)(R(t) ⊗ I )Ũ (t)πt (X)cg(t)],
which establishes the Bayes relation (52).

Since

π̃t (R(t) ⊗ X) =
∑
jk

γjkπ
jk
t (X), (53)

where π
jk
t (X) is defined by Eq. (34), the desired conditional

expectation may be expressed as

πt (X) =
∑

j,k γjkπ
jk
t (X)∑

j,k γjkπ
jk
t (I )

. (54)

Again, there is no differential equation for πt (X); instead
it is computed from a normalized weighted sum, (54), and
the filtering equations (35) (see Fig. 7). The corresponding
conditional density operator is given by

ρ(t) =
∑

jk γkjρ
jk(t)∑

jk γkj tr{ρjk(t)} , (55)
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filtering
equations

weighting and
normalization

measurement
signal

FIG. 7. Relationship between the measured signal and the filtered
estimate. The differential equations (35) must be integrated to
compute π

jk
t (X). Then depending on the state of the input field,

the probe, these estimates must be weighted by the appropriate
coefficients and normalized as specified in Eq. (54) to produce the
desired conditional expectation πt (X).

where the conditional quantities ρjk(t) may be computed from
the single-photon filtering equations (42).

These expressions allow filtering on any combination of a
single-photon and a vacuum state. One notable case is that
of a simple combination of one photon and vacuum (ρprobe =
p|1〉〈1| + (1 − p)|0〉〈0|), which is an experimentally accurate
model for the output of the SPDC process [1].

H. Illustrative example of single-photon master
and filtering equations

Here we apply the filtering method derived above to the
problem of exciting a two-level atom, in free space, with a
continuous-mode single photon. This problem has received
much attention recently [47–50]. Until now it has only been
possible to calculate ensemble-averaged quantities. Here we
show the individual trajectories associated with a particular
experimental run.

This problem can be parametrized in our model as follows.
We take the coupling operator to be L = √

κσ−, the internal
dynamics of the atom are specified by the Hamiltonian H =
0, and there is no scattering, i.e., S = I . Here κ > 0 is the
coupling rate (often referred to as the measurement strength)
and is chosen to be κ = 1. The atom is taken to be in the
ground state initially |g〉〈g|, and then a single photon in the
wave packet ξ (t) interacts with the atom. We take the wave
packet to be a Gaussian parametrized as

ξgau(t) =
(

�2

2π

)1/4

exp

[
−�2

4
(t − tc)2

]
, (56)

where tc specifies the peak arrival time and � is the frequency
bandwidth of the pulse.

Now we wish to calculate the excited-state population of
the two-level atom as a function of time. Other studies have
only been able to calculate the master equation evolution of
the atomic state [47–50]. In our formalism this corresponds to
propagating the master equations and taking the expectation

Pe(t) = Tr[�11(t) |e〉〈e|], (57)

where �11(t) is the solution to Eq. (22). In Fig. 8, Eq. (57)
is plotted as a function of time (the red dotted line) for a
two-level atom interacting with a Gaussian pulse. We choose
� = 1.46κ , which is known to be optimal for excitation via

FIG. 8. (Color online) The excited state population, Pe, of a two-
level atom interacting with one photon in a Gaussian wavepacket.
The dashed line is the Gaussian wavepacket |ξ (t)|2 with bandwidth
� = 1.46κ . The dotted (red) line is Pe as calculated by the master
equation. The grey lines are the individual trajectories P c

e . The solid
line is the ensemble average of sixty four trajectories plotted with
error bars (the shaded light green region).

a single photon in a Gaussian pulse [47,48,50]. Our numerics
agree with the prior results that maxt Pe(t) ≈ 0.8 [47,48,50].

However, in our formalism we can also calculate the condi-
tional state of the system using the quantum filtering equations
derived above. The conditional excited-state population is
denoted by

P c
e (t) = Tr[ρ11(t) |e〉〈e|], (58)

where ρ11(t) is the solution to the filtering equations, Eq. (42)
or (43) for homodyne- or photon-counting measurements,
respectively. In what follows we will focus on the homodyne
measurement filtering equations, i.e., Eq. (42).

In Fig. 8, 64 different trajectories given by Eq. (58) are
plotted as gray lines. For this particular bandwidth there is
very little spread in the trajectories for t < 3. After the bulk of
the wave packet has passed, at t = 4, many of the trajectories
start to decay, as evidenced by the many gray lines belowP c

e =
0.5 for t > 4. Nevertheless, there are a number of trajectories
which continue to rise towards P c

e = 1 for t > 4. This means
in a particular run of an experiment the atom may become
fully excited. Such behavior cannot be seen through the master
equation approach of Refs. [47–50].

It is possible to confirm the consistency of the trajectories
with the master equation solution by calculating a numerical
average of the trajectories. We plot the ensemble average of the
trajectories as the solid line in Fig. 8 with error bars smeared
around this line. The numerically calculated ensemble average
agrees with the master equation behavior given that a small
ensemble was used to calculate this mean value.

IV. SUPERPOSITION OF COHERENT FIELD STATES

In this section we turn to the problem of determining the
master equation and the quantum filter for systems driven by a
boson field whose state is a superposition of continuous-mode
coherent states. In Sec. IV A we describe continuous-mode
coherent states and superpositions of them, as well as the action
of the quantum noises on such states. Section IV B is devoted
to the derivation of the master equation for superpositions of
coherent states. In Sec. IV C we develop a cascaded system
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signal model. This model allows us to use the methodology
from Sec. III, with appropriate changes due to the nature of
the superposition of coherent states, to derive the filtering
equations in Sec. IV D. Then we give the filter for the case
of photon counting in Sec. IV E and generalize to mixed input
states.

A. Superpositions and combinations of coherent states

Typically single-mode coherent states of a field are denoted
by |α〉. In this paper we shall often refer to a superposition of
continuous-mode coherent states as a (continuous-mode) cat
state [44,51]. Formally, the superpositions of continuous-mode
coherent states are given by

|ψ〉 =
n∑

j=1

sj |αj 〉, (59)

where |αj 〉 are coherent states, determined by functions αj (t)
with αj = αk if j = k. The superposition weights sj are
complex numbers such that 〈ψ |ψ〉 = ∑

j,k s∗
j sk〈αj |αk〉 = 1

(i.e., ψ is normalized and is a pure state vector of the field).
Given a function α, the coherent state |α〉 of a continuous-mode
field is given by the displacement or Weyl operator D(α)
applied to the vacuum state of the continuous-mode field:

|α〉 = D(α)|0〉. (60)

The inner product of two coherent states |α〉, |β〉 in the Fock
space is given by

〈α|β〉 = exp
(− 1

2‖α‖2 − 1
2‖β‖2 + 〈α,β〉), (61)

where 〈g,f 〉 = ∫ ∞
−∞ g(s)∗f (s)ds and ‖ · ‖ = √〈·,·〉 are the

L2 inner product and norm, respectively. The normalization
condition for the superposition state (59) means that the coef-
ficients must satisfy

∑
j,k s∗

j skgjk = 1, where gjk = 〈αj |αk〉.
More generally, we may consider a field density operator

ρfield =
∑
jk

γkj |αj 〉〈αk|, (62)

that generalizes the superposition state |ψ〉 to allow for
statistical combinations of coherent states. The normalization
for the state ρfield is

∑
j,k γjkgjk = 1.

In what follows the action of the quantum noises dB and
d� on coherent states will be important:

dB(t)|α〉= α(t)|α〉dt, d�(t)|α(t)〉= dB∗(t)α(t)|α〉. (63)

B. Master equation for systems driven by a field in a
combination or superposition of coherent states

Again, before we derive the master equation, we in-
troduce some notation that helps to formulate the master
equation. Recall that we defined the asymmetric expectation
Ejk [X ⊗ F ] ≡ 〈η|X|η〉〈φj |F |φk〉. In Sec. III we took the
field states |φj 〉,|φk〉 to be either vacuum or one photon. In
this section we use this same notation, but the field states
are understood to be continuous-mode coherent states, i.e.,
|αj 〉,|αk〉. The indices j,k now take the values 1, . . . ,n.

The expectation of an arbitrary system observable, with
respect to the state |η〉〈η| ⊗ ρfield, at time t is

�t (X) = Eηρfield [X(t)]. (64)

Using the notation (similar to the single-photon case)

�
jk
t (X) = Ejk [X(t)] = 〈ηαj |X(t)|ηαk〉, (65)

with ρfield as given in Eq. (62), we may write (64) as

�t (X) =
∑
jk

γjk�
jk
t (X). (66)

As in Sec. III B, we can derive the Heisenberg master
equation by taking the expectation of the equation of motion
for an arbitrary system operator dX(t), i.e., (4). Doing so yields
the equation

�̇
jk
t (X) = �

jk
t

(
Gjk

t X
)
, (67)

where we define a new superoperator,

Gjk
t X ≡ LX + S†[X,L]α∗

j (t) + [L†,X]Sαk(t)

+(S†XS − X)α∗
j (t)αk(t), (68)

with initial conditions �
jk

0 (X) = 〈η|X|η〉gjk . Note that
Eq. (67) is uncoupled.

The corresponding density operator is

�(t) =
∑
jk

γkj�
jk(t), (69)

where

�̇jk = Gjk�
t [�jk] ≡ L��jk + [S�jk,L†]αj (t) + [L,�jkS†]α∗

k (t)

+ (S�jkS† − �jk)αj (t)α∗
k (t) (70)

and �jk(0) = |η〉〈η| gjk .
The master equations (67) and (70) consist of a weighted

sum of cross-expectations. Clearly these equations reduce
to the vacuum master equation if the only term in the
superposition or combination is the vacuum.

C. Extended system

In this section we describe a cascade extended system GT =
G�M that will be used in Sec. IV D to determine the quantum
filtering equations for the mixed or superposition of coherent
state field. The ancilla system M will be an n-level system,
with orthonormal basis |j 〉, j = 1, . . . ,n. The parameters for
this system are

M = (I,LM,0),

where

LM =
∑

j

αj (t)|j 〉〈j |, (71)

and we take the initial state of the ancilla to be the density
matrix

ρa = 1

Na

∑
jk

γkj |j 〉〈k|, (72)
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where Na = ∑
l γll is a normalization factor. The extended

system is

GT = G�M = (S,L + SLM,H + Im{L†SLM}).
Define Qjk = |j 〉〈k|. Then a straightforward calculation

shows that

LM (Qjk) = mjk(t)Qjk, (73)

where

mjk(t) = α∗
j (t)αk(t) − 1

2 |αj (t)|2 − 1
2 |αk(t)|2. (74)

Now consider the extended system GT initialized in the
state ρa ⊗ |η〉〈η| ⊗ |0〉〈0| (driven by vacuum |0〉). Then the
methods used in Secs. III D and III G may be adapted to
the present case to show that

�
jk
t (X) = �̃t (Qjk ⊗ X)

wjk(t)
, (75)

where wjk(t) is defined to be the solution of

ẇjk(t) = mjk(t)wjk(t), wjk(0) = γjk

Nagjk

, (76)

and

Eηρfield [X(t)] = Eρaη0{Ũ †(t)[R(t) ⊗ X]Ũ (t)}, (77)

where

R(t) =
∑
j,k

γjk

wjk(t)
Qjk. (78)

These expressions are very similar to the single photon case,
but with some important differences. For instance, the ancilla
was initialized in the excited state for the photon case, while
here for the mixed coherent case the initial ancilla state is the
density ρa .

D. The stochastic master equation (filter) for amplitude
quadrature measurements

The quantum filter for the general combination of the
coherent-state case may now be derived in exactly the same
way as was done for the combination of single photon and
vacuum in Sec. III G. The conditional expectation we are
interested in is

πt (X) = Eηρfield [X(t) | Y (s),0 � s � t], (79)

where now ρfield is given by (62). Equations (52), (54), and (55)
again hold, but with modifications to the terms as described
above. The filtering equations are as follows.

The conditional quantities π
jk
t (X) satisfy the coupled

system of equations

dπ
jk
t (X) = π

jk
t (GjkX)dt + Hjk

t (X) dW (t),

where the innovations process W (t) is a Wiener process and
is given by

dW (t) = dY (t) −
∑

l

γll

Na

πll
t [L + Sαl(t)

+L† + S†α∗
l (t)]dt,

and the new superoperator Hjk

l (·) is defined by

Hjk

l (X) ≡ π
jk
t (X[L + Sαk(t)] + [L† + S†α∗

j (t)]X)

−π
jk
t (X)

∑
l

γll

Na

πll(L + L† + Sαl(t) + S†α∗
l (t)).

As before, we may write π
jk
t (X) = tr{�jk(t)†X}, where

�jk(t) satisfies the coupled differential equations (for j,k =
1,2, . . . ,n):

dρjk(t) = Gjk�
t [ρjk(t)]dt + Hjk�

t [ρjk(t)]dW (t) (80)

where

Hjk�
t [ρjk] ≡ [L + Sαk(t)]ρjk + ρjk[L† + S†α∗

j (t)]

− ρjk
∑

l

γll

Na

tr{[L + L†+Sαl(t) + S†α∗
l (t)]ρll},

with initial conditions ρ
jk

0 (t) = |η〉〈η|gjk (recall that gjk =
〈αj |αk〉). The conditional density operator is given by Eq. (55),
with the ρjk(t) given instead by Eq. (80).

We remark that the innovations for the cat case now depend
on the weights, in contrast to the mixed photon and vacuum
case.

E. The stochastic master equation (filter) for
photon-counting measurements

Analogously, we may also compute the quantum filtering
equations for a system driven by a coherent superposition
in the case where the measurement performed on the output
field Y (t) is photon counting. The filtering equations in the
Heisenberg form are given by (for j,k = 1,2, . . . ,n)

dπ
jk
t (X) = π

jk
t (Gjk(X))dt +

(
π

jk
t [L†XL + αk(t)L†XS + α∗

j (t)S†XL + α∗
j (t)αk(t)S†XS]∑n

j=1
γjj

Na
π

jj
t [L†L + αj (t)L†S + α∗

j (t)S†L + |αj |2I ]
− π

jk
t (X)

)
dN(t),

where

dN(t) = dY (t) −
n∑

j=1

γjj

Na

π
jj
t (L†L + αj (t)L†S + α∗

j (t)S†L + |αj (t)|2I )dt, (81)

and with initial conditions π
jk

0 (X) = 〈η|X|η〉gjk . The corresponding Schrödinger-picture filter is

dρjk(t) = Gjk�
t [ρjk]dt + {

N−1[LρjkL† + αk(t)∗LρjkS† + αj (t)SρjkL† + αj (t)αk(t)∗SρjkS†)] − ρjk
}
dN(t),
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where

N =
n∑

j=1

γjj

Na

Tr{ρjj [L†L+ αj (t)L†S + α∗
j (t)S†L+ |αj |2I ]}

(82)

and dN(t) = dY (t) − Ndt , with initial conditions ρjk(0) =
|η〉〈η| gjk .

V. CONCLUSION

We have shown that quantum filtering may be extended
beyond the Gaussian input situation to consider a range of
nonclassical states that are of current interest. Photon wave-
packet shaping is already being applied experimentally, and
our filtering equations for the single-photon input completes
the problem addressed by Gheri et al. in Ref. [40] by giving
the quantum trajectories associated to the master equation
they derive. We extend this general combination of the
vacuum an a one-photon state through a straightforward
weighting procedure. The filter equations themselves have
potential applications to areas such as shaping wave packets
for maximal/minimal absorption by, for instance, a two-level
atom, or to controlling the system so as to shape the outgoing
field.

We have also derived the quantum filter for cat states.
While the concept of an environment being in a superposition

of states may seem unphysical from the perspective of
macroscopic superselection rules, as we have seen, this
may effectively be what happens internally once a standard
input is first fed through an appropriate filter system M .
This leads naturally to questions of decoherence [52], and
whether preparing input in a cat state is advantageous in
preventing decoherence of cat states for a given system. It
is now experimentally possible to isolate quantum systems
sufficiently well to create cat states in a laboratory [2–4].
The cat-state filtering equation will be of importance for
investigating questions as to whether such superpositions may
protected via appropriate environment engineering.
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