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Brightness and virtual source size of a supersonic deuterium beam
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Supersonic beams have numerous applications in research fields ranging from spectroscopy with nanodroplets
to surface science and matter-wave microscopy. Thus, measurement and prediction of their properties is of
considerable interest. In this paper we present measurements of the virtual-source size and its brightness, as
well as the terminal speed and terminal speed ratio of a supersonic deuterium (D2) beam. The speed distribution
data were measured with time-of-flight experiments and Fresnel zone-plate imaging was used to measure virtual
source size. The point-spread function of the zone plate was simulated based on the measured wavelength
distribution and used to extract the width of the virtual source and its brightness from the focus measurement.
The experiments were carried out with a 10-μm-diameter nozzle and a source temperature of T0 = 310 K in the
pressure range p0 = 3–171 bars and for T0 = 106 K in the pressure range p0 = 3–131 bars. We found that using
deuterium as opposed to helium results in a virtual source that is about a factor 2 brighter under similar stagnation
conditions. A comparison between the measured data and the predictions from a theoretical model based on
the Boltzmann equation, which explicitly include the coupling between translational and rotational degrees of
freedom as well as the real-gas properties of D2, resulted in good correspondence for the two different interaction
potentials we tried. A careful comparison with the experimental results shows that the potential by Buck et al.
[J. Chem. Phys. 78, 4439 (1983)] is moderately better than the Lennard-Jones potential at describing the expansion
dynamics.
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I. INTRODUCTION

When gas at high pressure expands supersonically into
a vacuum chamber via a small nozzle it forms a neutral
beam of high intensity and narrow energy distribution [1].
These properties make supersonic molecular beams useful
in many different research fields such as surface science
[2], laser spectroscopy, and magnetic and electric resonance
spectroscopy [3–5]. For example, scattering of supersonic
helium beams has been used to study the cleavage planes
of organic single crystals [6], the relaxation of well-ordered
surface ripples [7], and the dynamics of melting surfaces [8]
and has been a very important tool for the investigation of
oxide surfaces [9–11].

Helium beams have been used also in focusing applications,
where the focusing element is a free-standing Fresnel zone
plate [12] or mirror [13–15], and recently the first microscopic
images using neutral helium atoms have been recorded [16,17].
Supersonic deuterium (D2) beams are used to inject fuel into
toroidal plasma fusion experiments [18] and as jet target
in high-energy physics experiments [19,20]. Recently they
have been also employed in matter-wave experiments [21]
where deuterium was used as an alternative to helium. This
is because it has the same atomic mass, 4, at which mass the
chambers background gas contributes a relatively small signal
background. In addition, the polarizability of D2 is about a
factor of three larger than that of helium [22], which means that
it can be detected more efficiently in electron-bombardment
detectors. Moreover, supersonic helium beams are
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characterized by a particularly narrow speed distribution due to
the large scattering cross section of helium at low temperatures.
This, however, comes at the cost of an increase in virtual
source size and loss of source brightness [23–25]. Here we
show that the supersonic expansion of D2, on the other hand,
results in a comparatively brighter source with a broader speed
distribution. An increase in source brightness and detection
efficiency of the beam is of benefit in a large array of diffraction
and dynamic scattering experiments, including experiments
with coherent beams at high spatial resolution [26].

In this article we study the expansion of molecular
deuterium (D2) from a 10-μm-diameter nozzle at two nozzle
temperatures (T0 = 310 K and 106 K) and over a wide pressure
range: p0 = 3–171 bars (warm nozzle) and 3–131 bars (cold
nozzle). For these experimental conditions we performed time-
of-flight (TOF) experiments to measure the terminal speed and
the terminal speed ratio of the beam. The latter is defined as the
ratio between the terminal speed and the width of the velocity
distribution. Moreover, we have investigated the focusing of
the deuterium beam by means of free-standing Fresnel zone
plates and studied the image of the virtual source for the
different stagnation conditions. For an accurate measurement
of the virtual source size and its brightness we corrected
the image by accounting for the zone plate’s point-spread
function (PSF). We calculated the latter by solving the Fresnel
diffraction integral and averaging over the measured terminal
speed (de Broglie wavelength) distribution. This method of
analysis of focusing data was not yet used in our previous
work [25], but is also more important here due to the larger
wavelength-spread of the D2 source when compared to helium.

In addition to experimental results we present a theoretical
model that we use to predict terminal speed, speed ratio,
and virtual source size. The model takes into account the
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quantum-mechanical scattering cross section of D2, which
we calculated for two different interaction potentials, namely,
the empirical Lennard-Jones potential [27] and the potential
determined by Buck et al. [28] to explain the results of crossed
molecular beam experiments. The comparison between theory
and experiment showed that the latter potential is better
at predicting the expansion’s properties of D2. Overall the
experimental verification described in the following sections
shows that the developed theoretical model can be used as
a predictive tool to plan future experiments that require a
coherent D2 beam.

II. EXPERIMENTAL METHOD

The apparatus used in the present study was designed
for helium-scattering experiments [10] and helium mi-
croscopy [16]. Further details of the setup can be found
elsewhere [29,30]. The ultra-high-vacuum system is shown
schematically in Fig. 1. It consists of eight differentially
pumped chambers. For all experiments a nozzle with diameter
dn = (10 ± 1) μm was used. The deuterium pressure applied
to the nozzle was varied in the range 1–180 bars above
atmosphere, which was measured with a Bourdon gauge,
resulting in an uncertainty of ±1% above p0 = 100 bars and
±1 bar below for the pressure readings. A liquid-nitrogen
cryostat and a heating wire are used to manipulate the nozzle
temperature in the range 100 K–400 K. In the third pumping
stage, the beam is modulated by a movable chopper disk for
the TOF measurements. The disk was removed from the beam
axis during focusing experiments. The fifth chamber houses
the zone plate that can be precisely aligned with the beam axis
or moved clear of the beam using a motorized stage. In the
wall separating the sixth and seventh pumping stages an x-y

piezo table with a maximum range of 80 μm is integrated.
On the piezo table we mounted a 25-μm-by-5-mm slit
aperture for the TOF measurement or a 10-μm-diameter
hole aperture for the focus width measurement. The aperture
together with the piezo table can be moved in and out of
the beam using a manual x-y stage. Finally, the beam is
detected by a custom-built electron-bombardment detector
with magnetic mass selection located in chamber 8 [31] and
with an efficiency of about about 5 × 10−6 for D2. The signal
from the channeltron is preamplified, then transmitted to a
CAMAC system via a fiber-optic link. A counter module or
a TOF module processes the signal, which is then recorded
using a Labview-based computer system.

One of the recorded TOF data sets is shown in Fig. 2. It was
fitted with a Gaussian function to extract the most probable
TOF and the full width at half maximum (FWHM) of the TOF
distribution. The flight-time, FWHM, and chopper-to-detector
distance are corrected based on calibration experiments. The
detector was deliberately put at two different positions along
the beam axis for the two different nozzle temperatures.
The result of the chopper-to-detector distance calibration
measurement (see [30]) was LCD = 2028.4 ± 1.0 mm for the
warm-nozzle beam experiments and LCD = 2001.4 ± 1.0 mm
in the case of the cold nozzle beam. The corrected TOF
distribution is shown in Fig. 2 with a dashed (blue) line.
For this study we have measured terminal speed and terminal
speed-ratio of the deuterium beam in the source-pressure range
p0 = 3–171 bars for a nozzle temperature of T0 = 310 K.
For the cold nozzle temperature of T0 = 106 K the higher
flow through the nozzle causes the background pressure in
the source chamber to reach critical levels already at lower
nozzle pressures. This limited our experiments to a maximum
pressure of 131 bars.

FIG. 1. (Color online) Schematic of experimental setup. Pressurized deuterium (D2) gas expands into a high-vacuum chamber via a
10-μm-diameter nozzle. A skimmer and a circular aperture (both 400 μm diameter) collimate the beam onto a free-standing Fresnel zone
plate. The skimmer diameter is larger than the virtual source, so that the zone plate creates an image of the virtual source in the plane of the
hole aperture which is mounted on a piezo table. The position of the detector and piezo chambers along the beam axis (b) can be changed
by expanding or contracting bellows within a range of about 160 mm, allowing the position to be optimized to the image plane of the zone
plate. The width of the virtual source is determined by stepping the aperture across the image using the piezo table or the stepper motor driven
detector arm whose center of rotation is in the plane of the zone plate. The beam is detected by an electron-bombardment detector with a
magnetic sector for mass selection. The ions are counted using a channeltron. For TOF measurements a mechanical chopper is moved into the
beam, the zone plate removed, and the detector signal recorded using TOF electronics, which receives a trigger signal from the chopper.
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FIG. 2. (Color online) Time-of-flight spectrum for a supersonic
deuterium beam at nozzle pressure p0 = 150 bars and T0 = 310 K is
shown as black triangles. The error bars show statistical uncertainty.
The continuous (red) line is the Gaussian curve fit of the data set.
The calibrated and deconvolved distribution is shown as the dashed
(blue) line, which corresponds to a terminal speed of 2080 ± 4 m/s
and speed ratio 33.0 ± 0.2. These corresponding TOF distributions
were used to simulate the chromatic PSF of the zone plates, which
made it possible to deconvolve the images of the virtual source.

With the chopper removed from the beam line, we
measured the virtual source width of the deuterium expansion
by scanning across the image produced by a Fresnel zone
plate with a 10-μm-diameter hole aperture. The scanning
aperture was stepped across the focus using the piezo table.
To examine the full diffraction image including the zeroth
order of the zone plate the same was achieved by rotating
the whole detector arm, but with larger range (see Fig. 7).
The latter scanning method also allowed better examination
of the tails of the focus in the cases where the source image
grew too large for the range of the piezo table.

For imaging the 106-K-nozzle beam source we used a
silicon-nitride zone plate (ZP1), which was fabricated at
MIT’s NanoStructures laboratory [32] using electron-beam
lithography and is shown in Fig. 3. The diffraction grating
must be free-standing to allow the passage of the low-energy
molecules. The grating bars are held in place by a radial support
structure. The focal length of zone plate ZP1 is f = 477.3 mm
at a de Broglie wavelength of 97.8 pm. It has a diameter
of 388 μm. The inner zones up to a radius of 70 μm are
blocked to remove the zeroth diffraction order close to the
beam axis, where the first-order focus is located. Since the
zeroth diffraction order contains 25% of the intensity incident
on the zone plate and the first diffraction order only about
10%, blocking the former increases the signal-to-noise ratio
for the focus scan. This is especially important in imaging
experiments [16]. The zone plate has a thickness of about
150 nm. In the focusing experiments using this zone plate we
used a source-to-zone-plate distance of g = (1550 ± 10) mm
and the distance from the zone plate to the aperture on the
piezo table was b = (809 ± 10) mm.

For focusing the 310-K-nozzle beam we used a free-
standing nickel zone plate (ZP2). It is the same as ZP2 in
our previous article on the helium virtual source [25]. ZP2 was
fabricated at the Institute for x-ray Physics at the University
of Göttingen. It has a diameter of 540 μm and a focal length
of f = 506 mm at a de Broglie wavelength of 53 pm. For this
zone plate the inner 240 zones (up to a radius of 81 μm) are
blocked to remove the zeroth diffraction order. The fabrication

FIG. 3. Scanning-electron micrographs of the free-standing
silicon-nitride zone plate used for imaging the cold-nozzle source.
In the top image one can see the entire zone plate with a diameter
of 388 μm. The central disk with a diameter of 140-μm blocks the
zeroth diffraction order close to the optical axis. The grating pattern is
not resolved, but instead circular Moiré fringes are visible. The edges
of the square-shaped silicon-nitride membrane (600 μm width and
about 150 nm thickness) into which the zone plate pattern was etched,
shows significantly darker than the surrounding part of the silicon
substrate. In the lower image the outer grating bars (approximately
vertical) of the zone plate are magnified. The outermost transparent
zone has a width of 120 nm. The horizontal bars with a width of
about 450 nm are the support bars upholding the free-standing grating
structure.

process is described by Rehbein [33]. The source distance
g = (1550 ± 10) mm was the same as in the cold-nozzle
experiments, while the image distance was slightly longer at
b = 836 ± 10 mm. Previous experiments with this zone plate
have shown that zones outside of a diameter of about 430 μm
are not transparent [16].

The most probable de Broglie wavelength was in the range
of 86.8 ± 0.1 pm to 90.5 ± 0.1 pm for the cold-nozzle beam
and 47.9 ± 0.1 pm to 53.1 ± 0.1 pm for the warm-nozzle
beam. The speed ratio ranged from 10.5 ± 0.2 to 33.5 ± 0.2
(warm nozzle) and from 17.0 ± 0.1 to 25.4 ± 0.1 (cold nozzle)
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with the peak at p0 = 20 bars due to condensation, as is
explained in the following sections. The relatively broad speed
distribution makes it difficult to measure the exact position of
the optimal focal plane. For this reason it was decided to
keep the imaging distance b constant despite of the changing
wavelength. To compensate for this we developed an accurate
model of the zone plate focus and used that to deconvolve the
measured focus widths. The effect of van der Waals forces
on the focusing properties of the zone plates is only a change
in the ratio between the widths of open and blocked Fresnel
zones, which is very small due to the small polarizability of
D2 and the short interaction distance (thickness of the zone
plates) [32].

III. THEORETICAL MODEL FOR DEUTERIUM
EXPANSION

A theoretical description of the expansion is developed
for predicting the behavior of deuterium beams such as
terminal speed, speed ratio, and virtual source size. The
model was inspired by the work of Winkelmann [34] on
hydrogen in which a decoupling between translational and
rotational relaxation was assumed and its expansion was
treated with the same method employed for a monoatomic
gas [25]. We apply Winkelmann’s model to D2 using its
specific quantum mechanical properties as well as its real-gas
properties. Additionally, we include the coupling between
translation and rotation explicitly [35].

The evolution during the expansion of the velocity distribu-
tion f (�v) can be calculated by solving the Boltzmann equation
by using an approximated method [36,37]. The expansion
is assumed to be spherically symmetric and therefore flow
properties depend only on the distance from the source.
Furthermore, an anisotropic velocity distribution is assumed,
which is the product of two Maxwellian functions with
two temperatures, T|| and T⊥, respectively, to describe the
different behavior of velocity components parallel (v||) and
perpendicular (v⊥) to the streamlines,

f (�v) = n

(
m

2πkbT||

) 1
2
(

m

2πkbT⊥

)

× exp

(
− m

2kbT||
(v|| − u)2 − m

2kbT⊥
v2

⊥

)
, (1)

where m is the deuterium mass, kb is the Boltzmann constant,
n is the molecular density, and u is the most probable velocity
of the gas.

Inserting this expression for the velocity distribution in the
Boltzmann equation it is possible to calculate an approximate
solution for the gas and obtain parameters such as the
speed ratio S =

√
1
2mu2/kbT||, which describes the width of

the parallel velocity distribution. The translational-rotational
coupling is evaluated following the model introduced by
Klots [35], in which a rotational temperature TR is used to
describe the rotational energy of the deuterium molecules and
the relaxation relationship is given by

dTR

dt
= −TR − T̄

τ
, (2)

where T̄ = (2T⊥ + T||)/3 is the mean kinetic temperature and
τ the relaxation time.

The evolution of the parameters n,u,TR,T||, and T⊥ is
obtained by solving numerically with the method of moments
[38] the set of four coupled integro-differential equations,
derived from the Boltzmann equation for the monoatomic
gas modified by the translational-rotational coupling terms
and including the rotational energy ER in the conservation of
energy, and the fifth equation for the derivative of TR:

d
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= m〈�v2
⊥〉

2nukb
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3uτ
(TR − T̄ )

[
1 −

(
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(6)

dTR

dr
= −TR − T̄

uτ
, (7)

where r is the reduced distance from the source r = x
dnz

, and x

is the distance from the source. The term 〈�v2
⊥〉 contains the

collision integral

�(2,1)(T ) =
(

kbT

πm

)(1/2) ∫ ∞

0
Q(2)(E)γ 5

E exp
( − γ 2

E

)
dγE,

(8)

γE =
√

E

kbT
, (9)

where Q(2) is the viscosity cross section and E is the collision
energy of two atoms in the center-of-mass system.

We have calculated the scattering cross section and the
associated collision integral taking into account quantum
effects. For collisions between Bose-Einstein particles,

Q(2)(E) = 8πh̄2

mE

∑
l=0,2,4,...

(l + 1)(l + 2)

(2l + 3)
sin2 (ηl+2 − ηl),

(10)

where ηl is the phase shift of the partial wave with orbital
angular momentum l. Phase shifts are estimated employing the
computation procedure described in detail in Ref. [39] and the
Numerov method [40,41] is used for the numerical integration
of the Schrödinger equation. In order to describe the deuterium
interaction, two potential curves have been considered which
are the isotropic part of the full interaction potential. The well-
known Lennard-Jones (12-6) potential (we refer to it as LJ
potential) is expressed as

V LJ(R) = 4ε

[(
σ0

R

)12

−
(

σ0

R

)6]
, (11)

where R is the interatomic distance, ε = 3.1626 meV is
the well depth, and σ0 = 2.959 Å is the position where
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the potential vanishes and for shorter distances becomes
positive [27].

The other potential by Buck et al. [28] is expressed as the
sum of repulsive and attractive contributions and is referred to
as the BK potential from here onwards:

V BK(R) = A exp[−βR − ηR2]

− (C6/R
6 + C8/R

8 + C10/R
10)D(R), (12)

with

D(R) =
{

exp[−(G/R − 1)2], R � G;

1, R > G.
(13)

The parameters are

A = 101.4 eV, β = 2.779 Å
−1

, η = 0.08 Å
−2

,

G = 5.102 Å, C6 = 7.254 eV Å
6
, C8 = 36.008 eVÅ

8
,

C10 = 225.56 eV Å
10

. (14)

The solution of the coupled integro-differential equations
can be calculated by means of the standard Runge-Kutta
computation procedure [42]. During the expansion, energy
transfer between rotational and translational degrees of free-
dom generally requires several collisions, the relaxation time
therefore can be expressed as τ−1 = 2.4nξ�(2,1)(TR) [43],
where the scaling coefficient ξ is the inverse of the number
of collisions which are necessary for the transfer. In the
calculations ξ can be treated as a free parameter but we have
used the values estimated in Ref. [44], that is, ξ−1 = 576 and
150 at T = 101 K and 310 K, respectively.

The integration of the integro-differential equations is
started at r = 0.591 value suggested as the boundary condition
for the thermal conduction model of Klots [43]. The starting
parameters are obtained from the source conditions, T0 and
p0, using the analytical formula of Ref. [45] for the isentropic
expanding gas with γ = CP /CV = 1.4 and the real thermo-
dynamic properties of deuterium provided by Prydz et al. [46].
At this point all the temperatures are assumed equal, that is,
TR = T⊥ = T||, which seems to be a good approximation since
the gas density and in turn the collision frequency are still high
enough to assure a local equilibrium. The distance at which the
integration is terminated (distance of the quitting surface from
the nozzle, Dqs, where the collision frequency is negligible)
is somewhat arbitrary. In the present calculation we use the
criterion T⊥/T|| < 0.01 to stop the calculations as in the case
of He [47].

At the end of the expansion, the physical parameters are
estimated from the beam temperatures. For the virtual source
width ws we have [25]

ws = 2
√

2 ln 2
Dqs

√
kBT⊥/m

u
. (15)

The beam temperatures calculated using the model are
shown as a function of source pressure in Fig. 4 for the BK
potential and a source temperature of T c

0 = 301.4 K. Since
the temperature sensor attached to the nozzle does not directly
measure the gas temperature, we used a temperature different
from the measured one, determined by the terminal speed, for
the calculations. We refer to the temperature measured by the
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FIG. 4. (Color online) Temperatures of a D2 beam with nozzle
at T c

0 = 301.4 K calculated using the BK potential at the end of the
expansion. The blue (�) line corresponds to the rotational temperature
of the molecular beam. The red (�) line corresponds to the parallel
temperature. The dark-green (•) line gives the perpendicular temper-
ature calculated using solution of the integro-differential equations.
For the medium-green (�) line the perpendicular temperature was
calculated using monoatomic continuum scaling laws and for the
light-green (�) line it was biatomic continuum scaling laws.

sensor with T0 and to the temperature assumed in the model
with T c

0 . Just as in the case of the helium expansion [25]
the perpendicular temperature calculated using the solution
of the integro-differential equations does not describe the
virtual source width very well (see section on virtual source
width). However, terminal speed and speed ratio are very well
described by the model (see sections on speed and speed
ratio). For this reason we have only attempted to estimate the
perpendicular temperature of the beam at the quitting surface,
separately, using continuum scaling laws. Since D2 is biatomic
but the calculations were performed for a monoatomic gas,
we have considered both the mono- and biatomic cases. For
an axisymmetric expansion in the continuum region with the
reduced distance from the source r > 4, the perpendicular
temperature T⊥ depends on the distance as [1]

T mono
⊥ (r) = 0.287 × T0r

− 4
3 (16)

for a monoatomic gas and

T bi
⊥ (r) = 0.385 × T0r

− 4
5 (17)

for a biatomic gas. These continuum perpendicular tempera-
tures are also shown in Fig. 4 and the resulting virtual source
widths were compared to the experimental data in one of the
next sections.

IV. TERMINAL SPEED

In Fig. 5(a) we present the theoretical model prediction
for the terminal speed of the 310-K-nozzle deuterium beam
together with the experimental data from the TOF experiments.
We expect a certain deviation of the measured nozzle temper-
ature T0 from the actual initial temperature of the expansion
T c

0 that is used for the model, as mentioned previously. The
measurement of the terminal speed can be taken as a very good
indicator for the actual temperature of the expansion. Similarly,
in the recent study by Ekinci et al. [48] the nozzle temperatures
had to be corrected downwards by 13 K for their three colder
nozzle conditions. We have evaluated the expansion model
over a range of temperatures at a resolution of 0.1 K and thus
found T c

0 for each interaction potential with the least-squares
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FIG. 5. (Color online) Terminal speed of D2 beam with nozzle
at T0 = 310 K (a) and at T0 = 106 K (b). The squares (�) show
the results of the TOF measurements. The model calculation at T c

0 =
303.6 K (a) and T c

0 = 102.2 K (b) using the LJ potential is displayed as
the continuous (red) line. The result corresponding to the BK potential
with T c

0 = 301.4 K (a) and T c
0 = 101.9 K (b) is given as the dashed

(green) line. The corresponding thin lines show the model result for
the measured nozzle temperature T0 = 310 K (a) and T0 = 106 K
(b). Note that the increase in terminal speed at pressures above about
p0 = 40 bars in (b) is mainly due to the real-gas properties of D2.

deviation from the measured terminal speed values. The result
of this optimization is shown in Table I. The data points below
a pressure of 3 bars were excluded from this optimization, due
to the large relative uncertainty in setting the beam pressure of
about 50%.

The terminal speed data for the 106-K-nozzle beam in the
current study are presented in Fig. 5(b). At the same cold source
conditions we have recorded mass spectra (see reference
[30]) which showed signs of cluster condensation already
at p0 = 3 bars. The additional heat released from cluster
condensation results in an increased terminal speed. Since the
expansion model does not take into account condensation, we
do not expect the model to accurately predict terminal speed in
presence of condensation. The optimized temperature values
in Table I were therefore obtained by restricting the data set to
pressures p0 = 6, 11, and 16 bars. It is satisfying to see that
the measured terminal speed increases faster than the model

TABLE I. Optimized nozzle temperatures based on a least-
squares fit of the expansion-model terminal speeds to the experimental
data.

T0 (K) Potential T c
0 (K)

310 LJ 303.6
310 BK 301.4
106 LJ 102.2
106 BK 101.9

also at these low pressures, consistent with the observation of
clusters in the mass spectra.

V. TERMINAL SPEED RATIO

The terminal random-translational enthalpy parallel to the
beam axis of the beam is characterized using its speed ratio S

(see section on the theoretical model). From the TOF spectrum
S is derived using the equation,

S = 2
√

2 ln 2
u

�u
≈ 2

√
2 ln 2

t

�t
, (18)

where �u and �t refer to the FWHM of the terminal speed and
TOF distributions, respectively. The result of the theoretical
model using the nozzle temperature and experimental data
from the TOF experiments for the warm-nozzle beam are
shown in Fig. 6(a). The model predicts the trend of the
measured speed ratios very well, but underestimates it by
5%–20% (excluding the data point at the lowest source
pressure). This deviation could be caused by a systematic error
in the calibration of the FWHM of the TOF data. The BK
potential gives a better correspondence to the experimental
data.

In Fig. 6(b) we present the terminal speed-ratio results for
the cold-nozzle beam. The experimental data peaks at around
21 bars nozzle pressure, and then stabilizes at a speed-ratio of
about 22 at a stagnation pressure of about 40 bars, as previously
observed [48]. The reduction in the speed ratio is due to an
increase in the random-translational enthalpy caused by the
cluster condensation. For the three data points at the nozzle
pressures that we also used for the optimization of T c

0 the
model prediction fits almost perfectly for the LJ potential.
However, these three points are to some extent affected by
condensation. Observing that condensation reduces the speed
ratio for points at higher pressure we may presume that also
these points should be higher without condensation. Therefore,
the good agreement with the LJ potential is likely fortuitous
and the agreement with the BK potential may be better. In this
case it is not possible to decide which potential provides the
better agreement.

VI. POINT-SPREAD FUNCTION OF THE ZONE PLATES

The measured spot profile of Fig. 7 presents tails that cannot
be fitted by a single Gaussian function. To retrieve the FWHM
of the virtual source from the focusing data we used nonlinear
least-square fitting of a zone-plate diffraction model. For this
we assumed that the image of the virtual source is described
by the sum of two Gaussian functions G1(x,y) and G2(x,y)
with FWHM w1 and w2 and equal normalization factor A.
Choosing the normalization factor of both Gaussians as free
parameters, as can be found in the literature [24], results in
large correlation between the two parameters.

The diffraction model uses the measured and corrected
(see above) TOF distribution to calculate the corresponding de
Broglie wavelength distribution for each nozzle temperature
and pressure. This distribution is then sampled uniformly
at a resolution of 0.1 pm. For each specific wavelength we
have calculated the point-source diffraction pattern in the
imaging plane of the experiment, using an adaptation of
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FIG. 6. (Color online) Terminal speed ratio of D2 beam with
nozzle at T0 = 310 K (a) and at T0 = 106 K (b). The squares (�) show
the results of the TOF measurements. The uncertainty of the terminal
speed ratio is ±0.2 in (a) and ±0.1 in (b). The model calculation
at T c

0 = 303.6 K (a) and T c
0 = 102.2 K (b) using the LJ potential is

displayed as the continuous (red) line and the result corresponding to
the BK potential at T c

0 = 301.4 K (a) and T c
0 = 101.9 K (b) is given

as the dashed (green) line. At a pressure of about 21 bars for the
low-temperature nozzle (b) condensation effects become significant,
resulting in an obvious reduction of speed ratio.

Dauger’s algorithm for calculating Fresnel diffraction patterns
(see Fig. 8) [49]. The implementation takes into account the
central blocking disk but not the support bars. However, the
support bars block only about 12% of the zone plate’s area.
Also, the support bars have radial symmetry so that their
effect on the focus is mainly an attenuation by those 12%.
The sum of the diffraction patterns, weighted in accordance
with the wavelength distribution, results in a two-dimensional
diffraction image that corresponds to the PSF FPS(x,y) of
the zone plate. The PSF is then convoluted with a two-
dimensional aperture function H (x,y) corresponding to the
10-μm-diameter detector aperture and finally we consider the
section through the maximum of the convoluted PSF. An
example of the resulting distribution is shown in Fig. 7 as
the dash-dotted (black) line. Finally the following function is
fitted to the focus data,

I0 + [G1(x,0) + G2(x,0)] ∗ (FPS ∗ H )(x,0), (19)

where the detector background I0 was determined in a separate
measurement and ∗ denotes convolution. The free parameters
were w1, w2, and A. To be able to compare the result with
the expansion model described in the theory section, we
used the standard deviation in x of the intensity function
G1(x,0) + G2(x,0), and multiplied it by the factor 2

√
2 ln 2

to give the FWHM of a single Gaussian of equal standard
deviation. This single-Gaussian-equivalent FWHM is then
divided by the magnification M = b/g to give the measured
virtual source width.
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FIG. 7. (Color online) In the top graph the zone-plate focus of
the deuterium beam with source conditions p0 = 150 bars and T0 =
310 K is shown. Experimental data (
) were collected by stepping the
circular aperture horizontally across the center of the experimental
image (maximum of the intensity) using detector arm rotation. The
uncertainty in x for this data set is about 5 μm. Scanning the same
region using the piezo table while keeping the detector arm stationary
resulted in the data set shown with black error bars. For both data
sets a vertical (orthogonal) scan with the piezo table was recorded to
locate the vertical center of the experimental image. The uncertainty
in x for the piezo-table data set is about 0.02 μm. The continuous
(red) line shows the result of the least-squares fit of Eq. (19) to the
piezo-table data. The dashed (blue) line shows the deconvolved focus
G1 + G2 based on the parameters resulting from the fit described
in the text. The dash-dotted (black) line gives the diffraction-model
result FPS ∗ H . The continuous (green) line in the bottom graph shows
the fit residuals.

VII. VIRTUAL-SOURCE SIZE

The virtual source size of the molecular beam is a
function of the perpendicular beam temperature or the random
translational enthalpy perpendicular to the beam-axis at the
quitting surface. As mentioned in the expansion-model section
we used three different methods to calculate the perpendicular
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FIG. 8. (Color online) In this figure we show the calculated
lateral intensity of the point-source diffraction pattern in the imaging
plane for three different wavelengths and relative to the undisturbed
beam intensity. Note the logarithmic scale on the y axis. The zeroth
diffraction order which can be seen at a distance greater than about
120 μm from the central axis and has the expected relative intensity
of 0.25 on average. The first-order focus includes a shadow due
to the central stopping disk of the zone plate. On the central axis
one can notice a Poisson spot. For the focus model we calculated a
diffraction pattern of this type every 0.1 pm in the wavelength ranges
43.4–65.6 pm (warm nozzle) and 82.8–106.8 pm (cold nozzle).
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beam temperature. It is not surprising that the solution of
the Boltzmann equation gives a poor estimate for T⊥ at the
quitting surface, and thus a poor estimate for the virtual-source
size. As collisions decrease during the expansion the different
degrees of freedom are increasingly decoupled and particularly
the perpendicular degrees of freedom exhibit nonequilibrium
behavior [23]. This means that the perpendicular speed distri-
bution is no longer described by a simple Gauss distribution. As
a result, the virtual source cannot be described as a single Gauss
function either, as is reflected by the fit of the experimental
virtual source data.

The theoretical and experimental results for the virtual
source width of the warm-nozzle beam are given in Fig. 9(a).
The deconvolved widths of both the narrow and broad virtual-
source components [G1(x,y) and G2(x,y)] are shown. For
our data the single-Gauss-equivalent FWHM (see previous
section), which is shown as large (blue) squares in Fig. 9(a),
tends to be slightly larger than the average of the narrow and
broad component’s FWHM. With this interpretation the exper-
imental data fit very well with the assumption of a monoatomic
continuum-expansion scaling of the perpendicular temperature
calculated at a quitting-surface distance given by the solution
of the Boltzmann equation.

At the two lowest pressures especially the broader source
increases in width. We do not believe that this is a physical
effect but rather caused by the stronger dependence of the
terminal speed on nozzle pressure and the large relative
uncertainty of the nozzle pressure reading. In fact, TOF
data and the focusing data were recorded in different runs
and slightly different source pressures might result in an
unaccounted-for increase in image size of the virtual source
due to chromatic aberration.

The results for the cold-nozzle beam are shown in Fig. 9(b).
As in the warm-nozzle case the perpendicular temperature
is best described by a monoatomic continuum-expansion
scaling terminated at the quitting surface. Similar to the
terminal speed and speed-ratio measurement we note an
increasing deviation between model and experiment above
about p0 = 21 bars due to cluster condensation. Below this
condensation threshold the model predicts a virtual source
size which is almost twice the experimental single-Gaussian
equivalent value. Although the agreement is reasonable for
the purpose of the estimation of beam parameters and at
most limits the model applicability to temperatures above
110 K, this discrepancy points at an increased cooling of
the perpendicular degrees of freedom at the low-temperature
source conditions. This could be explained by an overestimate
of the distance of the expansion-model quitting surface from
the nozzle. However, with monoatomic cooling the width
of the source is proportional to r1/3 (with r = Dqs) and
thus the quitting surface would have to be moved closer to
the nozzle by a factor of 8 to explain the deviation. This is
not likely as it would cause a large change in the predictions
of speed and speed ratio which are predicted very well by the
model. Another possible explanation could be that the perpen-
dicular velocity distribution would require a better description
of the long tails (kurtosis) directly in the calculations replacing
the Gaussian with a suitable distribution: This will increase
the complexity of the model and will be tried in future
investigations.
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FIG. 9. (Color online) Virtual source width of D2 beam with
nozzle at T0 = 310 K (a) and T0 = 106 K (b). The image of the
virtual source was created using a free-standing Fresnel zone plate at
a magnification of 0.54 (a) and 0.52 (b). The small (gray) squares
(�) with error bars show the result of the deconvolved narrow
and broad virtual-source widths. The large (blue) squares (�) with
error bars show the single-Gaussian-equivalent FWHM (see text).
The uncertainty of the virtual source widths is derived from the
least-squares fit. The model calculations at T c

0 = 303.6 K (a) and
T c

0 = 102.2 K (b) using the LJ potential are displayed as continuous
(red) lines and the results corresponding to the BK potential at
T c

0 = 301.4 K (a) and T c
0 = 101.9 K (b) are given as dashed (green)

lines. The labels indicate the method used to derive the perpendicular
temperature at the quitting surface (see text). In (b) condensation
effects additionally contribute to the increase of virtual source size
starting at a source pressure of about 20 bars. In the same graph
at source pressures of p0 = 51 bars and above the least-square
fitting procedure of the focus data would no longer converge despite
including the less accurate but wider range detector-arm scan points
in the fit. For this reason the source-model was reduced to a single
Gaussian G1(x,0) for those points.

VIII. D2 INTERACTION POTENTIAL

With the careful uncertainty analysis we have performed it
is possible to evaluate the performance of the two different
interaction potentials in predicting terminal speed, speed
ratio, and virtual-source size. In the case of the warm-nozzle
beam the contributions from any clustering are negligible
and therefore we expect perfect correspondence with the
experimental data. In Table II we have calculated the reduced
χ2 based on the residuals between experimental data and the
corresponding theoretical values. The lowest source-pressure
data point were again neglected, due to its comparatively larger
relative uncertainty.

From the table we see that the speed data, for which the
model was fitted via the nozzle temperature, are almost equally
well reproduced by the two potentials. However, the speed-
ratio and virtual-source data are clearly better reproduced by
the BK potential (smaller χ2 values). The χ2 values for the
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TABLE II. Reduced χ 2 values for experimental data with respect
to model prediction for the two different D2 interaction potentials.
u refers to terminal speed, S to terminal speed- ratio, and ws to the
width of the virtual source.

Potential χ 2(u) χ 2(S) χ 2(ws)

LJ 2.1 334 1.0
BK 2.6 131 0.4

speed-ratio data are relatively large, which could be due to an
unaccounted for systematic error, considering that the trend
of the data is reproduced rather well by the model. For the
cold-nozzle data there are only three data points (at p0 = 6, 11,
and 16 bars) for which condensation has a limited influence.
The χ2 values of the speed-ratio data favor the LJ potential
but this may change in the presence of condensation toward
the BK potential. Overall, we note a preference for the BK
potential.

IX. VIRTUAL-SOURCE BRIGHTNESS

The brightness of beam sources is an important parameter in
many applications. In Fig. 10 we therefore report the brightness
of the D2 virtual source as determined from the zone-plate
focusing experiments. The brightness B as a function of the
total intensity in the focus If and the area of the virtual source
Avs is given by

B = If

Avs

1

�zp

1

ηzp

1

ηdet
, (20)

where �zp is the solid angle under which the source illuminates
the zone plate. ηdet and ηzp are the efficiencies of the detector
and the zone plate, respectively. The latter was determined in
separate experiments and takes into account both the support
structure and the central block. For the Göttingen zone plate
(warm-nozzle beam) the efficiency is ηzp = 0.033 ± 0.007
and for the MIT zone plate it is ηzp = 0.047 ± 0.005. The
efficiency of the detector for D2 was estimated to be ηdet =
(5 ± 1) × 10−6 [31].
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FIG. 10. (Color online) The graph displays the brightness of a D2

supersonic expansion for source temperature T0 = 310 K with solid
(black) bullets (•) and for source temperature T0 = 106 K with large
(blue) squares (�). The uncertainty indicated by the error bars is
determined from the uncertainties in the quantities used to determine
the values (see text). For both source temperatures approximately the
same brightness is reached. For the cold-nozzle conditions clustering
is to be blamed for the sharp decrease in brightness at higher source
pressures.

The brightness of the helium virtual source reported in
Ref. [25] was likely an overestimate due to the then poorly
known transmission characteristics of the zone plate. The
reported brightness for the helium jet would then also better
correspond to the values reported by De Ponte et al. [24] of
about 1027 s−1 sr−1 m−2 for a 9.5-μm-diameter nozzle. This
suggests that the D2 virtual source is at least a factor 2 brighter
than the helium source under similar conditions.

X. CONCLUSION

We have investigated the supersonic expansion of D2 at two
distinct source temperatures (T0 = 106 K and T0 = 310 K)
and over a wide range of source pressures and also developed
a model to predict properties of the resulting beam. Terminal
speed and speed ratio were obtained by TOF experiments while
virtual source sizes were estimated by a careful least-squares
fitting deconvolution procedure using the setups PSF specific
to each source condition and zone-plate focusing experiment.

Varying the source temperature used in the expansion
model resulted in excellent agreement with the terminal speed
data at all source conditions where cluster condensation was
negligible. The correspondence with terminal speed-ratio data
was good as well, although we observed a small systematic
deviation. The virtual-source-width data were reproduced very
well for the warm-nozzle beam, when taking into account the
model’s inability to duplicate the nonequilibrium behavior of
the degrees of freedom perpendicular to the beam axis and
instead calculating the perpendicular beam temperature using
a monoatomic scaling law. The biatomic scaling law did not
reproduce virtual source size data well, which indicates that
the rotational degrees of freedom do not play a role in the
cooling of the perpendicular temperature. This is very probably
because the deuterium rotational levels are well spaced and
in the low temperature of the expanding beam the rotational
excitations are limited to very few levels so that the gas behaves
essentially as a monoatomic one. For the cold-nozzle beam
the virtual source is by almost a factor two narrower than the
model’s monoatomic-scaling prediction (for the region were
condensation effects are small). Virtual source widths ranged
from 14.7 ± 0.5 μm to 190.2 ± 0.5 μm for the cold-nozzle
beam and from 23.4 ± 0.5 μm to 70.1 ± 0.5 μm for the
warm-nozzle beam.

After careful analysis of the experimental data we find that
the interaction potential by Buck et al. [28] is moderately better
at predicting the properties of the D2 supersonic expansion.
To draw a clearer conclusion it will be necessary to include
condensation effects in the theoretical model. Such a model,
when compared to experimental data, could then also provide
insight into condensation energies of various cluster sizes.
Furthermore, it would be interesting to study the expansion’s
properties at even higher flow rates where the interaction
potentials result in larger deviating predictions with respect
to each other.

Finally, we report the brightness of the D2 supersonic
expansion for the studied source conditions. The maximum
brightness is for both source temperatures at about (3 ± 1) ×
1027 s−1 sr−1 m−2 which is about a factor 2 to 3 brighter
than the brightness of a helium supersonic-expansion source
at similar source conditions. In the future we plan to study
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the brightness of sources with smaller nozzle diameter and at
higher stagnation pressures with the hope of further improving
the brightness of supersonic-expansion sources.
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