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Vortex switching with discrete multivortex solitons
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We study the existence, stability, and dynamics of multivortex discrete solitons in a centrally coupled ring of
nonlinear waveguides. A detailed analysis of possible geometrical configurations of globally linked elementary
vortices within a stationary state is presented, together with the studies of their linear stability and perturbed
dynamics. We identify regimes with robust switching between different vortex configurations, induced via the
coordinated flipping of all vortex charges in a cluster, adiabatic spiraling of vortex lines, or spontaneous decay
of unstable vortex clusters into stable solitons. These three mechanisms allow for all-optical switching between
six topologically distinct vortex configurations.
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I. INTRODUCTION

Topological quantities are insensitive to small perturba-
tions such as disorder or noise, making them a promising
candidate for future information storage technologies [1], data
transmission [2], and quantum computation [3]. An important
question is how the interaction or switching between different
topological states may be controlled in these settings. The
interaction between topological objects may be studied with
quantized vortices [4] in optical [5,6] and matter [7] waves,
which are unified by their common description with nonlinear
Schrödinger-type equations [8]. The relevant topological
quantity is the vortex topological charge (TC), which is the
phase change in units of 2π accumulated around the vortex
core.

Efficient control over TC can be achieved in periodic media,
such as photonic lattices, when a vortex exchanges its orbital
angular momentum with the lattice. This results in a periodic
reversal of the vortex current and the switching of TC between
positive and negative values, called charge flipping [9]. In
general, a system possessing discrete rotational symmetry of a
finite order N allows the existence and control of TC of order
up to N/2 [10,11].

The nonlinear dynamics of vortices in periodic lattices
may be studied with discrete models such as the discrete
nonlinear Schrödinger equation (DNLS), which has applica-
tions in optics [12], Bose-Einstein condensates [13], protein
chains [14], etc. In infinite lattices the nonlinearity supports
discrete vortex solitons [15], which have been observed in
optically induced lattices [16,17]. Numerous studies have
explored the relationship between the stability of discrete
vortex solitons and lattice geometry [18,19]. An example is
the somewhat counterintuitive inverse hierarchy of stability,
when the discrete vortex of higher charge is stable while its
lower-order counterpart is unstable [20,21].

The simplest setting for studying the interaction between
discrete vortices is a finite discrete system, such as a ring
of waveguides, employed before for switching of localized
optical signals [22–25]. In other fields, discrete rings have also
been applied to study the coupling of nonlinear oscillations in
benzene rings [26] and Bose-Einstein condensates in optical
traps [13]. Recently the possibility of all-optical switching of

the TC of a single vortex in a discrete ring of coupled optical
waveguides was demonstrated in Ref. [27].

More generally, the states containing multiple vortices can
have globally linked currents [28], so that collective effects
may lead to new mechanisms for the all-optical control
of TC. Multivortex solitons were introduced in hexagonal
lattice systems [29] and subsequently observed in experiments
in photorefractive crystals [30]. It is interesting to note
recently developed analogous ideas in plasmonics [31], with
multiple coupled vortices pinned to metallic nanostructures
for plasmonic nanocircuit engineering with “vortex nanogear
transmissions.”

Motivated by recent results on multivortex solitons in a
centrally coupled ring introduced in Ref. [32], we present in
this paper a detailed study of the variety of multivortex states
available for encoding phase information, starting with the
linear limit. We show that multivortex solitons of different
symmetries and TCs can be stable and discuss the relation
between their stability with the discrete rotational symmetry
of the structure, defined by the ring length N , the type of
nonlinearity, and the coupling strength. We demonstrate three
methods for achieving optically controlled switching between
different vortex configurations: the spontaneous decay of
unstable multivortex solitons into stable solitons or breathers,
the coordinated flipping of vortex charges, and the spiraling
of vortex clusters. In general, the number of different states
grows rapidly with N and we identify heptamer N = 6 as
the lowest-order structure supporting the six-state topological
charge switch.

The paper is organized as follows: In Sec. II we introduce
the model and discuss relevant properties such as conservation
laws, definitions of discrete vortices and TC, and the classi-
fication of linear modes. Section III is devoted to a specific
family of multivortex solitons constrained by the condition of
uniform amplitude on the ring, which allows the solutions to be
obtained analytically. The full set of asymmetric solutions can
be, in principle, identified numerically; in Sec. IV we focus on
multivortex solitons with definite chirality and their stability.
The discussion of perturbation and instability-induced vortex
switching of different states is presented in Sec. V, and Sec. VI
concludes the paper.
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II. DISCRETE MODEL AND LINEAR MODES

We consider a ring of N weakly coupled waveguides with
Kerr nonlinearity, all coupled to a central site. We assume
that the waveguides on the ring are identical, and the coupling
between them can be scaled to 1 without loss of generality,
while the coupling with the central site can be different,
characterized by the strength C. The geometry is shown in
Fig. 1(a) for the case N = 6. The corresponding DNLS model
reads [32]

i∂zE0 + C

N∑

n=1

En + δ0|E0|2E0 = 0, (1a)

i∂zEn + En−1 + En+1 + CE0 + δ1|En|2En = 0, (1b)

where the periodicity on the ring requires En+N = EN for
n = 1,2, . . . ,N and δ0,1 = ±1 for focusing and defocusing
nonlinearities in the central waveguide and on the ring.

The rate of power change at each site is given by the
continuity equations

d|E0|2
dz

= C

N∑

n=1

Jn,0, (2a)

d|En|2
dz

= −CJn,0 + Jn − Jn+1, (2b)

where Jn = 2 Im(E∗
n−1En) is the power flow from site n − 1

to site n, and CJn,0 is the power flow from site n to the center,
Jn,0 = 2 Im(E∗

nE0). Equations (2) can be used to derive two
integrals of motion of Eqs. (1), namely, the total power P =∑N

n=0 |En|2 and the Hamiltonian,

H = δ0|E0|4/2 + C

N∑

n=1

(E0E
∗
n + E∗

0En)

+
N∑

n=1

(δ1|En|4/2 + EnE
∗
n+1 + E∗

nEn+1). (3)

We use conservation ∂zP = 0 and ∂zH = 0 to monitor the
accuracy of numerical simulations.

The array can be divided into N elementary triangles with
vertices at sites 0, n, and n + 1, for n = 1, . . . ,N . A discrete
vortex is a circulation of power between these three sites, when
three currents between sites are all nonzero and form a closed
loop, e.g., for counterclockwise flow Jn > 0, Jn+1,0 > 0,
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FIG. 1. (Color online) (a) Sketch of N = 6 ring coupled to a
central waveguide. (b) An example of the phase profile arg(E)
interpolated with Eq. (5) for a particular set of amplitudes {En};
corresponding vortex currents are shown with black arrows in (c)
with phase dislocations of topological charge +1 (−1) indicated
with red/gray (blue/dark gray) dots and counterclockwise (clockwise)
arrows, respectively.

and Jn,0 < 0. This condition restricts the values of phase
differences between sites to the domain (0,π ), independently
of (nonzero) currents amplitudes, namely, 0 < arg(E∗

nEn+1) <

π , 0 < arg(E∗
n+1E0) < π , and 0 < arg(E∗

0En) < π . There-
fore, the appearance of a discrete vortex can be identified
using phase information only. Similar to the contour integral
of phase gradient which defines the TC of a phase singularity
in a continuous field [4], we introduce the TC of an elementary
triangle,

mn = 1

2π
[arg(E∗

nEn+1) + arg(E∗
n+1E0) + arg(E∗

0En)]. (4)

For nonzero amplitudes |Ej | �= 0 with j = 0,n,n + 1 the TC
mn is integer due to single valuedness of the field; otherwise the
definition Eq. (4) fails due to the presence of an on-site vortex.
In the example above, 0 < mn < 3/2 and thus mn = +1 for a
counterclockwise vortex. In contrast, if any two currents have
opposite directions or at least one current is zero because two
sites are in or out of phase, so that there is no overall circulation,
then mn = 0. As a three-site discrete contour, the TC of each
elementary triangle may only take the values mn = −1,0, or
+1 [27]. Note also that vortices in adjacent triangles share a
common segment and, therefore, cannot have the same nonzero
TC, mn �= mn+1 if mnmn+1 �= 0. We introduce the net or global
TC, M = ∑

n mn, which is naturally given by the topological
charge of the ring, M = 1

2π

∑N
n=1 arg(E∗

nEn+1). We note that
nonzero M does not necessarily imply vortex circulation along
the whole ring: The circulation is disrupted by elementary
vortices of opposite charges, such as in Fig. 1(c).

In studies of the dynamics of states with multiple vortices it
is useful to assign a continuous position to a phase dislocation
which corresponds to each discrete vortex. Since there are
many possible ways to interpolate discrete sites to form
a continuous field, these positions are not unique; we use
the scheme introduced in Refs. [27,32]. Using the polar
coordinates (r,ϕ), the continuous field of a supermode E(r,ϕ)
is constructed as a set of linear transformations on angular
sections ϕ ∈ [�n,�n+1) stitched together, with �n = 2πn/N

and En = E(1,�n). The field is given by E(r,ϕ) = E0 +
r�n(ϕ)/ sin �1 with

�n(�n � ϕ < �n+1) = (En+1 − E0) sin(ϕ − �n)

− (En − E0) sin(ϕ − �n+1). (5)

An example of continuous phase of the supermode is shown in
Fig. 1(b); we use this continuous field to calculate the positions
of phase singularities, shown in Fig. 1(c) and below as red
(gray) and blue (dark gray) circles for TC equal +1 and −1,
respectively.

We look for stationary solutions with propagation constant
k, E0 = Aeikz and En = Bne

ikz. The global phase invariance
can be used to reduce the number of variables, and we set
A � 0 without loss of generality. Substitution into Eq. (1)
gives the stationary equations

(k − δ0A
2)A = C

N∑

n=1

Bn, (6a)

(k − δ1|Bn|2)Bn = CA + Bn−1 + Bn+1. (6b)
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As C → ∞, the coupling between the ring sites becomes
negligible. Coupling only occurs from the ring to the center,
so balanced current loops cannot form and vortex solitons
do not exist. Therefore vortex solitons will only exist in this
system with the coupling below a critical value of C. On the
other hand, as C → 0, the model reduces to the simple ring
system studied in Ref. [27]. In this case, each site on the ring is
coupled only to its two neighbors, and for any stationary state
the continuity requires Jn = Jn+1, thus near the limit C → 0
any multivortex solitons must have nonzero global charge M .

The linear modes of the system are obtained by setting
δ0,1 = 0 in Eqs. (6) and using the discrete Fourier transform
pair

Bn =
N/2∑

s=−N/2

Fse
i�sn, Fs = 1

N

N∑

n=1

Bne
−i�sn,

where Fs are the Fourier amplitudes and s takes integer values.
Transforming Eq. (6) gives a system of equations for the
Fourier amplitudes

Fs(k − 2 cos �s) = 0, s �= 0, (7a)

F0(k − 2) = CA, (7b)

F0NC = kA. (7c)

There are two distinct classes of solutions.
(i) Vortex-free modes have Fs = 0 for all s �= 0, while A

and F0 are nonzero and satisfy

k± = 1 ±
√

1 + NC2 = NCF0/A. (8)

All amplitudes are real and hence there is no power flow
between sites. The k+ mode has all sites oscillating in phase,
while the k− mode has the central site π out of phase with the
ring. For both modes the central coupling C controls both the
propagation constant k and the amplitude of the ring sites F0

relative to the center A.
(ii) On-site vortex modes have k = km = 2 cos �m, with

|m| < N/2, Fs = 0 for s �= m, A = 0, and arbitrary Fm. The
central site hosts a vortex with TC M = m and there is no
power flow between the ring and the center, so the modes are
independent of C.

We consider in Fig. 2 the case N = 5 and plot the linear
mode eigenvalues in Fig. 2(a) versus coupling C. Note the
crossing of k− and k2 modes at C ≈ 1.1, similar to the
crossings observed for N = 6 in Ref. [32]. At such points, we
can construct stationary multivortex modes as superpositions
of the form

En = [F0 + r1 exp(i�mn + iφ1)

+ r2 exp(−i�mn + iφ2)]eikz, (9)

taking into account the degeneracy k = k− = k±m. The arbi-
trary relative amplitudes r1,2 and phases φ1,2 control the global
TC, as we show in Fig. 2(b). A superposition of m = ±2
vortices and the out-of-phase mode can even result in modes
with global TC |M| = 1. Hence the global TC is no longer tied
to the discrete rotational symmetry of the mode. Examples
of vortex configurations with net charges M = 0, 1, and 2
are shown in Fig. 2(c). They are obtained by varying only
the phase φ1 with all other parameters fixed. Note that no
intersections occur with the k1 mode in Fig. 2(a), thus this
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FIG. 2. (Color online) (a) Wave numbers k of linear modes as a
function of the central coupling C for an N = 5 array. The in- and
out-of-phase modes k± are shown with red (gray) and blue (dark
gray) lines, while the vortex modes are in black. (b) Global TC M

of the stationary multivortex modes Eq. (9) shown as signed integers
in shaded domains of the plane (r2,φ1) for fixed parameters C ≈ 1.1,
r1 = 3, and φ2 = 0. (c) Vortex configurations of the modes indicated
by black circles with r2 = 1 in (b).

mode cannot form multivortex states. In general, no crossings
occur when 0 < k|m| < 2, so multivortex modes are restricted
to N/4 � |m| � N/2.

The on-site vortex modes are effectively invariant under
discrete rotations, which merely result in a shift in their global
phase. In contrast, the multivortex modes have an asymmetric
phase profile on the ring, and discrete rotations can result
in a distinct state, with the individual vortices occupying
different elementary triangles. Of course, such solutions are
trivially degenerate, and in the following we do not distinguish
between them as separate solutions. However, this distinction
will become important when we discuss vortex switching in
Sec. V.

III. CONSTANT AMPLITUDE SOLITONS

The linear modes serve as a starting point for the study
of nonlinear solutions to Eq. (6). Here we consider in detail
the particular class of solutions introduced in Ref. [32] under
the simplifying assumption of constant amplitude on the ring,
Bn = Beiψn . This assumption is similar to the separation
of radial and azimuthal variables in a continuous system
[33,34] as it allows the separation of the nonlinear part
∼B2 in Eq. (6). The unknown phase factors eiψn satisfy
effectively linear equations which can be solved by apply-
ing the discrete Fourier transform, eiψn = ∑N/2

s=−N/2 pse
i�sn,

where ps are Fourier amplitudes. The transformed equations
are

Bps(k − δ1B
2 − 2 cos �s) = 0, s �= 0, (10a)

Bp0(k − δ1B
2 − 2) = CA, (10b)

Bp0NC = (k − δ0A
2)A. (10c)

The vortex-free solitons bifurcate from the in- and out-of-
phase modes in the linear limit above, with ps = 0 for s �= 0
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and the two roots k± satisfying

(k − δ0A
2)(k − δ1B

2 − 2) = C2N. (11)

The on-site vortex solitons are the roots of Eqs. (10) with
A = 0, k = km = δ1B

2 + 2 cos �m, similar to the ring solitons
studied in Ref. [27]. Their stability is affected by the coupling
strength C.

The third class of solutions are multivortex solitons [32],
the roots of Eq. (10) with k = km and nonzero p0,A satisfying

Bp0(cos �m − 1) = CA/2, (12a)

Bp0NC = (2 cos �m + δ1B
2 − δ0A

2)A. (12b)

When k = km the left-hand side of Eq. (10a) vanishes for
|s| = m, leaving pm and p−m as free variables. The general
form of the phase term exp(iψn) is hence

eiψn = p0 + p+ei�mn + p−e−i�mn, (13)

where p± are complex constants. As in the linear case, the mul-
tivortex solutions appear as a superposition of ordinary vortices
and a vortex-free state. However, there is an additional con-
straint that |eiψn | = 1 for all n, which restricts the values of p±.

The question of when this constraint can be satisfied may
be answered with the help of a change of variables. Writing
the complex parameters p± in terms of four real parameters,
p± = β±eiχ± , and introducing the variables t = �mn − t0 and
t0 = (χ− − χ+)/2, the constraint equation takes the form

|eiψn |2 = 1 = (x − x0)2

w2
x

+ (y − y0)2

w2
y

, (14)

with x = cos t and y = sin t on the unit circle and x0 =
−wxp0 cos χ , y0 = −wyp0 sin χ , wx,y = 1/(β− ± β+), and
χ = −(χ+ + χ−)/2. We see now that the constraint has a
simple geometrical interpretation—it is the equation for an
ellipse in the variables x and y. However, x and y are
constrained to lie on a unit circle, so the constraint is only
satisfied at points where the ellipse intersects the unit circle.
We see from the definitions of x, y, and t that, as n ranges from
1 to N , the pair (x,y) generates N/|m| distinct points. Ignoring
the degenerate case A = 0 (when the ellipse is precisely the
unit circle, corresponding to the on-site vortex solitons), an
ellipse can have at most four intersections with a circle. Hence
the constant amplitude multivortex solitons are limited to
N/|m| = 2,3, or 4. The distinct vortex configurations allowed
are presented in Fig. 3.

Particularly interesting is the N/|m| = 3 soliton, which
must satisfy the constraint equations

eiψ1 + eiψ2 + eiψ3 = −CA/B, (15a)

k = δ1B
2 − 1 = δ0A

2 − NC2/3. (15b)

The complex Eq. (15a) is equivalent to two real constraints
to the phases ψ1,2,3, leaving one of the phases as a free
parameter, independent of nonlinearity. Instead of a single
soliton, there is a one-parameter family of solitons with the
free phase ψ1; the corresponding Hamiltonian is

H = δ0A
4/2 + N (δ1B

4/2 − B2 − C2A2/3), (16)

(b) (c) (d)(a) N/|m| = 2 N/|m| = 3 N/|m| = 4N/|m| = 3

FIG. 3. (Color online) Topology of different solitons with con-
stant amplitude on the ring, the ratio N/|m| = 2 in column (a),
N/|m| = 3 in (b) (small C) and (c) (large C), and N/|m| = 4 in
column (d).

and it is independent of the choice of free phase. Therefore
the family is degenerate, as all members share the same power
and Hamiltonian.

The degeneracy of solutions above has interesting con-
sequences on the structure of soliton family, determined
by the source term CA/B in Eq. (15a). When CA/B < 1
(weak central coupling), all elementary vortices have the same
charge, giving a global charge of |M| = N/3 [see Fig. 3(b)]. In
contrast, for strong central coupling CA/B > 1, the oppositely
charged vortices appear, giving the whole cluster a net charge
of 0, i.e., no overall circulation of energy along the ring.
Despite the fact that there is no current loop on the ring,
the arrangement of elementary vortices can produce a chiral
structure [see the top of Fig. 3(c)]. Furthermore, the value of
CA/B determines the shape of lines traced by vortex positions
as parameters change; examples are shown in Fig. 4.

Another consequence of the degeneracy of solutions is that,
when such a soliton is stable, in addition to high-frequency
oscillations in the vortex positions, perturbations and noise
can produce an adiabatic drift of vortices through all members
of the family along the transverse trajectories in Fig. 4. This
effect was described in Ref. [32] as cyclic charge flipping.

The linear stability of solitons with the uniform amplitude
on the ring can be considered analytically, similar to the
stability of the discrete vortices without central coupling [27].
However, the resulting eigenvalue problems, while analytically
tractable, do not take a particularly simple or enlightening
form. Therefore, we employ numerical eigensolvers to de-
termine linear stability of particular solitons. As a particular
example, we contrast the existence, stability, and bifurcations
of multivortex solitons with self-focusing nonlinearity δ0,1 = 1

(a) (b) (c)

FIG. 4. (Color online) Vortex positions traced by members of the
soliton family with N = 6 and |m| = 2 when the free parameter ψ1

changes. The ratio CA/B = 0.35 in (a), 1.04 in (b), and 1.73 in (c).
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FIG. 5. (Color online) Existence and stability diagrams for
constant amplitude solitons with defocusing nonlinearities δ0,1 = −1
and different values of coupling C, cf. self-focusing case in Fig. 2 of
Ref. [32]. Solid and dashed lines indicate linearly stable and unstable
solitons, respectively. Blue, black, and green curves correspond to
the out-of-phase, vortex, and multivortex solitons respectively. Note
in (b) an instability region in the k− branch at the first bifurcation
point is not visible at this scale, and in (c) the bifurcation of the
m = 2 multivortex soliton from the k2 branch does not occur within
the range of the plot.

in Ref. [32] and multivortex solitons in a heptamer N = 6 with
defocusing nonlinearities δ0,1 = −1 in Fig. 5.

In contrast to the linear multivortex modes at specific
values of C, the multivortex solitons exist over a continuous
range of C. For focusing nonlinearities δ0,1 = 1 they bifur-
cate from their parent single-vortex soliton for C < Ccrit =
2| sin(�m/2)|√−2 cos �m/N . At Ccrit the corresponding lin-
ear multivortex mode appears, the bifurcation occurs from the
linear limit, and the soliton phase profile becomes independent
of its total power. For C > Ccrit the bifurcation occurs from
the out-of-phase soliton. In contrast, in the case δ0,1 = −1,
illustrated in Fig. 5, the bifurcation structure is reversed and
instabilities occur at lower power.

For both types of nonlinearity, the multivortex solitons steal
stability from their parent soliton at the point of bifurcation,
characteristic of a transcritical bifurcation. The other halves
of the multivortex branches exist in the mixed nonlinearity
cases where δ0 and δ1 take different signs, and they can be
stable (not shown). At high power, for all values of C, the
constant amplitude multivortex solitons are linearly unstable,
except for the N/|m| = 2 soliton when δ0,1 = 1. We attribute
its stability to the fact that all elementary triangles are occupied
by vortices. As vortices are removed, resulting in the N/|m| =
3 and N/|m| = 4 solitons, instability appears at lower power.

Finally, while the highly symmetric nature of Eq. (1)
allowed us to obtain these solitons analytically, we observe
that they can also persist as stable solitons in the presence of
significant anisotropy (up to 20%). We considered anisotropic
central coupling C → Cn and also anisotropy in the coupling

on the ring. Anisotropy breaks the degeneracy of the family
defined by Eq. (15a), so adiabatic rotation of the vortices
is suppressed. However, rotation may still be observed if a
sufficiently large perturbation is applied to the soliton.

IV. CHIRAL SOLITONS

The constant amplitude solitons form only a very small
subset of the multivortex solitons supported by this system, as
they are limited to ring sizes N a multiple of 2 or 3 and global
TC of 0 or |N/3|. To obtain the other stationary solutions,
Eq. (6) must be solved numerically. We find solutions using
the Newton-Raphson method and present examples of some
stable solitons in Fig. 6.

A common feature of these solitons is the presence of an
axis of symmetry and no discrete rotational symmetry. The
lack of discrete rotational symmetry means that solitons with
zero global TC can still be chiral states. Symmetric solitons
have identical site amplitudes about the symmetry axis, which
results in inverted vortex charges about the axis. Unless a
vortex lies on the symmetry axis, then for every charge 1
vortex, there is a charge −1 vortex, so symmetric solitons
have low global TC.

Antisymmetric solitons have identical site amplitudes about
the symmetry axis after complex conjugation, so vortex
charges are identical on either side of the symmetry axis. At
low C, their ring phase profile resembles that of a simple ring
vortex of charge m. The phases and amplitudes are slightly
perturbed due to the central coupling, which splits the charge m

on-site vortex into m charge 1 vortices. Similar to the N/|m| =
3 constant amplitude soliton, there is a free parameter which
allows spiraling of vortices during propagation. Above a
critical value of C, vortices of opposite charge appear, giving

(a)

(b)

C=0.8C=0.4 C=1.4

(c)

FIG. 6. (Color online) Examples of multivortex solitons with
an axis of symmetry (dashed line) stable at high power, δ0,1 = 1.
(a) N = 6. (b) N = 7. (c) N = 8.
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the asymmetric solitons lower net charge, but vortex spiralling
can still occur. At sufficiently high C spiralling is suppressed.

An important difference between rings with odd and even
N is the location of the symmetry axis. When N is odd, the
symmetry axis must pass through one of the ring sites, while
for even N the axis can pass either between two pairs of ring
sites, or through a single pair, which permits additional vortex
configurations.

While we have also found examples of solitons with fewer
vortices (and more spread out) than those in Fig. 6, they tend
to be unstable. The C = 1.4 soliton in Fig. 6(c) is protected
from decay, because placing a vortex in an unoccupied triangle
would result in two adjacent vortices of the same charge, which
is forbidden. In contrast, solitons such as those in Fig. 6(a),
C = 0.8,1.4, are only stable when corners not adjacent to any
vortices have a small amplitude compared to the rest of the ring.
The equivalent high-amplitude configurations are unstable.
High- and low-amplitude configurations appear together at
a saddle-node bifurcation.

The solutions found using the Newton-Raphson method
are sensitive to the initial conditions used in the procedure.
Therefore, we also look for solitons using a more systematic
approach, by solving the current balance equations, such as
what was used in Ref. [9]. We searched for other solutions in
an N = 6 ring.

Surprisingly, we find an example of a stable, completely
asymmetric soliton. Its phase profile is shown in Fig. 7(a).
Inside the ring there are two charge 1 vortices, giving the
soliton a net charge of 2. A third, oppositely charged vortex
is located in the supermode just outside the ring. This soliton
appears at a saddle-node bifurcation. The two branches have
very similar phase profiles—the unstable branch has a vortex
located at the boundary between two elementary triangles,
while this vortex is slightly displaced in the stable branch.
Instability occurs when the exterior vortex enters the ring,
setting up a new circulation of energy.

We do not find any stable solutions at high power for
defocusing nonlinearity δ0,1 = −1. The reason for this is that
in a simple ring decoupled from the central site, such as
that studied in Ref. [27], at high power all eigenvalues for
vortex solitons are either stable or unstable. Therefore solitons

10

(a) (b)

(c) (d)

z0

z 10
0

FIG. 7. (Color online) (a) Interpolated phase profile of the stable
asymmetric multivortex soliton at k = 30. (b) Stable vortex lines
under a 1% perturbation. (c) Phase profile of the unstable branch at
k = 30. (d) Unstable vortex lines under a 0.01% perturbation.

unstable for focusing nonlinearity become stable when the
nonlinearity sign is reversed. For the centrally coupled ring,
reversing the nonlinearity still swaps the stability of all the
eigenvalues. But instabilities in this case only appear in some
of the eigenvalues. Hence swapping all signs does not change
overall stability.

We observe qualitatively similar existence and stability
properties for other values of N and C. We have searched up
to N = 15. Below a critical value of C, multivortex solitons
with high TC are stable, in agreement with the limit C → 0
studied in Ref. [27].

V. SOLITON DYNAMICS AND VORTEX SWITCHING

In this section we explore ways in which the system under
consideration can be used to achieve controlled transitions
between different vortex configurations, starting with the
dynamics of unstable solitons.

The dynamics of an unstable N = 7, C = 1.4 symmetric
soliton are shown in Fig. 8. While there is one triangle without
a vortex, filling the empty triangle is forbidden because it
would result in adjacent vortices of like charge. The plot of the
power in Fig. 8(b) demonstrates that the soliton is unstable. A
perturbation induced by small numerical errors accumulated
while solving the propagation equation grows exponentially
to large oscillations within a distance of �z = 10. However,
on average the power at each site remains unchanged. The
reconstructed vortex lines in Fig. 8(c) show relatively weaker
oscillations. At the onset on instability at z ≈ 10, the vortex
positions shift, then they oscillate about new equilibrium
positions, shown in Fig. 8(d). Comparing the initial and final
states, we see that the positive vortex next to the empty triangle
moves to the boundary, resulting in two “half occupied”
triangles. This is accompanied by a rotation of the symmetry
axis by π/7, and the configuration becomes antisymmetric.

Decay can also occur via a negative vortex moving to a
triangle boundary, which rotates the symmetry axis in the
opposite direction. The final state then has opposite chirality. If
we start with the exact symmetric soliton solution, then which

(a) (b)
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FIG. 8. (Color online) Spontaneous decay of an N = 7 symmetric
soliton at C = 1.4 to an antisymmetric soliton. (a) Initial vortex
configuration. (b) Power at each site during propagation (different
sites are different colours) over a distance L = 50. (c) Vortex lines
during propagation. (d) Final vortex configuration.
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FIG. 9. (Color online) Spontaneous decay of an uncharged N = 7
symmetric soliton (C = 0.8) to a charged breather. (a) Initial vortex
configuration. (b) Power at each site during propagation (different
sites are different colours) over a distance L = 50. (c) Vortex lines
during propagation. (d) Vortex positions during propagation projected
onto a plane.

decay occurs is unpredictable and sensitive to noise. However,
an appropriate perturbation to the soliton may be used to push
the soliton to the desired output configuration, even in the
presence of noise.

If coupling is reduced to C = 0.8, the instability dynamics
of the symmetric soliton is quite different; it is illustrated in
Fig. 9. Following the decay, the site powers still oscillate about
constant average values, however, the vortex behavior is more
complex. Vortices of charge −1 repeatedly leave and enter
the ring, while charge +1 vortices move at irregular intervals.
The vortex lines in Fig. 9(c) do not show an obvious final,
equilibrium state. However, projecting the vortex positions at
different z values onto a plane in Fig. 9(d), we see surprising
order in the dynamics. The charge 1 vortices rotate about the
central site, while the −1 vortices appear only briefly at the
edge of the ring. The soliton has hence collapsed to a stable
charge (2 or 3) breather. The chirality of initial state with
global charge 0 is proven, as reversing its chirality results in a
negative charge breather.

We stress that the transition of multivortex solitons to other
regular states does not occur for all unstable configurations,
and only occurs at sufficiently high power, while at lower
powers we still observe irregular dynamics.

Switching between different vortex configurations may also
be achieved by applying large perturbations to stable solitons.
As an example, we consider encoding a signal modulated in
the power of a laser beam into multivortex states. This may be
achieved by passing an input beam of total power P through
a phase mask to create the appropriate phase profile, and then
propagating it through a waveguide coupler of fixed length.
The input phases are chosen to correspond to a stable constant
amplitude multivortex soliton with power P0 = |A|2 + N |B|2.
Changing the input power P = α2P0 scales the site amplitudes
to αA and αB, resulting in a nonstationary state with vortex
dynamics. We focus on switching in an N = 6 ring.

There are two mechanisms which may be used to control
the TC of stable multivortex solitons: coordinated charge

flipping, in which all discrete vortices reverse their charges
simultaneously via hyperbolic avoided crossings, and cyclic
charge flipping, in which vortex lines spiral around the central
site during propagation [32].

Coordinated charge flipping can occur both in the constant
amplitude and chiral solitons. The total power controls the
charge flipping frequency, and hence the output state after
propagation through a coupler of fixed length. The oscillations
are periodic, thus by choosing the right input powers it is
possible to switch vortex charges while leaving the power
in the individual waveguides unchanged. As an example we
show coordinated charge flipping of the N = 6, m = 2 soliton
in Figs. 10(a) and 10(b). The adiabatic spiraling of vortices is
suppressed by perturbing the input phase profile such that
ψ2 = ψ3, with ψ1 chosen such that the power flows are
almost balanced. This results in small-amplitude oscillations
at full input power, with the symmetry of the phases ψ2 = ψ3

preventing any rotation.
When the input power is strongly detuned from its station-

ary state, large oscillations occur and a coordinated reversal
of the vortex currents is achieved. The symmetry on the ring
is preserved during the oscillations—sites 2, 3, 5, and 6 all
oscillate together in Fig. 10(b) (the purple/dark gray curve).
A consequence of this symmetry is that the amplitudes do not
return to their original levels at equally spaced intervals. The
constant amplitude is restored at z ≈ 14,24,38, . . ., so there
are two alternating periods: �z = 14 and �z = 10. The output
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FIG. 10. (Color online) Vortex lines (a) and site powers |En|2
(b) during coordinated charge flipping in a seven waveguide coupler,
C = 1, L = 40, P/P0 = 0.5 and the input phases defined by ψ1 =
1.5 and ψ2 = ψ3 = 3.65. (c,d) Output vortex angles from an L =
10 coupler as a function of the input power. Different elementary
triangles are shown as alternating white and grey backgrounds. (c)
No noise and (d) 20% noise applied to input amplitudes and phases
with total power conserved.
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FIG. 11. (Color online) Vortex lines (a) and site powers (b) dur-
ing cyclic charge flipping. C = 1,L = 60,ψ1 = π,ψ2 = 4.33,ψ3 =
1.95,k = −0.5,P/P0 = 0.5. (c,d) Output vortex angles from an
L = 20 coupler as a function of input power. Different elementary
triangles are shown as alternating white and grey backgrounds. (c)
No noise and (d) 5% noise applied to input amplitudes and phases
with total power conserved.

vortex configuration from a device of fixed length L = 10 is
shown in Fig. 10(c). The vortex charges flip back and forth
as the power is increased, realizing a two-state multivortex
switch. Figure 10(d) shows how this switching is robust to
noise.

If the symmetry ψ2 = ψ3 is then broken, it is possible to
achieve further control of the output multivortex state through
cyclic charge flipping. We show the dynamics of the N = 6,
m = 2 soliton under a strong perturbation to the input power
in Figs. 11(a) and 11(b). The vortex dynamics are qualitatively
different from the smooth adiabatic spiraling demonstrated in
Ref. [32]. A “discrete rotation” of the vortices is observed,
in which the vortices spend most of the time at fixed angular
positions, with short periods of rapid rotation. This behavior

is also visible in the switching characteristics of the device in
Fig. 11(c), with the output angles remaining almost constant
as P is increased, until sudden switching occurs. This discrete
rotation results in good performance of the switch under noise,
as we show in Fig. 11(d).

With these two mechanisms, the all-optical switching
between the six distinct TC configurations of the N = 6,
m = 2 soliton is supported. This may be used to design a
six-state multivortex switch. We stress that this is just one
example of switching supported by perturbed multivortex
solitons. Switching properties may be more finely tuned
through the choice of input phases, k, C, the device length
L, and the method of perturbation. Switching based on vortex
spiraling may also be achieved for other values of N using the
charged chiral solitons presented in Figs. 6(b) and 6(c).

VI. CONCLUSION

We have studied the existence and stability of multivortex
solitons in a centrally coupled discrete ring and found that a
rich variety of stable solitons possessing different symmetries
exist for focusing nonlinearity. Stable solitons possessing the
full range of topological charges permitted by the discrete
symmetries of the system are supported. In contrast, for
defocusing nonlinearity all multivortex solitons were unstable
above a critical power.

We showed that the combination of nonlinearity and the
interaction between vortices provides three mechanisms for
the all-optical control of TC: spontaneous decay of solitons,
coordinated charge flipping, and cyclic charge flipping. As
an example we showed that the latter two mechanisms could
be used for all-optical switching between six topologically
distinct vortex configurations. This offers a significant im-
provement over previous switching mechanisms based on
single-vortex states and allows multichannel information
processing.

Since the multivortex solitons occur as a nonlinear super-
position of ordinary vortex solitons with different chiralities,
an interesting question is how the chiral solitons we have
described here would behave in a chiral system, e.g., if the
waveguides are twisted [35,36].
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