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Theory of refraction and reflection with partially coherent electromagnetic beams
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Laws of refraction and reflection of light are governed by the classic Fresnel formulas. These formulas are not
applicable to partially coherent light. We develop a general theory of refraction and reflection of electromagnetic
beams of any state of coherence. We find that coherence properties of such beams change, in general, on refraction
and on reflection at a planar interface.
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I. INTRODUCTION

Refraction and reflection of light have been subjects of
investigations for a very long time. Properties of refracted
and reflected fields are usually studied by the use of the classic
Fresnel formulas. Because these formulas have been developed
for monochromatic plane waves, they do not apply when the
light is partially coherent. In this paper, we present a theory of
refraction and reflection of electromagnetic beams of any state
of spatial coherence.

Derivations of the classic Fresnel formulas for refraction
and reflection based on Maxwell’s equations can be found
in standard textbooks of electromagnetic theory (see, for
example, Ref. [1], Chap. 7). In the usual treatments, it is
assumed that the incident, the refracted, and the transmitted
electromagnetic fields are monochromatic plane waves. Such
waves are necessarily spatially fully coherent. Hence, the
Fresnel formulas do not provide any information regarding
possible changes of the coherence properties of light, when it
is refracted and reflected at an interface. In the present paper,
we show that such changes do, in general, occur.

In Sec. II, we recall the classic Fresnel formulas and the
basic aspects of coherence theory of classical electromagnetic
beams. In Sec. III, we develop the theory of reflection and
refraction of partially coherent electromagnetic beams. In
Sec. IV we show by an example that coherence properties
of an electromagnetic beam may change on refraction and on
reflection at a planar interface that separates two media of
different dielectric properties.

II. SUMMARY OF SOME BASIC RESULTS

We first recall the main results relating to reflection and
refraction of monochromatic plane waves, and then discuss
some results from coherence theory of electromagnetic beams.

A. Fresnel formulas for reflection and refraction
of monochromatic plane waves

Let us consider two media of different dielectric and
magnetic properties, characterized by permittivities and per-
meabilities ε, μ, and ε′, μ′, respectively. The refractive indices
n and n′ of the two media are given by the usual formulas (see,
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for example, Ref. [1], p. 303)

n =
√

εμ

ε0μ0
, n′ =

√
ε′μ′

ε0μ0
, (1)

where ε0 ≈ 8.854 × 10−12 F/m and μ0 = 4π × 10−7 H/m
are the vacuum permittivity and the vacuum permeability,
respectively. We assume that the two media are separated by a
planar interface.

Suppose that a monochromatic plane wave is incident on
the interface at an angle θi of incidence (see Fig. 1). The
electric field vector of the incident wave can be represented in
the form

E(i)(r,t) = E(i)
0 exp[i(k(i) · r − ωt)], (2)

where k(i) is the wave vector. As usual we refer to the plane
that is defined by the wave vector k(i) and the normal n to
the surface of the interface as the plane of incidence. As is
well known, the wave vectors of the refracted and the reflected
fields also lie in this plane.

Since the incident wave is transverse, the electric field E(i)

has no component in the direction of propagation. Hence,
E(i) can be expressed as the sum of two mutually orthogonal
components, E(i)

v and E(i)
h , which are perpendicular and

parallel, respectively, to the plane of incidence (see Fig.1).
Consequently

E(i)(r,t) = E(i)
v (r,t) + E(i)

h (r,t)

= (
E(i)

0v + E(i)
0h

)
exp[i(k(i) · r − ωt)]. (3)

Let E(t)(r,t) and E(r)(r,t) be the electric field vectors of the
transmitted and of the reflected plane waves, respectively. Each
of them can also be uniquely decomposed along the directions
perpendicular and parallel to the plane of incidence; i.e.,

E(t)(r,t) = E(t)
v (r,t) + E(t)

h (r,t)

= (
E(t)

0v + E(t)
0h

)
exp[i(k(t) · r − ωt)], (4)

E(r)(r,t) = E(r)
v (r,t) + E(r)

h (r,t)

= (
E(r)

0v + E(r)
0h

)
exp[i(k(r) · r − ωt)]. (5)

Moduli of the wave vectors are given by the expressions
(Ref. [1], Eq. (7.33))

|k(t)| = ω
√

ε′μ′, (6a)

|k(i)| = |k(r)| = ω
√

εμ. (6b)
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FIG. 1. The geometry relating to refraction and reflection of a
monochromatic plane wave at an interface; h and v directions are
chosen to be parallel and perpendicular to the plane of incidence.

The components of the transmitted and the reflected fields
at the interface are related to the components of the incident
field by the Fresnel formulas (Ref. [1], Eqs. (7.39) and (7.41))

E
(t)
0v = 2n cos θi

n cos θi + μ

μ′
√

n′2 − n2 sin2 θi
E

(i)
0v

≡ Tv(n,n′,θi)E(i)
0v , (7a)

E
(t)
0h = 2nn′ cos θi

μ

μ′ n′2 cos θi + n
√

n′2 − n2 sin2 θi
E

(i)
0h

≡ Th(n,n′,θi)E(i)
0h , (7b)

E
(r)
0v =

n cos θi − μ

μ′
√

n′2 − n2 sin2 θi

n cos θi + μ

μ′
√

n′2 − n2 sin2 θi
E

(i)
0v

≡ Rv(n,n′,θi)E(i)
0v , (7c)

E
(r)
0h =

μ

μ′ n
′2 cos θi − n

√
n′2 − n2 sin2 θi

μ

μ′ n′2 cos θi + n
√

n′2 − n2 sin2 θi
E

(i)
0h

≡ Rh(n,n′,θi)E(i)
0h . (7d)

B. Elements of coherence theory of stochastic
electromagnetic beams

In the optical and higher-frequency ranges of the electro-
magnetic spectrum, the concept of monochromaticity is an
idealization that is not encountered in practice. Electromag-
netic fields generated by even the best lasers always contain
some random fluctuations, for example, due to spontaneous
emission or due to mechanical vibrations of the mirrors
at the ends of the laser cavities. If these fluctuations are
statistically stationary, the field can be represented, at each
frequency ω, by an ensemble {E(r,ω)} of monochromatic
realizations (see, for example, Ref. [2], Sec. 4.1). When the
field is beamlike, one can neglect the field components along
the direction of propagation. Hence, each member of the
ensemble of the electric field can be represented in terms of
two mutually orthogonal components, which are perpendicular
to the direction of propagation. As in the previous section,
we label them by the subscripts v and h. The second-order
correlation properties of such a field [3] may be characterized
by a 2 × 2 correlation matrix

←→
W (r1,r2; ω), known as the

cross-spectral density matrix (CSDM). It is defined at a pair of
points specified by position vectors r1 and r2, by the formula
(Ref. [2], Chap. 9)

←→
W (r1,r2; ω)

=
( 〈E∗

v (r1; ω)Ev(r2; ω)〉 〈E∗
v (r1; ω)Eh(r2; ω)〉

〈E∗
h (r1; ω)Ev(r2; ω)〉 〈E∗

h (r1; ω)Eh(r2; ω)〉
)

. (8)

Here the asterisk denotes the complex conjugate and the
angle brackets denote the ensemble average. Apart from a
proportionality factor that depends on the choice of units,
one can express the spectral density S(r,ω), at a point r, at
frequency ω by the formula (Ref. [2], Chap. 9, Eq. (2))

S(r,ω) ≡ Tr
←→
W (r,r; ω), (9)

where Tr denotes the trace of the matrix. The spectral degree
of coherence of the beam, i.e., the spatial degree of coherence
in the frequency domain, is defined by the formula (Ref. [2],
Chap. 9, Eq. (8))

η(r1,r2; ω) ≡ Tr
←→
W (r1,r2; ω)√

S(r1; ω)
√

S(r2; ω)
. (10)

If one performs a Young’s interference experiment with the
pinholes located at positions r1 and r2, the visibility of
the fringes, at frequency ω, can be shown to be equal to
|η(r1,r2; ω)|. It can be readily shown that 0 � |η(r1,r2; ω)| �
1. When |η(r1,r2; ω)| = 1, i.e., when the fringe visibility has
the maximum possible value, the beam is said to be spatially
completely coherent, at frequency ω, at the pair of points
(r1,r2). In the other extreme case, when η(r1,r2; ω) = 0, the
beam is said to be spatially incoherent at the two points, at that
frequency. In any intermediate case (0 < |η(r1,r2; ω)| < 1),
the beam is said to be partially coherent at the two points, and
at that frequency.

The electric field associated with an optical beam is not
measurable. On the other hand, the correlation functions
that appear in Eqs. (8)–(10) are measurable quantities. The
usefulness of coherence theory comes largely from the fact
that the theory is formulated in terms of measurable correlation
functions, rather than in terms of nonmeasurable fields (in this
context see Ref. [4]).

There are other definitions of the degree of coherence
of electromagnetic beams. One of them was introduced
in Ref. [5]. There have been some discussions relating to
this definition [6,7]. However, for the problem addressed in
this paper, it does not matter which of the definitions one
employs [8].

C. The Fresnel formulas in matrix representation

It is usually convenient to represent the electric field vector
as a column matrix, i.e., in the form

E(r,ω) =
(

Ev(r,ω)

Eh(r,ω)

)
= (Ev(r,ω) Eh(r,ω))T , (11)

where the superscript T denotes transpose of the matrix. In
this notation Eq. (8) can be expressed in the form

←→
W (r1,r2; ω) = 〈E∗(r1; ω) · ET (r2; ω)〉, (12)

where the dot (·) denotes matrix multiplication.
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FIG. 2. The (x(i)
v ,x

(i)
h ,x(i)

p ) coordinate system.

The usual Fresnel formulas (7), at each frequency ω, can
be written in the matrix form as

E(t)
0 (ω) = ←→

T (n,n′,θi) · E(i)
0 (ω), (13a)

E(r)
0 (ω) = ←→

R (n,n′,θi) · E(i)
0 (ω), (13b)

where

←→
T (n,n′,θi) =

(
Tv(n,n′,θi) 0

0 Th(n,n′,θi)

)
, (14a)

←→
R (n,n′,θi) =

(
Rv(n,n′,θi) 0

0 Rh(n,n′,θi)

)
. (14b)

The matrix representation of the Fresnel formulas turns out to
be particularly useful in connection with the theory of refrac-
tion and the reflection with partially coherent electromagnetic
beams.

III. REFRACTION AND REFLECTION OF PARTIALLY
COHERENT ELECTROMAGNETIC BEAMS

In this section we formulate a general theory of refraction
and reflection with electromagnetic beams of any state of
spatial coherence.

A. The main coordinate systems used

Suppose that a light beam is incident on the plane interface
between two media. We assume that the beam axis makes
an angle θi with the normal n to the interface (see Fig. 2).
We label the beam axis by the symbol x(i)

p and choose its
positive direction along the direction of propagation of the
beam. We choose two other axes along v and h directions
(see Fig. 2) and denote them by x(i)

v and x
(i)
h , respectively.

Thus, we have a coordinate system (x(i)
v ,x

(i)
h ,x(i)

p ), which we
call an “incident-beam axis coordinate system.” Similarly,
we introduce transmitted-beam axis and reflected-beam axis
coordinate systems, and denote them by (x(t)

v ,x
(t)
h ,x(t)

p ) and

(x(r)
v ,x

(r)
h ,x(r)

p ), respectively. We assume that x(t)
p and x(r)

p lie

in the plane formed by x(i)
p and n. If x(t)

p and x(t)
p make angles

θt and θr , respectively, with n, one has the relations

θi = θr , (15a)
√

με sin θi =
√

μ′ε′ sin θt. (15b)

The (x(t)
v ,x

(t)
h ,x(t)

p ) coordinate system can be obtained from

the (x(i)
v ,x

(i)
h ,x(i)

p ) coordinate system by a clockwise rotation

through the angle (θi − θt) around the x(i)
v axis (see Fig. 3). It

FIG. 3. The h and the p directions of the incident-, the refracted-,
and the reflected-beam axis coordinate systems; the v direction for
all three systems is the same, and points at a right angle into the plane
of the figure.

is to be noted that the positive direction of x(i)
v is pointing at a

right angle into the plane of the figure. One then has⎛
⎜⎝

x(t)
v

x
(t)
h

x(t)
p

⎞
⎟⎠ =

⎛
⎝ 1 0 0

0 cos(θi − θt) − sin(θi − θt)
0 sin(θi − θt) cos(θi − θt)

⎞
⎠

⎛
⎜⎝

x(i)
v

x
(i)
h

x(i)
p

⎞
⎟⎠.

(16)

The (x(r)
v ,x

(r)
h ,x(r)

p ) coordinate system can be obtained from

the (x(i)
v ,x

(i)
h ,x(i)

p ) coordinate system by a counterclockwise

rotation through the angle (π − 2θi) around the x(i)
v axis (see

Fig. 3). Hence, the two coordinate systems are related by the
formula⎛

⎜⎝
x(r)

v

x
(r)
h

x(r)
p

⎞
⎟⎠ =

⎛
⎝ 1 0 0

0 − cos 2θi sin 2θi
0 − sin 2θi − cos 2θi

⎞
⎠

⎛
⎜⎝

x(i)
v

x
(i)
h

x(i)
p

⎞
⎟⎠. (17)

B. Angular spectrum representation of the incident beam

As already mentioned in Sec. II B, for a partially coherent
electromagnetic beam, the associated electric field vector is
a random quantity, which may be represented by a statistical
ensemble {E(r,ω)} of realizations in the frequency domain.
The simplest types of correlation properties of such beams are
characterized by the so-called cross-spectral density matrix
(CSDM), defined by Eq. (8).

We recall that for an electromagnetic beam one can
neglect, for each member of the statistical ensemble, the field
component along the direction of propagation, i.e., along the
beam axis. Each of the other two components, which are
normal to the direction of propagation, can be expressed in
the following form using the angular spectrum representation
(see, for example, Ref. [9], Sec. 3.2; [10]):

E
(i)
l (r,ω) =

∫∫
p2+q2<|k(i)|2

A
(i)
l (p,q; ω) exp

[
i
(
px(i)

v + qx
(i)
h

+wx(i)
p

)]
dp dq +

∫∫
p2+q2>|k(i)|2

A
(i)
l (p,q; ω)

× exp
[
i
(
px(i)

v + qx
(i)
h

)]
exp

[ − (p2 + q2

−|k(i)|2)x(i)
p

]
dp dq, (18)

043815-3



MAYUKH LAHIRI AND EMIL WOLF PHYSICAL REVIEW A 86, 043815 (2012)

FIG. 4. The notation used for descriptions of the (x(i)
v′ ,x

(i)
h′ ,x

(i)
p′ )

and the (x ′,y ′,z′) coordinate systems.

where l = v,h; r ≡ (x(i)
v ,x

(i)
h ,x(i)

p ); and w =√
|k(i)|2 − p2 − q2. It is to be kept in mind that both

E
(i)
l (r,ω) and A

(i)
l (p,q; ω) are random quantities, being

members of suitably constructed statistical ensembles. The
first term on the right-hand side of Eq. (18) represents a
contribution from plane waves, each of which has field
components with amplitudes A

(i)
l (p,q; ω). The second term is

a contribution from evanescent waves. Since the incident field
is assumed to be beamlike, one has (see Ref. [9], Sec. 5.6)∣∣A(i)

l (p,q; ω)
∣∣ ≈ 0, unless p2 + q2 � |k(i)|2. (19)

Equation (19) shows that one may neglect contributions from
the evanescent waves in Eq. (18), and one then obtains for
E

(i)
l (r,ω) the expression

E
(i)
l (r,ω) ≈

∫∫
p2+q2�|k(i)|2

A
(i)
l (p,q; ω)

× exp
[
i
(
px(i)

v + qx
(i)
h + wx(i)

p

)]
dp dq. (20)

Clearly, each plane-wave component with amplitude
A(i)(p,q; ω) propagates along a direction specified by the unit
vector κκκ (i), which, in the (x(i)

v ,x
(i)
h ,x(i)

p ) coordinate system, is
given by

κκκ (i) ≡
⎛
⎝ p

|k(i)| ,
q

|k(i)| ,
√

1 − p2 + q2

|k(i)|2

⎞
⎠ . (21)

C. Generalization of Fresnel formulas for transmission

The normal n to the interface and each unit vector κκκ (i) form
a plane that is different from the plane formed by n and x(i)

p .

We introduce an axis x
(i)
p′ , whose positive direction is along

κκκ (i). We choose two other mutually perpendicular axes x
(i)
v′ and

x
(i)
h′ , which are perpendicular and parallel, respectively, to the

plane formed by n and x
(i)
p′ (see Fig. 4). The components of the

electric field vector associated with the plane wave propagating
alongκκκ (i) can be decomposed along the x

(i)
v′ and x

(i)
h′ directions

and are denoted by A
(i)
v′ (p,q; ω) and A

(i)
h′ (p,q; ω), respectively.

They are related to A(i)
v (p,q; ω) and A

(i)
h (p,q; ω) by the

formula (see Appendix A)(
A

(i)
v′ (p,q; ω)

A
(i)
h′ (p,q; ω)

)
= ←→

U (i)(p,q; θi,ω) ·
(

A(i)
v (p,q; ω)

A
(i)
h (p,q; ω)

)
,

(22)

where

←→
U (i) =

(
cos α sin α cos θi

− sin α cos θi cos α cos θ̃i cos θi + sin θ̃i sin θi

)
,

(23)

and

α = tan−1

(
− p

q cos θi − w sin θi

)
. (24)

The quantity θ̃i(p,q) in Eq. (23) denotes the angle between
κκκ (i) and n (see Fig. 4). Expressions for cos θ̃i and sin θ̃i can
be obtained by evaluating the quantities κκκ (i) · n and |κκκ (i) × n|,
respectively (see Appendix B). In general, they are functions
of both p and q. However, in the case under consideration, they
may be approximated by functions of q only and are given by
the formulas (see Appendix B)

cos[θ̃i(p,q)] ≈ cos[θ̃i(q)] = cos θi + q

|k(i)| sin θi, (25a)

sin[θ̃i(p,q)] ≈ sin[θ̃i(q)] = sin θi − q

|k(i)| cos θi. (25b)

Because A(i)
v (p,q; ω) and A

(i)
h (p,q; ω) denote amplitudes of

the field associated with plane waves, the field generated by
their transmission can be obtained by direct application of
Eqs. (7). They are given by the formula

A
(t)
l′ = Tl′(n,n′; p,q)A(i)

l′ (p,q; ω), (26)

where l′ = v′,h′, and

Tv′(n,n′; p,q) = 2n cos θ̃i(p,q)

n cos θ̃i(p,q) + μ

μ′
√

n′2 − n2 sin2 θ̃i(p,q)
,

(27a)

Th′(n,n′; p,q) = 2nn′ cos θ̃i(p,q)
μ

μ′ n′2 cos θ̃i(p,q)+n
√

n′2−n2 sin2 θ̃i(p,q)
.

(27b)

If we introduce the matrix

←→T (n,n′; p,q) =
(

Tv′(n,n′; p,q) 0

0 Th′ (n,n′; p,q)

)
, (28)

we may express Eq. (26) as(
A

(t)
v′ (p̃,q̃; ω)

A
(t)
h′ (p̃,q̃; ω)

)
= ←→T (n,n′; p,q) ·

(
A

(i)
v′ (p,q; ω)

A
(i)
h′ (p,q; ω)

)
. (29)

If the angle of incidence is smaller than the critical angle,
the transmitted plane-wave field components will combine to
generate the electric field of the transmitted beam [11]. In the
angular spectrum representation, the electric field components
of the transmitted beam are then given by the formula

E
(t)
l (r,ω) =

∫∫
p̃2+q̃2�|k(t)|2

A
(t)
l (p̃,q̃; ω)

× exp
[
i
(
p̃x(t)

v + q̃x
(t)
h + w̃x(t)

p

)]
dp̃ dq̃, (30)
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where (see Appendix D)

p̃ = p, q̃ = cos θi

cos θt
q, (31)

and w̃ =
√

|k(t)|2 − p̃2 − q̃2. The components A
(t)
l are related

to the components A
(t)
l′ used in Eqs. (26), by the formula (see

Appendix E)(
A(t)

v (p̃,q̃; ω)

A
(t)
h (p̃,q̃; ω)

)
= ←→

U (t)† ·
(

A
(t)
v′ (p,q; ω)

A
(t)
h′ (p,q; ω)

)
, (32)

where

←→
U (t) =

(
cos α sin α cos θt

− sin α cos θt cos α cos θ̃t cos θt + sin θ̃t sin θt

)
,

(33)

and α is given by Eq. (24). Using Eqs. (22), (29), and (32), one
can express A

(t)
l in Eq. (30) in terms of A

(i)
l used in Eq. (20);

one then finds that(
A(t)

v

A
(t)
h

)
= ←→

U (t)† · ←→T · ←→
U (i)

(
A(i)

v

A
(i)
h

)
. (34)

Equation (34) may be rewritten in the following compact form
by representing the column matrices by vectors:

A(t) = (
←→
U (t)† · ←→T · ←→

U (i)) · A(i). (35)

With the help of the results that we just derived, we now
determine the elements of the CSDM of the incident and of
the transmitted beams.

Using Eqs. (8) and (20), one finds that the elements of the
CSDM of the incident beam may be expressed in the form

W
(i)
lm (r,r′; ω)

=
∫∫∫∫

dp dq dp′ dq ′〈A(i)∗
l (p,q; ω)A(i)

m (p′,q ′; ω)
〉

× exp
[
i
{(

p′x(i)
v′ + q ′x(i)

h′ + w′x(i)
p′

)
−(

px(i)
v + qx

(i)
h + wx(i)

p

)}]
, (36)

where l = h,v and m = h,v, and the integrations extend over
the domains p2 + q2 � |k(i)|2 and p′2 + q ′2 � |k(i)|2. Let us
now introduce a matrix

←→
W

(i)
A (p,q,p′,q ′; ω), whose elements

are given by the quantities 〈A(i)∗
l (p,q; ω)A(i)

m (p′,q ′; ω)〉; i.e.,
one has

←→
W

(i)
A (p,q,p′,q ′; ω) = 〈A(i)∗(p,q; ω) · A(i)T (p′,q ′; ω)〉.

(37)

Similarly one finds from Eqs. (8) and (30) that

W
(t)
lm (r,r′; ω)

=
∫∫∫∫

dp̃ dq̃ dp̃′ dq̃ ′{←→W (t)
A (p̃,q̃,p̃′,q̃ ′; ω)

}
lm

× exp
[
i
{(

p̃′x(t)
v′ + q̃ ′x(t)

h′ + w̃′x(t)
p′

)
− (

p̃x(t)
v + q̃x

(t)
h + w̃x(t)

p

)}]
, (38)

where l = h,v, m = h,v, and
←→
W

(t)
A (p̃,q̃,p̃′,q̃ ′; ω) = 〈A(t)∗(p̃,q̃; ω) · A(t)T (p̃′,q̃ ′; ω)〉.

(39)

Using Eqs. (35), (37), and (39), one readily finds that the
matrices

←→
W

(t)
A and

←→
W

(i)
A are related by the formula

←→
W

(t)
A (p̃,q̃,p̃′,q̃ ′; ω) = ←→

U ∗
T (p,q; n,n′) · ←→

W
(i)
A (p,q,p′,q ′; ω)

·←→U T
T (p′,q ′; n,n′), (40)

where p̃,q̃, etc., are related to p,q, etc., by Eq. (31), and

←→
U T (p,q; n,n′) = {←→U (t)(p,q)}† · ←→T (p,q; n,n′)

·←→U (i)(p,q). (41)

On substituting the expression for
←→
W

(t)
A from Eq. (40) into

Eq. (38), and on using Eq. (31), one can express the CSDM of
the transmitted beam in terms of the parameters of the incident
beam, and in terms of the parameters relating to properties of
the two media.

From formulas (38)–(41) it is evident that the correlation
properties of a partially coherent beam will, in general, change
on transmission of the beam into another medium. In Sec. IV
we illustrate this fact by an example.

D. Generalization of Fresnel formulas for reflection

One may follow a procedure similar to that used in
Sec. III C to formulate the theory of reflection of partially
coherent beams. In the (x(i)

v′ ,x
(i)
h′ ,x

(i)
p′ ) coordinate system

introduced in Sec. III C, the plane-wave components A
(r)
l′

generated by reflection of the components A
(i)
l′ are evidently

given by the formula

A
(r)
l′ = Rl′(n,n′; p,q)A(i)

l′ (p,q; ω), (42)

where l′ = v′,h′, and

Rv′(n,n′; p,q) =
n cos θ̃i(p,q) − μ

μ′
√

n′2 − n2 sin2 θ̃i(p,q)

n cos θ̃i(p,q) + μ

μ′
√

n′2 − n2 sin2 θ̃i(p,q)
,

(43a)

Rh′(n,n′; p,q) =
μ

μ′ n
′2 cos θ̃i(p,q)−n

√
n′2−n2 sin2 θ̃i(p,q)

μ

μ′ n′2 cos θ̃i(p,q)+n
√

n′2−n2 sin2 θ̃i(p,q)
.

(43b)

Let us introduce the matrix

←→R (n,n′; p,q) =
(

Rv′(n,n′; p,q) 0

0 Rh′(n,n′; p,q)

)
. (44)

One can then rewrite Eq. (42) in the form(
A

(r)
v′ (p̃,q̃; ω)

A
(r)
h′ (p̃,q̃; ω)

)
= ←→R (n,n′; p,q) ·

(
A

(i)
v′ (p,q; ω)

A
(i)
h′ (p,q; ω)

)
.

(45)

The electric field components A
(r)
v′ and A

(r)
h′ may be expressed

in the (x(r)
v ,x

(r)
h ,x(r)

p ) coordinate system by the formula
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(see Appendix E)(
A(r)

v

A
(t)
h

)
= ←→

U (r)† ·
(

A
(r)
v′

A
(r)
h′

)
, (46)

where

←→
U (r) =

(
cos α − sin α cos θi

sin α cos θi cos α cos θ̃i cos θi + sin θ̃i sin θi

)
,

(47)

and α is given by Eq. (24). Using Eqs. (22), (45), and (46),
one has (

A(r)
v

A
(r)
h

)
= ←→

U (r)† · ←→R · ←→
U (i)

(
A(i)

v

A
(i)
h

)
. (48)

On representing the column matrices by vectors, one can
rewrite Eq. (48) in the compact form

A(r) = (
←→
U (r)† · ←→R · ←→

U (i)) · A(i). (49)

The field components A
(r)
l will combine to generate the electric

vector of the transmitted field. Hence, in the (x(r)
v ,x

(r)
h ,x(r)

p )
coordinate system, one can express the angular spectrum of the
reflected electric field in the form (noting that |k(r)| = |k(i)|)

E
(r)
l (r,ω) =

∫∫
p̄2+q̄2�|k(i)|2

A
(r)
l (p̄,q̄; ω)

× exp
[
i
(
p̄x(r)

v + q̄x
(r)
h + w̄x(r)

p

)]
dp̄ dq̄, (50)

where (see Appendix F)

p̄ = p, q̄ = −q, (51)

implying that w̄ =
√

|k(i)|2 − p̄2 − q̄2 = w.
Following the same procedure as that we used in Sec. III C,

one can express the CSDM of the reflected beam at a pair of
points (r,r′) at the interface by the formula

W
(r)
lm (r,r′; ω)

=
∫∫∫∫

dp̄ dq̄ dp̄′ dq̄ ′{←→W (r)
A (p̄,q̄,p̄′,q̄ ′; ω)

}
lm

× exp
[
i
{(

p̄′x(r)
v′ + q̄ ′x(r)

h′ + w̄′x(r)
p′

) − (
p̄x(r)

v + q̄x
(r)
h

+w̄x(r)
p

)}]
, (52)

where l = h,v, m = h,v; the integrations are carried out
throughout the regions p̄2 + q̄2 � |k(i)|2, p̄′2 + q̄ ′2 � |k(i)|2,
and

←→
W

(r)
A (p̄,q̄,p̄′,q̄ ′; ω) = 〈A(r)∗(p̄,q̄; ω) · A(r)T (p̄′,q̄ ′; ω)〉.

(53)

Using Eqs. (37), (49), and (53), one immediately finds that the
matrices

←→
W

(r)
A and

←→
W

(i)
A are related by the formula

←→
W

(r)
A (p̄,q̄,p̄′,q̄ ′; ω) = ←→

U ∗
R(p,q; n,n′) · ←→

W
(i)
A (p,q,p′,q ′; ω)

·←→U T
R(p′,q ′; n,n′), (54)

where
←→
U R(p,q; n,n′) = {←→U (r)(p,q)}† ·←→R (p,q; n,n′) ·←→U (i)(p,q).

(55)

Using Eqs. (51), (52), and (54), one can determine the CSDM
of the reflected beam, and one can then study the changes in
the coherence properties of the field produced on reflection.

IV. CHANGE OF THE COHERENCE PROPERTIES OF A
LIGHT BEAM ON REFRACTION AND REFLECTION

Let us first note that the following conditions hold for any
optical beam whose CSDM is given by Eq. (36):

w ≈ |k(i)|
(

1 − p2 + q2

2|k(i)|2
)

, w′ ≈ |k(i)|
(

1 − p′2 + q ′2

2|k(i)|2
)

.

(56)

On substituting from Eq. (56) into Eq. (36), making the
changes of variables p → −p, q → −q, then introducing
the two-dimensional vectors f ≡ (p,q) and f′ ≡ (p′,q ′), and
finally using Eq. (37), one obtains the following expression for
the matrix elements W

(i)
lm [12]:

W
(i)
lm (r,r′; ω)

=exp
[
i|k(i)|(x ′(i)

p − x(i)
p

)] ∫∫
d2f d2f ′

{←→
W

(i)
A (−f,f′; ω)

}
lm

exp

[
i

2|k(i)|
{|f|2x(i)

p − |f′|2x ′(i)
p

}]
× exp[i{f · ρρρ(i) + f′ · ρρρ ′(i)}]. (57)

It can readily be shown from Eq. (57) that
←→
W

(i)
A (−f,f′; ω) is

just the Fourier transform of the CSDM of the incident beam
at the source plane, i.e., that (cf. Ref. [9], Sec. 5.6)

←→
W

(i)
A (−f,f′; ω) =

(
1

2π

)4 ∫∫
d2ρ0d

2ρ ′
0
←→
W (i)(ρρρ0,ρρρ

′
0; ω)

× exp[−i(f · ρρρ0 + f′ · ρρρ ′
0)], (58)

where ρρρ0 and ρρρ ′
0 are two-dimensional position vectors rep-

resenting a pair of points on the source plane. For a given
source,

←→
W (i)(ρρρ0,ρρρ

′
0; ω) will be known. Using Eqs. (57) and

(58), one can then determine
←→
W (i)(r,r′; ω) and, consequently,

the coherence properties of the incident beam at the interface
of the two media. From Eqs. (38), (40), (41), and (58), one
can also determine the CSDM of the transmitted beam at
the interface, and one can, therefore, study its coherence
properties. Similarly, from Eqs. (52), (54), (55), and (58) one
obtains an expression for the CSDM of the reflected beam at
the interface, and one can then study its coherence properties
also.

As an example, let us consider a light beam generated by
a so-called Gaussian Schell-model source. The elements of
the CSDM at the source plane are given by the formula (cf.
Ref. [2], Sec. 9.4.2)

W
(i)
lm (ρρρ0,ρρρ

′
0; ω) = AlAmBlm exp

[
−ρ2

0 + ρ ′2
0

4σ 2

]

× exp

[
− (ρρρ ′

0 − ρρρ0)2

2δ2

]
, (59)

where the parameters Al , Blm, σ , and δ are independent of
position. However, they cannot be chosen arbitrarily, and, in
our case, the following relations must hold (see, for example,

043815-6



THEORY OF REFRACTION AND REFLECTION WITH . . . PHYSICAL REVIEW A 86, 043815 (2012)

FIG. 5. (Color online) Change of the coherence properties on
refraction: the modulus |η| of the degree of coherence of the incident
(solid line) and of the transmitted (dotted line) beams are plotted as
functions of ρ = |r′ − r|, at ω ≈ 3.2 × 1015 s−1, for values of the
parameters θi = 40◦, δ = 0.001 m, σ = 0.01 m, Av/Ah = 1, and
Bhv = 9/16.

Refs. [13,14]):

Blm = B∗
ml, Blm = 1 when l = m,

|Blm| � 1 when l = m. (60)

Suppose now that the beam generated by such a source
propagates initially in air (refractive index n ≈ 1) and is then
incident on a planar surface of a flint glass slab (refractive index
n′ = 1.62). We choose the center of the source to be 1 m away
from the point where the incident-beam axis intersects the
interface. We calculate the degree of coherence of the incident,
of the transmitted, and of the reflected beams at a pair of points
(r,r′) at the interface, at a frequency ω ≈ 3.2 × 1015 s−1,
when the parameters are chosen as follows: δ = 0.001 m,
σ = 0.01 m, Ah = Av = 1 (in suitable units), and Bhv = 9/16
(in suitable units). We choose the point r as the point of
intersection of the incident-beam axis with the interface, and
we choose r′ to represent a variable point along the negative y

axis (see Fig. 7). We assume |r′ − r| = ρ.
The moduli of the degree of coherence of the incident and

of the transmitted beams are plotted in Fig. 5 as functions
of ρ. The figure shows that the state of coherence of the light
beam has changed on refraction. Figure 6 shows the difference
between the moduli of the degrees of coherence of the incident
and of the reflected beams.

FIG. 6. (Color online) Change of the coherence properties on
reflection: the modulus |η| of the degree of coherence of the incident
(solid line) and of the reflected (dotted line) beams are plotted as
functions of ρ = |r′ − r|, for the same choice of parameters as used
in Fig. 5.

FIG. 7. The geometry relating to the relationship between the
(x(i)

v ,x
(i)
h ,x(i)

p ) and the (x,y,z) coordinate systems.

V. SUMMARY

We have developed a theory of refraction and reflection with
partially coherent electromagnetic beams. Application of the
theory shows that if a partially coherent light beam is refracted
or reflected at a surface separating two media, its coherence
properties, in general, change. This fact is illustrated by an
example in Figs. 5 and 6.
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APPENDIX A: DERIVATION OF EQS. (22)–(24)

The derivation makes use of the fact that the coordinate
systems (x(i)

v ,x
(i)
h ,x(i)

p ) and (x(i)
v′ ,x

(i)
h′ ,x

(i)
p′ ) can be related by

rotations around three different axes, making it possible to
introduce a unitary transformation matrix

←→
U (i)(p,q; θi,ω),

which is the product of three rotation matrices. Since the
quantities A

(i)
l (p,q; ω) are components of a vector (tensor of

rank one), their transformation laws are governed by the same
unitary matrix.

Let us introduce a coordinate system (x,y,z), with the x

axis chosen along the x(i)
v axis, the z axis chosen along n, and

the y axis chosen following the right-hand rule (see. Fig. 7).
We refer to (x,y,z) as the “interface coordinate system for the
incident beam axis.” One can readily see that the (x(i)

v ,x
(i)
h ,x(i)

p )
coordinate system can be obtained from the (x,y,z) system by
a clockwise rotation through an angle θi around the x(i)

v axis
(see Fig. 7). The coordinates are, therefore, related by the
formula

⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ 1 0 0

0 cos θi − sin θi
0 sin θi cos θi

⎞
⎠

⎛
⎜⎝

x(i)
v

x
(i)
h

x(i)
p

⎞
⎟⎠. (A1)

We denote the transformation matrix in Eq. (A1) by
←→
U

(i)
1 (θi).

It depends on the orientation of the axis of the incident beam.
Similarly, one can introduce another interface coordinate

system (x ′,y ′,z′) associated with the wave vector κκκ (i). In this
case, we choose the x axis along the x

(i)
v′ axis, the z axis again

along n, and the y axis in accordance with the right-hand rule
(see Fig. 4). Hence, the coordinate systems (x(i)

v′ ,x
(i)
h′ ,x

(i)
p′ ) and
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(x ′,y ′,z′) are related by the formula

⎛
⎜⎝

x
(i)
v′

x
(i)
h′

x
(i)
p′

⎞
⎟⎠ =

⎛
⎝ 1 0 0

0 cos θ̃i sin θ̃i
0 − sin θ̃i cos θ̃i

⎞
⎠

⎛
⎝ x ′

y ′
z′

⎞
⎠, (A2)

where θ̃i is the angle between κκκ (i) and n. Expressions for
cos θ̃i and sin θ̃i are derived in Appendix B. We denote the
transformation matrix in Eq. (A2) by

←→
U

(i)
3 (p,q; ω).

We note that the coordinate system (x ′,y ′,z′) can be
obtained by counterclockwise rotation through an angle α,
say, around the z axis of the (x,y,z) coordinate system (see
Fig. 8), where (see Appendix C)

α = tan−1

(
− p

q cos θi − w sin θi

)
. (A3)

Hence, ⎛
⎝x ′

y ′
z′

⎞
⎠ =

⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠

⎛
⎝x

y

z

⎞
⎠. (A4)

We denote the transformation matrix in Eq. (A4) by←→
U

(i)
2 (p,q).
Combining Eqs. (A1), (A2), and (A4), one obtains the

following law of transformation from the coordinate system
(x(i)

v ,x
(i)
h ,x(i)

p ) to the coordinate system (x(i)
v′ ,x

(i)
h′ ,x

(i)
p′ ):⎛

⎜⎝
x

(i)
v′

x
(i)
h′

x
(i)
p′

⎞
⎟⎠ = ←→

U (i)(p,q; θi,ω) ·

⎛
⎜⎝

x(i)
v

x
(i)
h

x(i)
p

⎞
⎟⎠, (A5)

with

←→
U (i)(p,q; θi,ω) = ←→

U
(i)
3 (p,q; ω) · ←→U (i)

2 (p,q) · ←→
U

(i)
1 (θi)

=

⎛
⎜⎝

cos α sin α cos θi − sin α sin θi

− sin α cos θ̃i cos α cos θ̃i cos θi + sin θ̃i sin θi sin θ̃i cos θi − cos α cos θ̃i sin θi

sin α sin θ̃i cos θ̃i sin θi − cos α sin θ̃i cos θi cos θ̃i cos θi + cos α sin θ̃i sin θi

⎞
⎟⎠. (A6)

←→
U (i) is a unitary matrix, and, therefore, the inverse transfor-

mation matrix is given by {←→U (i)}−1 = {←→U (i)}†.
Transformation of the field components A

(i)
l (p,q; ω) is

governed by the equations⎛
⎜⎝

A
(i)
v′ (p,q; ω)

A
(i)
h′ (p,q; ω)

A
(i)
p′ (p,q; ω)

⎞
⎟⎠ = ←→

U (i)(p,q; θi,ω) ·

⎛
⎜⎝

A(i)
v (p,q; ω)

A
(i)
h (p,q; ω)

A(i)
p (p,q; ω)

⎞
⎟⎠,

(A7a)⎛
⎜⎝

A(i)
v (p,q; ω)

A
(i)
h (p,q; ω)

A(i)
p (p,q; ω)

⎞
⎟⎠ = {←→U (i)(p,q; θi,ω)}† ·

⎛
⎜⎝

A
(i)
v′ (p,q; ω)

A
(i)
h′ (p,q; ω)

A
(i)
p′ (p,q; ω)

⎞
⎟⎠.

(A7b)

FIG. 8. The transformation from the (x,y,z) to the (x ′,y ′,z′)
coordinate system.

We note that A
(i)
p′ (p,q; ω) = 0, and because of the beamlike

nature of the incident field, one can assume that A(i)
p (p,q; ω) ≈

0. Hence, the transformation equation (A7a) reduces to

A
(i)
v′ = A(i)

v cos α + A
(i)
h sin α cos θi, (A8a)

A
(i)
h′ = −A(i)

v sin α cos θ̃i

+ A
(i)
h (cos α cos θ̃i cos θi + sin θ̃i sin θi), (A8b)

where, for the sake of brevity, we have not shown the
dependence on the various variables and parameters. Similarly
Eq. (A7b) reduces to

A(i)
v = A

(i)
v′ cos α − A

(i)
h′ sin α cos θi, (A9a)

A
(i)
h = A

(i)
v′ sin α cos θ̃i

+ A
(i)
h′ (cos α cos θ̃i cos θi + sin θ̃i sin θi). (A9b)

We may now introduce the 2 × 2 matrix

←→
U (i) =

(
cos α sin α cos θi

− sin α cos θi cos α cos θ̃i cos θi + sin θ̃i sin θi

)
.

(A10)

The matrices
←→
U (i) and {←→U (i)}† govern the transformation

equations represented by Eqs. (A8) and (A9), respectively. The

matrix
←→
U (i) is not, in general, unitary. However, for a paraxial

beam both α and (θi − θ̃i) will be small enough to assume
that cos(θi − θ̃i) ≈ 1, cos α ≈ 1, and sin α ≈ α → 0. With
this approximation, one has

←→
U (i) · {←→U (i)}† ≈ 1. Although

this approximation is not essential, it is likely to be useful for
rough estimates in some cases.
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APPENDIX B: DERIVATION OF EQ. (25)

In terms of the incident-beam coordinate system
(x(i)

v ,x
(i)
h ,x(i)

p ), the normal to the surface of the interface is
represented by the unit vector n = (0, sin θi, cos θi). Using
expression (21) for κκκ (i), one can now show that

cos[θ̃i(p,q)] = κκκ (i) · n

= q

|k(i)| sin θi +
√

1 − p2 + q2

|k(i)|2 cos θi. (B1)

Using the beam condition (19), one has√
1 − p2 + q2

|k(i)|2 ≈ 1 − p2 + q2

2|k(i)|2 . (B2)

Using Eqs. (B1) and (B2) one finds that

cos[θ̃i(p,q)] ≈ q

|k(i)| sin θi +
(

1 − p2 + q2

2|k(i)|2
)

cos θi. (B3)

If one neglects second-order terms, one has

cos[θ̃i(p,q)] ≈ cos θi + q

|k(i)| sin θi ≡ cos[θ̃i(q)]. (B4)

From Eq. (B4), one can readily show by applying the beam
condition that

sin[θ̃i(p,q)] ≈ sin θi − q

|k(i)| cos θi ≡ sin[θ̃i(q)]. (B5)

APPENDIX C: EXPRESSION FOR THE ANGLE α

In terms of the (x(i)
v ,x

(i)
h ,x(i)

p ) coordinate system, the unit

vector κκκ (i) is given by the components [cf. Eq. (21)]

κκκ (i) ≡ (
κ (i)

v ,κ
(i)
h ,κ (i)

p

) =
(

p

|k(i)| ,
q

|k(i)| ,
w

|k(i)|
)

. (C1)

In the (x(i)
v′ ,x

(i)
h′ ,x

(i)
p′ ) coordinate system, this unit vector has

the components

κκκ (i) ≡ (
κ

(i)
v′ ,κ

(i)
h′ ,κ

(i)
p′

) = (0,0,1). (C2)

Since κκκ (i) is a vector, its components in the above two
coordinate systems are related by the transformation law given
in Eq. (A5). On using Eq. (A6), and the fact that κ

(i)
v′ = 0, one

readily finds that

α = tan−1

(
− p

q cos θi − w sin θi

)
. (C3)

APPENDIX D: DERIVATION OF EQ. (31)

Equation (30) shows that the transmitted field components
E

(t)
l are generated by superposition of plane-wave components

FIG. 9. The geometry showing that the vectors κκκ (i), κκκ (t), and n
lie in the y ′-z′ plane.

with amplitudes A
(t)
l . It is evident from formula (30) that

each plane-wave component propagates along a direction
specified by a unit vectorκκκ (t) (say), which in the (x(t)

v ,x
(t)
h ,x(t)

p )
coordinate system is given by

κκκ (t) ≡
(

p̃

|k(t)| ,
q̃

|k(t)| ,
w̃

|k(t)|
)

, (D1)

where w̃ =
√

|k(t)|2 − p̃2 − q̃2.
We note that κκκ (i), κκκ (t), and n lie on the y ′-z′ plane (see

Fig. 9). Hence, in the (x ′,y ′,z′) coordinate system, one has

κκκ (i) ≡ (
κ

(i)
x ′ ,κ

(i)
y ′ ,κ

(i)
z′

) = (0, − sin θ̃i, cos θ̃i), (D2a)

κκκ (t) ≡ (
κ

(t)
x ′ ,κ

(t)
y ′ ,κ

(t)
z′

) = (0, − sin θ̃t, cos θ̃t). (D2b)

Applying the transformation law (A4) of Appendix A, one
now has

κ (i)
x = sin α sin θ̃i, κ (i)

y = − cos α sin θ̃i, (D3a)

κ (t)
x = sin α sin θ̃t, κ (t)

y = − cos α sin θ̃t. (D3b)

Snell’s law of refraction implies that

sin θ̃t = |k(i)|
|k(t)| sin θ̃i. (D4)

On using Eqs. (D3) and (D4) one readily obtains the following
relations:

κ (t)
x = |k(i)|

|k(t)|κ
(i)
x , κ (t)

y = |k(i)|
|k(t)|κ

(i)
y . (D5)

Expressions for κ (i)
x and κ (i)

y can be obtained from Eqs. (21)
and (A1) and are found to be

κ (i)
x = p

|k(i)| , κ (i)
y = q

|k(i)| cos θi − sin θi, (D6)
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where, in obtaining the expression for κ (i)
y , we used the fact that

p2 + q2 � |k(i)|2. In a similar way, one can obtain expressions
for κ (t)

x and κ (t)
x , using Eqs. (A1) and (D1). One then finds that

κ (t)
x = p̃

|k(t)| , κ (t)
y = q̃

|k(t)| cos θt − sin θt. (D7)

Finally, using Eqs. (6), (15b), (D5), (D6), and (D7), one readily
obtains the formulas

p̃ = p, q̃ = cos θi

cos θt
q. (D8)

APPENDIX E: DERIVATION OF
EQS. (32), (33), (46), AND (47)

Since the quantities At
l (p,q; ω) are components of a vector,

they transform according to the law of transformation between
the coordinate systems (x(t)

v ,x
(t)
h ,x(t)

p ) and (x(t)
v′ ,x

(t)
h′ ,x

(t)
p′ ).

This transformation law is obtained by following the same
procedure as used in Appendix A for obtaining Eqs. (A5)
and (A6), except that θi and θt are replaced by θ̃i and θ̃t ,
respectively. Since κκκ (t) lies on the plane formed by κκκ (i) and
n, α is given by expression (C3), obtained in Appendix C.
Neglecting the components A(t)

p and A
(t)
p′ , and following the

same procedure as used in Appendix A, one readily obtains
Eqs. (32) and (33).

Equations (46) and (47) are obtained in the same way as
used in Appendix A for deriving Eqs. (A9) and (A10), and by
replacing θi and θ̃i by (π − θi) and (π − θ̃i), respectively.

APPENDIX F: DERIVATION OF EQ. (51)

Using the same procedure that we employed in
Appendix D, one can show that, in the (x,y,z) coordinate
system,

κ (i)
x = κ (r)

x = sin α sin θ̃i, (F1a)

κ (i)
y = κ (r)

y = − cos α sin θ̃i, (F1b)

κ (i)
z = −κ (r)

z = cos θ̃i. (F1c)

Using Eqs. (A1) and (F1), one can derive expressions for the
components of κκκ (i) in the (x(i)

v ,x
(i)
h ,x(i)

p ) coordinate system;
comparing them with Eq. (21), one finds that

p

|κκκ (i)| = sin α sin θ̃i, (F2a)

q

|κκκ (i)| = − cos α sin θ̃i cos θi + cos θ̃i sin θi. (F2b)

In a similar way, transforming the components of κκκ (r) in the
(x(r)

v ,x
(r)
h ,x(r)

p ) coordinate system and using the conditions
θr = θi , θ̃r = θ̃i , one obtains the formulas

p̄

|κκκ (r)| = sin α sin θ̃i, (F3a)

q̄

|κκκ (r)| = cos α sin θ̃i cos θi − cos θ̃i sin θi. (F3b)

Since |κκκ (i)| = |κκκ (r)|, one immediately finds from Eqs. (F2) and
(F3) that

p̄ = p, q̄ = −q. (F4)
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