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Low-frequency thermal noise in optical fiber cavities
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Thermodynamic phase fluctuations in optical fiber cavities are analyzed in detail, with an emphasis on
asymptotic behavior in the low-frequency regime. Both exact series solutions and closed-form approximations
are derived for thermal noise under a range of different boundary conditions. These results clarify theoretical
limits to strain resolution in optical fiber sensors at low frequency, enabling correct interpretation of recent
experiments.
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I. INTRODUCTION

Recently, there has been interest in thermodynamic cavity
fluctuations in optical fiber resonators at low frequency [1–6].
Interest in this topic arises from the desire to understand the
absolute performance limit of ultrahigh-resolution fiber optic
strain sensors [1,7–10]. Such limits may be understood in
terms of the fundamental uncertainty in the optical path length
of a resonant structure at finite temperature. Thermodynamic
cavity fluctuations of similar origin are also believed to impose
fundamental limits in related measurement fields, includ-
ing microresonators [11] and the free-space mirror cavities
used for the Laser Interferometric Gravitational Observatory
(LIGO) [12–14].

Thermal noise limited phase fluctuations have been
observed in fiber-optic interferometers with long interaction
lengths (>100 m) over a frequency range from around 1 kHz to
1 MHz [6,15]. Resolving thermal fluctuations in short cavities
such as Fabry-Pérot and Bragg grating resonators is more
difficult due to the comparatively smaller absolute displace-
ments. Above 100 Hz the most sensitive measurements of
cavity fluctuations have been made with distributed feedback
(DFB) fiber laser sensors which measure length changes to
the resonant cavity of an optical fiber laser by interrogating
modulations in laser frequency [7,8]. Above a few kilohertz
the measured noise floor is believed to be dominated by fun-
damental thermal noise [5], yielding an absolute displacement
resolution of the order of 10−15 mHz−1/2 (equivalent to a strain
resolution of around 10−13 Hz−1/2) at 2 kHz for a nominal
1-cm cavity length [8]. At frequencies below 1 kHz, excess
(nonequilibrium) thermal fluctuations arising from the pumped
active ions are believed to dominate, yielding a 1/f thermal
noise spectrum at low frequency [4]. While these fluctuations
are of fundamental interest in their own right, they are a feature
of the active gain medium and limit the capacity of the laser
sensor to resolve strain at the true limit imposed by equilibrium
thermal fluctuations.

The excess thermal noise in fiber laser sensors has led
some authors to argue that passive optical cavities will yield
better performance as high-resolution strain sensors at low
frequency [9,10]. Although interrogation of passive fiber-optic
cavities at the thermal noise limit is yet to be achieved,
recent advances suggest that it may soon be possible. By
locking a narrow-linewidth laser to a Fabry-Pérot cavity using
a sophisticated rf phase modulation technique, the authors of
Ref. [9] achieved absolute displacement resolution of better

than 10−13 mHz−1/2 down to approximately 100 Hz and have
more recently extended this performance down to frequencies
below 10 Hz [10]. Using a refinement of the above technique
which stabilized the interrogating laser against an absolute
frequency reference, Gagliardi et al. [1] recently achieved
subpicometer displacement resolution for a Fabry-Pérot cavity
in the subhertz frequency domain. They measured a noise floor
of about 10−13 mHz−1/2 Hz at 2 Hz.

These developments provide new opportunities to test
our basic understanding of thermal fluctuations; however,
considerable care must be exercised in applying the standard
theory of thermal noise in the low-frequency domain. Indeed,
much of the published theory includes approximations relevant
to higher frequencies [4,5,16] and requires modification in
order to be applicable at low frequency. It is also far from clear
what boundary conditions should apply in situations where the
coherence length of thermal fluctuations is large compared to
the fiber diameter, such as occurs at very low frequencies. In
addition, recent questions have been raised as to the possible
role of internal damping in driving thermal noise in fiber [2].

A fiber-optic strain sensor measures changes to the optical
path length or transit phase of a cavity. Analysis of thermal
noise usually begins with the assumption that the optical path
length at any instant in time is fully characterized by a set
of temperature-dependent material and geometric parameters
[4,5,16,17]. More specifically, it is assumed that the change in
optical path length in a section of fiber of length L due to a
change in temperature �T may be written in the form

�φ = nkLξ�T, (1)

where n is the refractive index of the fiber, k is the free-
space wave number, and ξ = n−1dn/dT + αe is an empirical
coefficient characterizing the temperature dependence of n and
L (αe is the coefficient of thermal expansion of the fiber). The
spectrum of thermally induced phase fluctuations Sφ(f ) may
then be written

Sφ(f ) = (nkLξ )2SL(f ), (2)

where SL(f ) is the power spectral density of temperature
fluctuations in a section of fiber of length L. From this point of
view, the discussion of thermal noise can be reduced to that of
temperature fluctuations in lengths of fiber. Strictly speaking,
(1) applies to transitions between equilibrium states. To apply
it to fluctuations about thermal equilibrium (or pseudoequi-
librium in the case of Ref. [4]) requires a careful definition
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of �T and an implicit assumption that the parameters n and
αe depend only on the instantaneous internal energy of the
material within the optical cavity.

An alternative approach to studying thermal noise, widely
applied in free-space interferometry [12,14], involves using the
fluctuation-dissipation theorem [18] to directly calculate the
fluctuation spectra of mechanical degrees of freedom driven by
internal dissipation mechanisms (i.e., friction). This approach
has recently been applied in the optical fiber domain by Duan
[2], who calculated the length fluctuation spectrum of a one-
dimensional fiber with complex Young’s modulus to obtain a
thermomechanical explanation of low-frequency 1/f noise.

Note that fluctuations of this type are not equivalent to
temperature fluctuations, as may be seen by considering a
scenario where the fiber is thermally isolated from the external
environment. In that situation, the total energy (and hence tem-
perature) remains constant, but individual mechanical modes
fluctuate as they exchange energy with other internal degrees
of freedom (via friction). Further insight may be gained
by looking at temperature fluctuations from the viewpoint
of the fluctuation-dissipation theorem. The temperature (or
equivalently energy) can be shown to obey a Langevin equation
with dissipation occurring via thermal conduction through the
boundary [13], as distinct from thermomechanical fluctuations
which are driven by internal damping. To make this distinction
explicit, we shall henceforth denote the noise spectra (2)
associated with temperature fluctuations as thermoconductive
noise. Note that this type of noise is often referred to as
thermorefractive noise in the literature [11,13,14].

The current paper is an attempt to clarify the low-frequency
thermoconductive theory of thermal noise in an optical fiber
and to provide theoretical predictions that may be critically
tested against experimental data at frequencies below 100 Hz.
In Sec. II we introduce a Green’s-function approach which
enables an arbitrary uniform boundary condition to be incorpo-
rated at the cladding boundary. We derive exact series solutions
for the temperature spectrum SL(f ) at thermal equilibrium
under both ideal insulating and ideal conducting boundary
conditions. In Sec. III we derive approximate closed-form
solutions which help clarify the physical interpretation of the
spectrum, and in Sec. IV we examine asymptotic power-law
behavior in the low-frequency limit. In Sec. V the theory is
extended to active (laser) cavities, where an additional “1/f ”
contribution needs to be added to account for nonequilibrium
processes. We conclude with a discussion in Sec. VI.

II. THE EQUILIBRIUM THERMAL
FLUCTUATION SPECTRUM

We define the instantaneous temperature T by the relation
T = u/cv , where u is the internal energy per unit volume
and cv is the specific heat. In this way we may identify
energy fluctuations at thermal equilibrium with instantaneous
temperature fluctuations.

To calculate the spectrum of temperature fluctuations in
an optical fiber at thermal equilibrium we begin with the
inhomogeneous heat equation [19]

∇2T − cv

κt

Ṫ = ∇ · h
κt

, (3)

where κt is the coefficient of thermal conductivity and h is
a random heat current (the so-called Langevin source) which
acts as a source of energy fluctuations within a given material
element. We shall assume that the material parameters cv and
κt are uniform throughout the fiber. Strictly speaking, the fiber
core and cladding have slightly different material properties
due to the presence of index-modifying dopants in the core;
however, it is reasonable to assume that these dopants make a
negligible contribution to thermal diffusion.

Rather than solving (3) directly, we shall begin by calculat-
ing a Green’s function G(t,r,r ′). This will enable appropriate
boundary conditions to be incorporated. Thus we consider the
equation

∇2G − cv

κt

Ġ = −δ(t)δ3(r − r ′). (4)

Taking the Fourier transform with respect to the time coordi-
nate gives

(∇2 − ik̃2)G(ω,r,r ′) = −(2π )−1δ3(r − r ′), (5)

where k̃ = √
cvω/κt and ω is the (angular) frequency. It is

also convenient to decompose the ∇2 operator into its axial
and tangential parts, ∇2 = ∇2

⊥ + ∇2
z , where

∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
, (6a)

∇2
z = ∂2

∂z2
. (6b)

We assume an infinitely long, uniform cylindrical fiber of
radius R; then the solution may be expressed in terms of the
infinite series expansion:

G =
∑
m,l

ψlm(r,θ )flm(z,r ′), (7)

where m and l are non-negative integers and ψlm constitute
a complete orthonormal set of eigenfunctions satisfying the
eigenvalue equation

(∇2
⊥ + k2

lm)ψ = 0 (8)

along with an appropriate boundary condition at r = R. The
orthonormality condition may be expressed as

∫ R

0

∫ 2π

0
rψlmψl′m′drdθ = δll′δmm′ . (9)

Substituting Eqs. (7) into (5), multiplying by ψlm, and
integrating over the fiber cross section give(∇2

z − p2
lm

)
flm = −(2π )−1ψlm(r ′,θ ′)δ(z − z′), (10)

where plm =
√

ik̃2 + k2
lm. Thus, in terms of the axial wave-

number (Fourier space) representation,

flm(kz,r ′) = ψlm(r ′,θ ′)glm(kz,z
′), (11)

where

glm = e−ikzz
′

(2π )2
(
k2
z + p2

lm

) , (12)
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or, taking the inverse Fourier transform with the help of
Cauchy’s residue theorem,

glm(z − z′) = e−plm|z−z′ |

4πplm

. (13)

Note from Eqs. (7) and (11) the important symmetry relation
G(ω,r,r ′) = G(ω,r ′,r).

It remains to solve (8) to obtain the eigenvalues klm

and eigenfunctions ψlm(r,θ ). The general solution to the
two-dimensional Helmholtz equation (8) with radial boundary
conditions is

ψlm(r,θ ) = AlmJl(klmr) cos[l(θ + θ0)], (14)

where θ0 is an arbitrary constant, Jl are the Bessel functions
of order l [20], and the eigenvalues klm and normalization
coefficients Alm are determined by the appropriate boundary
conditions. For example, if ideal conductive boundary con-
ditions are imposed at r = R, then we have ψlm(R,θ ) = 0,
which yields the transcendental equation for klm,

Jl(klmR) = 0, (15a)

for which the normalization constraint yields

Alm = εl√
πRJ ′

l (klmR)
, (15b)

where εl equals 1 for l = 0 and
√

2 for l > 0. Note that (15a)
defines an infinite number of solutions for any given l (one for
each value of the m index), with successively larger solutions
corresponding to successive values of m. The index l may be
thought of as the angular mode number, while m labels radial
modes.

Similarly, insulating boundary conditions (vanishing heat
flow at the boundary) yield

J ′
l (klmR) = 0 (16a)

Alm = εlklm

√
π

(
k2
lmR2 − l2

) 1
2 Jl(klmR)

. (16b)

Insulating and conducting boundary conditions might be
considered two ideals which represent the extremes of thermal
behavior at the boundary, and we shall focus on these cases
below. Another important case, which has proven useful for
generating exact solutions, occurs when the thermal properties
of the external material are perfectly matched to that of the
cladding. Since the boundary becomes invisible to the thermal
fluctuation, this is equivalent to an infinitely thick cladding;
i.e., R → ∞.

Having calculated the correct Green’s function, the solution
to Eq. (3) may now be expressed (in the frequency domain) as

T (ω,r) = −2π

κt

∫
G(ω,r,q)∇q · h(ω,q)d3q, (17)

where the integral is taken over the extent of the fiber and the
∇q operator acts on functions of q = (qx,qy,qz). Integrating
by parts and ignoring the boundary term (which vanishes
identically under ideal insulating or conducting conditions)
yields the more convenient expression

T (ω,r) = 2π

κt

∫
∇qG(ω,r,q) · h(ω,q)d3q. (18)

Our objective is to calculate the correlation function of T . To
do this we make use of the following result from the theory of
fluctuations [19]:

〈hi(ω,r)h∗
j (ω′,r ′)〉 = κtKT 2

π
δij δ(ω − ω′)δ3(r − r ′), (19)

where K is Boltzmann’s constant, from which it easily follows
that

〈T (ω,r)T ∗(ω′,r ′)〉 = 4πKT 2

κt

δ(ω − ω′)F (ω,r,r ′), (20)

where

F (ω,r,r ′) =
∫

∇qG(r,q) · ∇qG
∗(r ′,q)d3q (21)

= (2π )−1G(r,r ′) + ik̃2
∫

G(q,r)G∗(q,r ′)d3q,

(22)

where the frequency dependence of G has been suppressed
for notational convenience. Equation (22) was obtained from
Eq. (21) using integration by parts to obtain a ∇2G∗ term in the
integrand (and a boundary term which shall be equated to zero),
followed by substitution of the complex conjugate of Eq. (5).
Now, it is intuitively obvious (and may readily be shown) that
F should be symmetric with respect to the interchange of r
and r ′. Using this fact, it follows from Eq. (21) that F is real.
Taking the real part of Eq. (22) and making use again of the
symmetry with respect to r and r ′ and of the fact that k̃2 is
real, we obtain a remarkable simplification:

F (ω,r,r ′) = (2π )−1Re[G(r,r ′)]. (23)

The solution may be expressed explicitly in terms of the
orthonormal basis:

F = (2π )−1
∑
lm

ψlm(r,θ )ψlm(r ′,θ ′)Re[glm(z − z′)]. (24)

The instantaneous temperature T (ω,r) at each point r is
defined in terms of local fluctuations in energy density at that
point. The instantaneous temperature of a finite section of fiber
is derived by averaging over the mode volume. From Eq. (20)
we obtain, for a section of fiber of length L,

〈T (ω)T ∗(ω′)〉L = 4πKT 2

κtL
δ(ω − ω′)F̃ (ω), (25)

where

F̃ (ω) = L−1
∫

rr ′M(r)2M(r ′)2F (ω,r,r ′)drdr ′dθdθ ′dzdz′,

(26)

where M(r) is the mode-amplitude profile. This integral
includes a z-dependent part,

L−1
∫ L

0

∫ L

0
dzdz′Re[glm(z − z′)]

= Re

[
1

2πp2
lm

(
1 − (1 − e−plmL)

Lplm

)]
. (27)

The last term in brackets is a boundary term of order (plmL)−1.
This term may usually be considered small; however, we note
that for the special case of insulating boundary conditions
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k00 = 0, which gives p00 ∝ k̃. In this case and only this case,
the boundary term diverges as ω−1/2 in the low-frequency limit.
Ignoring this pathological situation for the moment, we shall
assume that the boundary term is small and may be ignored to
leading order, yielding, upon integration of Eq. (26),

F̃ (ω) = 1

4π2

∑
m

�2
m

k2
0m(

k̃4 + k4
0m

) , (28)

where

�m =
∫

rM(r)2ψ0m(r,θ )drdθ. (29)

Note that, as would be expected for a uniformly distributed
heat source, all the higher-order angular modes dropped out
due to their periodicity with respect to θ . Let us assume a
Gaussian profile M2 � 2 exp(−2r2/a2)/πa2, where a is the
mode radius; then �m may be evaluated exactly:

�2
m = A2

m0e
−k2

0ma2/4. (30)

Substituting Eqs. (30) into (28) and using the explicit
mode-amplitude expressions (15) and (16) for conducting
and insulating boundary conditions, respectively, noting the
identity J ′

0(x) = −J1(x), we obtain the general expression

F̃ (ω) =
∑
m

k2
me−k2

ma2/4

4π3R2J 2
ν (kmR)

(
k̃4 + k4

m

) , (31)

where we have introduced the abbreviated notation km = k0m

and ν equals 0 or 1 for insulating or conducting boundary
conditions, respectively. The modal wave numbers km satisfy
the appropriate algebraic constraint (15a) or (16a).

To complete the calculation we need to relate the frequency
domain correlation function (25) to the power spectral density.
For any stationary process α with correlation function of
the form 〈α(ω)α∗(ω′)〉 = F (ω)δ(ω − ω′) the two-sided power
spectral density Sα(f ) may be defined as 2π times the
argument of the δ function [21]. By inspection of Eq. (25)
we thus have

SL(f ) = 8π2KT 2

κtL
F̃ (2πf ), (32)

where f = ω/2π and F̃ is given by Eq. (31). Figure 1 shows
the theoretical phase fluctuation spectrum of a 1-m fiber from
0.1 Hz to 10 kHz with insulating, conducting, and infinite-
cladding conditions. The infinite cladding case was calculated
using the formulas derived in Ref. [5]. The insulating boundary
condition curve agrees with the commonly applied Wanser
theory [17] to within 1 dB. The fiber parameters used in the
calculations are shown in Table I.

Observe that the dependence on boundary conditions is
relatively weak overall. Note also that for frequencies above
about 200 Hz the spectrum is completely insensitive to
boundary conditions. This may be heuristically understood
as follows: From Eq. (5) we expect the correlation length of
thermal fluctuations to be roughly equal to the inverse of k̃,

Lc ∼ k̃−1 = 3.6 × 10−4

√
f

.

Thus at 200 Hz we get Lc ∼ 25 μm, which is roughly half
the cladding radius. At higher frequencies most fluctuations
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FIG. 1. Theoretical rms phase fluctuation spectra at thermal
equilibrium assuming insulating (solid curve), conducting (dashed
curve), and infinite-cladding (dot-dashed curve) boundary conditions.
The dashed curve is the residual contribution from the k00 mode with
insulating boundary conditions derived in Sec. IV.

decay before reaching the cladding boundary and therefore
never “see” the boundary conditions. At low frequencies the
correlation length becomes comparable to, or greater than, the
cladding diameter, which is why boundary conditions become
important in this domain. Although all this is intuitively
obvious, it is not transparent from Eq. (31). It is also far from
obvious that letting R tend to infinity in Eq. (31) will give
an equivalent result to the infinite-cladding case derived in
Ref. [5] (it does). It is worth examining this expression more
closely, as will be done in the next section.

III. CLOSED-FORM APPROXIMATIONS TO F̃

Let z(0)
m and z(1)

m be the (m + 1)th zeros of J ′
0(z) and J0(z),

respectively. Then km = z(ν)
m /R, and we may rewrite (31) in

the form

F̃ (ω) =
∑
m

z(ν)2
m e−z

(ν)2
m a2/4R2

4π3J 2
ν

(
z

(ν)
m

)(
R4k̃4 + z

(ν)4
m

) . (33)

TABLE I. Fiber parameters used in calculations.

Symbol Name Value

a mode field radius 2.5 μm
R cladding radius 62.5 μm
L fiber length 1 cm
n refractive index 1.457
k wave number 6.6 × 103 cm−1

ξ thermo-optic coefficient 7 × 10−6 K−1

T temperature 293 K
K Boltzmann’s constant 13.81 ×10−24 J K−1

cv specific heat of silica 1.67 × 106 J m−3 K−1

κt thermal conductivity of silica 1.37 W (mK)−1

Q non-Langevin source strength 8.3 × 10−8 J2 m−3 s−1
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It becomes apparent that F̃ is determined by just two
dimensionless parameters: k̃R ≡ R/Lc and R/a. For the case
of insulating boundary conditions (ν = 0), the first zero is at
the origin (i.e., z

(0)
0 = 0). If follows from Eq. (33) that this

mode makes no contribution to F̃ [Recalling the discussion
immediately following (27) this should raise concerns, but
we shall press on for now]. The first nontrivial zero is
z

(0)
1 = 3.83 and for m > 1 we may apply the asymptotic

approximation z(0)
m � π (m + 1/4). Similarly, for conducting

boundary conditions we have z(1)
m � π (m + 3/4) for m > 0.

Also, for m > 1, Jν(z(ν)
m ) � ±

√
2/πz

(ν)
m [20]. Thus we may

write

F̃ (ω) � z
(ν)2
1 e−z

(ν)2
1 a2/4R2

4π3J 2
ν

(
z

(ν)
1

)(
R4k̃4 + z

(ν)4
1

)

+
∞∑

m=2

Re

[
me−π2m2a2/4R2

8π (R2ik̃2 + π2m2)

]
, (34)

where we have expanded each element of the infinite sum into
its complex factors and have changed the labeling convention
slightly to denote by z

(ν)
1 the first nontrivial zero. Notice that

the details of the boundary conditions reside entirely within the
first term. The rest of the expression depends on the boundary
through the cladding radius R but is insensitive to the specific
boundary conditions. Rather than evaluating this sum exactly,
we approximate it by a continuous integral [22]; i.e., we write
F̃ = F1 + F∞, where F1 is the first term in Eq. (34) and

F∞ � π−3Re

[ ∫ ∞

ξ=πa/R

ξe−ξ 2

2(a2ik̃2 + 4ξ 2)
dξ

]

= 1

16π3
Re

[
eia2 k̃2/4E1

(
π2a2

R2
+ ia2k̃2

4

)]
, (35)

where E1 is the exponential integral function [20]. This
expression tells us everything we need to know. First, in the
limit R → ∞ the R-dependent term vanishes, and the resulting
expression is identical to the spectrum derived in Ref. [5] under
the infinite-cladding conditions. As was shown in that paper,
the expression simplifies significantly in the low-frequency
regime, and we get

F̃ � F1 − 1

32π3
ln

(
π4a4

R4
+ a4k̃4

16

)
− γ, (36)

where γ = 0.577 is Euler’s constant. From this, we can readily
see that the necessary condition for the boundary to influence
the thermal spectrum is k̃R < 2π , which confirms our earlier
heuristic result.

IV. THE k00 MODE WITH INSULATING
BOUNDARY CONDITIONS

It has already been noted that the first zero of J ′
0 equals zero,

and thus, according to Eq. (31), the k00 mode with insulating
boundary conditions makes no contribution to the thermal
spectrum. However, from (13) the corresponding Green’s
function G00 diverges as 1/k̃lm ∼ 1/

√
f in the low-frequency

limit. It consequently follows from Eqs. (20) and (23) that the
k00 mode dominates the thermal correlation function at low

frequency. Indeed in the low-frequency limit

〈T (ω,r)T ∗(ω′,r ′)〉 � 4πKT 2

κt

δ(ω − ω′)F (ω,|z − z′|), (37)

where

F (ω,r) = e−k̃r/
√

2 cos(k̃r/
√

2 + π/4)

8π3R2k̃
, (38)

which diverges in the limit as 1/
√

f . It seems remarkable that
the mode that dominates the local thermal fluctuations does
not even appear in the spectral density. The solution to this
apparent anomaly lies in the integral over z − z′ (27). Since
the leading-order term vanishes by virtue of p2

lm being purely
imaginary, we can no longer ignore the boundary term, which
gives a residual nonzero contribution,

F̃00 = 1 − √
2e−k̃L/

√
2 cos(k̃L/

√
2 − π/4)

4
√

2π3LR2k̃3
, (39)

which must be added to F̃ in Eq. (32) to obtain the correct
spectrum at sufficiently low frequency. Note that this term only
applies for the case of ideal insulating boundary conditions
since these are the only boundary conditions that support a zero
eigenvalue mode k00 = 0. Physically, this mode corresponds
to pure one-dimensional diffusion of heat along the z axis.
Thus, no heat diffuses across the boundary at r = R. As soon
as diffusion through the boundary (conduction) is allowed, this
mode is eliminated.

Letting k̃L → 0, we obtain the asymptotic expression

F̃00|kL�1 = L

8
√

2π3R2k̃
, (40)

which diverges as 1/
√

f . Equation (40) is equivalent to
the thermoconductive noise spectrum previously derived for
dielectric mirror coatings [13]. In this regime, thermal fluctua-
tions are correlated over the entire cavity and the temperature
may be considered uniform within the cavity. Physically,
this can be understood as the adiabatic regime where the
rate of change of the total energy is slow compared to the
internal diffusion rate. The cavity passes through a succession
of quasiequilibrium states as thermal energy is exchanged
with neighboring fiber sections. It is perhaps worth observing
that this is the only regime where the empirical relation (1)
may be applied in its strict quasistatic sense (notwithstanding
the fact that the thermoconductive theory is well established
experimentally at higher frequencies [6,15,23]).

For a 1-cm cavity, k̃L < 1 corresponds to f < 10−3 Hz,
so the asymptotic behavior (40) is not really observable even
for very short cavities. At all measurable frequencies k̃L � 1,
and we may use the simplified expression for F̃00:

F̃00 = 1

4
√

2π3LR2k̃3
, (41)

which goes as f −3/2. In this regime, the correlation length is
small compared to L but still large compared to R. Since
k̃−1 � 1 at measurable frequencies, F̃00 may generally be
expected to be a small correction. From Fig. 1 it may be
seen that for the parameters in Table I F̃00 is not measurable
above 2 Hz; however, by 0.5 Hz it results in a noise excess of
approximately 3 dB.
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V. EXCESS NOISE IN LASER CAVITIES

Our calculations so far have dealt with thermal fluctuations
under conditions of thermal equilibrium. The situation in
“active” laser cavities is somewhat more complicated due to
the presence of nonequilibrium processes. Experimentally, it
has been established that thermal noise in laser cavities exceeds
the equilibrium thermodynamic limit at frequencies below a
few kilohertz, where it is dominated by an approximate 1/f

spectrum [23,24]. To understand this phenomenon we add an
additional source term to the classical diffusion equation [4]:

∇2T − cv

κt

Ṫ = ∇ · h
κt

− j

κt

, (42)

where the non-Langevin source j represents random fluctu-
ations in the rate of heat production per unit volume within
the material. It has been proposed that these fluctuations arise
from minute entropy changes that occur during spontaneous
emission events in the excited gain medium [4]. Like h, j is
assumed to be uncorrelated in space and time:

〈j (ω,r)j ∗(ω′,r ′)〉 = Q

2π
δ(ω − ω′)δ3(r − r ′) (43)

for some temperature-dependent source strength Q. The value
of Q used in our calculations (see Table I) is estimated
empirically from measurements of 1/f frequency noise in
DFB fiber lasers. In Ref. [4] it is argued that Q ∝ (KT N )2,
where N is the density of active ions.

If we write the total temperature fluctuation as T = Te +
Ta , where Te is the “equilibrium” fluctuation resulting from h
and Ta is the active fluctuation due to j , then, proceeding in the
same way we did for the Langevin source, we may construct
Ta from the Green’s function:

Ta(ω,r) = 2π

κt

∫
G(ω,r,q)j (ω,q)d3q, (44)

where the subscript a stands for active. Taking the correlation
function, using (43),

〈Ta(ω,r)T ∗
a (ω′,r ′)〉 = 2πQ

κ2
t

δ(ω − ω′)Fa(ω,r,r ′), (45)

where

Fa(ω,r,r ′) =
∫

G(r,q)G∗(r ′,q)d3q (46)

= −(2π )−1Im

(
G(r,r ′)

k̃2

)
. (47)

Integrating over the spatial variables, we get, once again,

〈Ta(ω)T ∗
a (ω′)〉L = 2πQ

κ2
t L

δ(ω − ω′)F̃a(ω), (48)

where

F̃a(ω) =
∑
m

e−k2
ma2/4

4π3R2J 2
ν (kmR)

(
k̃4 + k4

m

) . (49)

Note the key difference between this expression and (31) is the
absence of the km term in the numerator. As a consequence the
low-order modes make a proportionally larger contribution.
(In particular, for insulating boundary conditions, the k00 = 0
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FIG. 2. Theoretical rms phase fluctuation spectra for an active
fiber, assuming insulating (solid curve), conducting (dashed curve),
and infinite-cladding (dot-dashed curve) boundary conditions. The
dashed curve shows the thermal noise limit under equilibrium
conditions (with insulating boundary).

mode contributes a nonzero term, leading to a 1/f 2 divergence
at low frequency.)

If we relabel our original F̃ from Eq. (31) as F̃e, the
modified expression for the thermal fluctuation spectrum
becomes

SL(f ) = 8π2KT 2

κtL
F̃e(2πf ) + 4π2Q

κ2
t L

δ(ω − ω′)F̃a(2πf ).

(50)

Corresponding phase fluctuation spectrums for insulating,
conducting, and infinite-cladding boundary conditions are
shown in Fig. 2. Heuristically, the dramatic difference between
conducting and insulating boundary conditions is not surpris-
ing: Since the fluctuations arise from excess heat generated
within the fiber core, efficient transport of heat away from the
fiber reduces their influence. As with equilibrium fluctuations,
the various regimes of behavior are most transparent via an
analytic approximation. Using the same approach as in Sec. III
we may write

F̃a = Fa0 + Fa1 + Fa∞, (51)

where

Fa0 = (1 − ν)

4π3R2k̃4
(52)

is the 1/f 2 divergence, which manifests for insulating condi-
tions (ν = 0) only,

Fa1 = R2e−z
(ν)2
1 a2/4R2

4π3J 2
ν

(
z

(ν)
1

)(
R4k̃4 + z

(ν)4
1

) (53)

is the lowest-order finite term in the infinite series (49), and

Fa∞ � − 1

16π3k̃2
Im

[
eia2 k̃2/4E1

(
π2a2

R2
+ ia2k̃2

4

)]
. (54)
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At low frequency (k̃a � 1) this expression simplifies to

Fa∞ � 1

16π3k̃2
arctan

(
k̃2R2

4π2

)
, (55)

which in turn has two distinct regimes: For k̃R > 2π the arctan
function returns π/2 and Fa∞ � 1/(32π2k̃2), corresponding to
the classic 1/f behavior frequently observed in laser frequency
noise. This also accounts for the true 1/f behavior exhibited
by infinite cladding (R = ∞) solutions [4]. For k̃R � 1, Fa∞
approaches a finite limit

Fa∞ � R2

64π5
.

Note that this limiting value has a strong (R2) dependence
on the fiber diameter. This should be compared to the much
weaker ln R dependence on fiber diameter in Eq. (36). This
observation leads to a remarkable conclusion: By reducing the
diameter of the fiber by just a small amount, it is theoretically
possible to push the non-Langevin thermal noise level below
that of the conventional thermal noise. In other words, fiber
lasers can, in principle, achieve the absolute limit of resolution
imposed by equilibrium fluctuations.

VI. DISCUSSION

A comprehensive theoretical analysis of fundamental ther-
moconductive fluctuations in both passive and active optical
fiber cavities has been carried out. In particular, we have
clarified the low-frequency thermodynamic limits to cavity
phase measurements and have found analytic solutions for
simple boundary conditions at the fiber-cladding interface
including both conducting and insulating conditions. In the
case of insulating boundary conditions the predicted equi-
librium spectrum agrees with the commonly used Wanser
thermal noise limit [17] to within 1 dB so long as one
ignores the residual effect of the k00 = 0 mode. However,
from Eq. (41), this effect can become significant at very low
frequencies (below 2 Hz) and may be observable under certain
conditions.

Perhaps the most interesting result is the strong dependence
of excess noise in active cavities on thermal boundary condi-
tions. It is generally believed that the thermal noise in laser
cavities exceeds that of a passive cavity by greater than 20 dB
at 10 Hz. However, Fig. 2 shows that with ideal conducting
boundary conditions the theoretical noise converges to a finite
limit, which, for a standard single-mode fiber with a cladding

radius of 62.5 μm, exceeds the equilibrium thermal noise limit
by only a factor of 2. Furthermore, the smaller the cladding
diameter is, the lower the nonequilibrium noise is. For a
cladding radius of 25 μm the equilibrium and nonequilibrium
contributions are essentially equal.

From the phase spectral density (2) it is straightforward to
infer an equivalent strain spectral density from the relationship
φ � 0.8nkLε, where ε is strain and the factor of 0.8 arises
due to the strain-optic coefficient. For a 130-mm-long cavity
such as that used in Ref. [1], the theoretical thermal noise-
limited strain resolution is 2 × 10−14 Hz−1/2 at 5 Hz. Note
that this figure is much lower than the measured noise floor
of approximately 10−12 Hz−1/2 reported in Ref. [1], which
was claimed to represent the thermal noise limit. Detailed
objections to this claim have been reported elsewhere [6,25].
We note here that our analysis confirms that the resolution
reported in Ref. [1] did not approach the limit imposed by
equilibrium (thermoconductive) fluctuations.

It is noteworthy that (40) predicts a power law divergence
in low frequency thermal noise for a passive resonator
with insulating boundary conditions. Thus, it is not strictly
necessary to invoke a thermomechanical explanation for 1/f n

noise in passive optical fiber cavities [2]. 1/f n fluctuations may
be viewed as a natural feature of one-dimensional dissipative
systems. Temperature fluctuations become effectively one-
dimensional only when the correlation length k̃−1 is large
compared to the largest relevant dimension of the resonator
(in this case L). Therefore (40) only becomes manifest
at extremely low frequencies (<10−2 Hz). The fluctuation-
dissipation approach followed in Ref. [2] provides a means
of systematically investigating fluctuations of individual de-
grees of freedom, thereby yielding 1/f spectra that might
conceivably dominate in some frequency ranges depending
on the magnitude of the relevant frictional coefficient (loss
angle). For the LIGO (free-space) mirror cavities the various
dissipation mechanisms contributing to thermal noise have
been systematically investigated from this standpoint, and the
relative importance of different noise components in various
frequency regimes is believed to be well understood [14]. For
optical fibers, the respective roles of thermomechanical and
thermoconductive fluctuations at frequencies below 1 kHz
remain an open question [6]. Measurements of temperature
dependence of 1/f noise in DFB fiber lasers in the range
from 10 Hz to 100 kHz [23] indicate that Sφ ∝ T 2, which
is not consistent with thermomechanical noise. Thus, at
least for active cavities the existing evidence suggests that
thermoconductive effects dominate.
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