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Superfluid to normal phase transition in strongly correlated bosons in two and three dimensions
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Using quantum Monte Carlo simulations, we investigate the finite-temperature phase diagram of hard-core
bosons (XY model) in two- and three-dimensional lattices. To determine the phase boundaries, we perform
a finite-size-scaling analysis of the condensate fraction and/or the superfluid stiffness. We then discuss how
these phase diagrams can be measured in experiments with trapped ultracold gases, where the systems are
inhomogeneous. For that, we introduce a method based on the measurement of the zero-momentum occupation,
which is adequate for experiments dealing with both homogeneous and trapped systems, and compare it with
previously proposed approaches.
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I. INTRODUCTION

The description of strongly correlated bosonic systems is
of fundamental interest in largely diverse physical situations
ranging from low-temperature experiments with superfluid
helium [1] to Josephson-junction arrays [2], as well as
magnetic insulators [3] and ultracold gases in optical lattices
[4,5]. The latter systems offer an unparalleled playground to
study fundamental models widely considered in statistical and
condensed matter physics. This is because of the high degree
of control over the experimental parameters that determine
the Hamiltonian describing the system. In particular, the
Bose-Hubbard model [6,7] has been experimentally realized
in one [8], two [9,10], and three dimensions [11], where the
superfluid to Mott insulator transition has been observed.
Even though it has received less attention, the superfluid
to normal transition in the Bose-Hubbard model has been
investigated experimentally in three dimensions [12], while
in two dimensions it has been realized in the form of a
two-dimensional lattice of Josephson-coupled Bose-Einstein
condensates [13,14] as well as in experiments with ultracold
atoms in optical lattices [15].

Although experiments with ultracold atoms on optical
lattices are in some respects almost ideal realizations of
model Hamiltonians of interest, significant complications arise
because of the presence of a confining potential, which leads
to the coexistence of different phases in a single experimental
setup [16,17]. Furthermore, the mesoscopic size of the system
in combination with the inhomogeneity induced by the
trapping potential produces a rounding off of the otherwise
sharp features present in an infinite homogeneous system in the
critical region [18–21]. Thus the understanding and assessment
of criticality in such systems remains a challenging task.

The emergence of sharp features in the momentum distribu-
tion as obtained from time-of-flight images has been frequently
associated to the emergence of superfluidity [11,22–25].
However, this association may not be accurate because sharp
peaks in the momentum distribution already appear in the
normal state, due to an increasing correlation length when
approaching a critical regime [26–28]. More recently, new
schemes to detect criticality in trapped systems have been
proposed. In some of those studies, a detailed analysis of the
momentum distribution was used to define criteria that allow

one to extract reliable estimations of the critical points from
time-of-flight images [12,27,29]. In addition to time-of-flight
images, high-resolution in situ imaging of the density profile
of trapped systems has become a powerful instrument with
which one can also study phase diagrams of strongly correlated
systems and quantum criticality. Numerous theoretical and
experimental studies based on this idea have been carried out
for systems in the presence of an optical lattice [30–40] and in
the absence of it [41–44].

One important aspect that determines the nature of the
quantum phases and their associated order parameters is the
dimensionality d. Mermin et al. rigorously proved that at
any nonzero temperature, continuous symmetries cannot be
spontaneously broken in systems with sufficiently short-range
interactions in dimensions d � 2 [45,46]. This implies that, at
finite temperature, Bose-Einstein condensation (BEC) cannot
occur in one and two dimensions. Two-dimensional Bose
systems, however, are marginal in the sense that fluctuations
are strong enough to destroy the fully ordered state, but
are not so strong as to suppress superfluidity. Thus criti-
cal behavior develops in the Berezinskii-Kosterlitz-Thouless
(BKT) transition [47,48], where a superfluid phase with
quasi-long-range order competes with thermal fluctuations and
induces a continuous phase transition to the normal fluid as
the temperature is increased. In addition to low-temperature
superfluidity, long-range order can develop at zero temperature
in two dimensions. On the other hand, in three dimensions,
the superfluid transition is accompanied by the appearance
of true long-range order, implying that the system also
exhibits Bose-Einstein condensation. Such a transition, which
belongs to the three-dimensional XY universality class, is well
understood in the sense that the critical exponents have been
determined experimentally and theoretically with remarkably
high accuracy in many different physical contexts [49–55].

Here, we focus our study on the superfluid to normal
transition in a system of strongly interacting bosons in two-
and three-dimensional lattices. Specifically, we consider the
Bose-Hubbard model in the limit of infinite on-site repulsion,
i.e., the hard-core boson limit. We use exact quantum Monte
Carlo simulations to compute the finite-temperature phase
diagram as a function of chemical potential. Accurate results
are obtained through finite-size scaling of the condensate
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fraction and/or the superfluid stiffness obtained from our
simulations. We also determine the mean-field phase diagram,
which is qualitatively correct but quantitatively quite different
from the exact results. We then proceed to study the superfluid
to normal phase transition in two and three dimensions in the
presence of a confining potential, which is required to describe
experiments with ultracold gases. We introduce a method to
determine the critical temperature, for any given density, that is
based on the measurement of the zero-momentum occupation
as a function of temperature. This method is in principle
adequate for experiments dealing with both homogeneous and
trapped systems. Furthermore, we compare our approach to
other recently proposed schemes based on the in situ density
images [31] as well as on the shape of the low-momentum part
of the momentum distribution. [29]

The paper is organized as follows. In Sec. II, we introduce
the model and its phase diagram in two and three dimensions
supplemented with the mean-field calculations. Section III is
devoted to the discussion of the techniques to obtain the phase
boundaries. In Sec. IV, we discuss the possibility to have Bose-
Einstein condensation in trapped two-dimensional systems, as
well as the methods to determine the phase boundaries from
experimentally accessible quantities. Finally, in Sec. V, we
draw our conclusions.

II. MODEL AND PHASE DIAGRAM

We consider a system of hard-core bosons on a d-
dimensional lattice with Ld sites. The Hamiltonian can be
written as

Ĥ = −t
∑
〈i,j〉

(â†
i âj + H.c.) −

∑
i

μi n̂i , (1)

where â
†
i (âi) is the boson creation (annihilation) operator

at a given site i, and n̂i = â
†
i âi is the local particle-number

operator. The hard-core boson creation and annihilation
operators satisfy the constraint â

†2
i = â2

i = 0, which forbids
multiple occupancy of lattice sites. The first term in Eq. (1) is
the kinetic energy, where t is the hopping amplitude between
neighboring sites i and j (〈i,j 〉). In experiments involving
ultracold gases, a trap is required to confine the atoms. The
effect is taken into account in the second term that contains
μi = μ − V0r

2
i , where V0 is its strength and μ is the overall

chemical potential. ri is the distance from site i to the center
of the trap. In what follows, positions will be given in units of
the lattice spacing a and the energy will be given in units of
the hopping amplitude t .

We recall that the Hamiltonian in Eq. (1) can be exactly
mapped to the extensively studied quantum XY model [56],

Ĥ = −2t
∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j

) −
∑

i

μiS
z
i , (2)

where Sα
i is the αth component of the spin-1/2 spin operator

at site i. In the spin language, the term proportional to t

describes a ferromagnetic exchange interaction, while the one
proportional to μi describes a magnetic field in the z direction
at site i.

We study the Hamiltonian in Eq. (1), at finite tempera-
ture T , by means of the stochastic series expansion (SSE)
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FIG. 1. (Color online) Finite-temperature phase diagram in two
and three dimensions, and the mean-field (MF) prediction. In all
dimensions, the phase diagram contains a superfluid (SF) lobe
surrounded by the normal fluid (NF) phase.

quantum Monte Carlo (QMC) method with operator-loop
updates [57–59]. The determination of the phase diagrams
is carried out through a finite-size scaling of the condensate
fraction and/or the superfluid stiffness ρs using periodic
boundary conditions. The numerically exact (QMC) phase
diagram in two dimensions (2D) and three dimensions, as
well as the the mean-field predictions, are presented in
Fig. 1. The finite-temperature phase diagram comprises an
off-diagonal long-range-ordered (ODLRO) low-temperature
superfluid lobe (quasi-ODLRO in 2D) surrounded by a
high-temperature normal phase with exponentially decaying
correlation functions. The extend of the superfluid state is
expected to be hindered as dimensionality is reduced because
thermal and quantum fluctuations have a stronger effect in
low-dimensional systems. Clearly, our results agree with that
expectation. The dissimilarity between the mean-field and the
exact phase diagrams makes it clear that both thermal and
quantum fluctuations are strong and play an important role
even in three dimensions, where mean-field approaches are
generally considered to be a good approximation.

Details on the procedure to obtain the phase boundaries
are provided in the following sections. Such procedures are
different in two and three dimensions because of the different
universality class of the phase transition.

III. HOMOGENEOUS SYSTEMS

A. Two dimensions

Our results for the two-dimensional phase diagram in Fig. 1
are based on the fact that the model in Eq. (1) undergoes a
BKT transition as a function of the temperature. This phase
transition has been studied in great detail the context of
the two-dimensional quantum XY model in Eq. (2) in the
absence of a magnetic field [60–63]. Kosterlitz and Thouless
predicted that the superfluid stiffness ρs jumps from zero to
the value (2/π )Tc at the critical temperature. Thus we consider
measurements of the superfluid stiffness ρs for different
system sizes L as a function of temperature. Within the SSE
method, the superfluid stiffness is computed by measuring the
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FIG. 2. (Color online) (a) Superfluid stiffness in 2D for μ = 0
and several values of L. The error bars (not shown) are smaller than
the point size used in the plot. (b) Data collapse according to the
relation in Eq. (4). The inset in (b) shows the rescaled superfluid
stiffness vs T .

fluctuations of the winding number W [64]; they are connected
through the relation ρs = 〈W 2〉/2β, where β = 1/T is the
inverse temperature.

Figure 2(a) shows results for the superfluid stiffness of 2D
hard-core bosons at μ = 0 [or, equivalently, the spin stiffness
of the 2D XY model in Eq. (2)] as a function of T for several
system sizes. The observed slow approach of the superfluid
stiffness to the characteristic jump expected for the infinite
system is due to strong finite-size effects at the BKT transition.
Finite-size scaling relations for the superfluid stiffness can be
derived by integrating the Kosterlitz renormalization-group
equations (see, for instance, Refs. [63,65,66]). This procedure
yields

ρs(T ,L)π

2T
− 1 = c coth 2c (ln L + l0), T < Tc,

ρs(Tc,L)π

2T
− 1 = 1

2 (ln L + l0)
, T = Tc, (3)

ρs(T ,L)π

2T
− 1 = c cot 2c (ln L + l0), T > Tc,

where c measures the distance from the critical point and
l0 depends only weakly on temperature. Close to the critical
point, c ∼ √|T − Tc|. In the limit 2c (ln L + l0) � 1, a scaling
form for the superfluid stiffness based on Eq. (3) can be written
as

ρs(T ,L)π

T
− 2 = 1

ln L + l0
F [(ln L + l0)2(T − Tc)]. (4)

From Eq. (3) in the limit 2c (ln L + l0) � 1, F (x) = 1 −
(4/3) x. From Eq. (4), one can find the scaling func-
tion F and critical temperature Tc by computing xL =
(ln L + l0)2 (T − Tc) /t and yL = ρs(T ,L)π/T − 2 based on
our Monte Carlo simulations for different L and T . The
adjustment of the constant l0 and critical temperature Tc,
such that the data produce the best possible collapse, yields a
numerical estimate of the scaling function F and the critical
temperature itself. The result of the determination of the
scaling function F is reported in Fig. 2(b), where a plot of
yL as a function of xL is presented. Notice that, as expected,
the value of F is very close to one for xL = 0. Furthermore,
one expects from Eq. (3) that a plot of the rescaled superfluid
stiffness ρs(T ,L)∗ = ρs(T ,L)(1 + 1

2[ln L+l0] )
−1 as a function of

the temperature T should become system-size independent

at the critical temperature Tc. This observation is confirmed
in the inset of Fig. 2(b). Remarkably, those curves intersect
with the line (2/π )T right at the critical temperature, in
agreement with the BKT scenario. Our result Tc/t = 0.685 ±
0.001 is consistent with the best value reported in Ref. [63], for
which Tc/t = 0.6846 ± 0.0006 [67]. An analogous procedure
to the one just described is carried out for different values of
the chemical potential to complete the two-dimensional phase
diagram in Fig. 1. We should mention that Eq. (3) predicts
the value of the superfluid stiffness in an infinite system at
the critical temperature to be ρs (Tc) /Tc = 2/π . However, in
Ref. [68], it was shown that the superfluid stiffness at the
transition temperature is ρs (Tc) /Tc � 0.63650, which is very
close to the result based on Eq. (3) (2/π � 0.63662). Detecting
the difference is beyond the accuracy of the present study.

1. Critical value from dn0/dT

We now briefly discuss the behavior of the occupation of
the zero-momentum state (nk=0 ≡ n0) in the critical region
and address the determination of the transition temperature
from it. In a homogeneous and infinite 3D system, BEC
is identified by a macroscopic occupation of n0. However,
as mentioned before, thermal fluctuations in 2D destroy
Bose-Einstein condensation. Nonetheless, as the superfluid
transition is approached from the normal phase, n0 diverges
[see inset in Fig. 3(a)]. Indeed, from the Fourier transform
of the one-body density matrix in the long-distance limit
〈â†

i âi+r〉 ∝ r−1/4 exp (−r/ξ ), one can extract the behavior of
n0 as Tc is approached,

n0 ∼ ξ 7/4. (5)

We assume the essential singularity of the correlation length
ξ ∼ eb/

√
T −Tc , where b is a chemical-potential-dependent

scaling factor. From Eq. (5), it follows that not only does
n0 diverge at Tc, but also its derivative with respect to T ,

dn0

dT
∼ −ξ 7/4 ln3 ξ

b2
. (6)

In a finite system, when T is close to Tc, the role of the
correlation length is taken over by L when ξ � L. This occurs
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FIG. 3. (Color online) (a) Derivative of the zero-momentum
occupation n0 with respect to the temperature for different values
of L. The inset shows n0 vs T . (b) Finite-size scaling of the height
of the negative peak in dn0/dT . The continuous line is a fit to the
function g(L) = a0 + a1L

7/4 ln3(a2L). The inset shows the finite-size
scaling of T ∗ (L).
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at a characteristic temperature T ∗ (L) given by

T ∗ (L) = Tc + b′/ ln2 L, (7)

where b′ is a nonuniversal factor related to b. At that
temperature, the derivative in Eq. (6) scales with the system
size as

dn0

dT

∣∣∣∣
T ∗(L)

∼ −L7/4 ln3 L

b2
. (8)

Below T ∗(L), n0 cannot vary as fast as right above T ∗(L)
because the exponential increase of the correlation length
is truncated by L. Below T ∗(L), the variation of n0 comes
mainly from the temperature dependence of the anomalous
exponent, which is not as strong as the variation due to the
exponential behavior of the correlation length. Consequently,
dn0/dT should exhibit a sharp minimum at the size-dependent
temperature T ∗ (L). Moreover, in a finite system, n0 cannot
grow indefinitely as the temperature is lowered. With decreas-
ing temperature (T → 0), n0 must approach its (finite) T = 0
value, which implies that dn0/dT → 0.

Figure 3(a) depicts the derivative of the n0 for different
system sizes vs T . The divergence of dn0/dT is apparent. A
sharp minimum develops and its location T ∗ (L) approaches
Tc as the system size increases. This is expected from the
finite-size relation in Eq. (7). The scaling of the height of this
minimum is studied in Fig. 3(b), where we plot the absolute
value of dn0/dT |T ∗(L) vs L. The data follows the scaling
relation in Eq. (8), as made evident by a fit to the function
g(L) = a0 + a1L

7/4 ln3(a2L). In the inset in Fig. 3(b), we
show the finite-size scaling of T ∗ (L). We observe that T ∗ (L)
is consistent with the scaling relation in Eq. (7), which we
use to obtain the critical temperature in the thermodynamic
limit. We find Tc/t = 0.701 ± 0.007. This value is compatible
with the one found by performing the finite-size scaling of
the superfluid stiffness. While this approach is obviously less
accurate than the one discussed before for ρs , among other
things because a numerical derivative is involved, the fact that
it works extremely well is very important for current trapped
ultracold gas experiments where the superfluid density cannot
be measured.

We note at this point that in the determination of Eq. (8),
we have neglected multiplicative logarithmic corrections that
affect the behavior of the zero-momentum occupation and thus
its derivative with respect to the temperature [69,70]. In fact,
the exponent of the logarithm in Eq. (8) gets modified to

dn0

dT

∣∣∣∣
T ∗(L)

∼ −L7/4 ln3−2r L

b2
, (9)

with r = −1/16 (Ref. [70]). However, this correction does
not affect the determination of the critical temperature, which
is based on the location of the position of the peak in
the numerical derivative and the scaling relation in Eq. (7).
Furthermore, the correction to the exponent of the logarithm is
very small and, at least within the precision of our simulations,
its effect is hardly detectable.

B. Three dimensions

In order to determine the 3D phase diagram, we follow
the same procedure as in 2D. In 3D, however, the superfluid to

normal transition belongs to the 3D XY universality class. This
transition, for the model in Eq. (1), has also been studied using
QMC simulations in the past. Tc for BEC was evaluated as a
function of the density in Ref. [71]. The onset of magnetization
as a function of the magnetic field (or, in the bosonic language,
the density as a function of the chemical potential) was
investigated in Ref. [72]. Furthermore, the fate of the superfluid
phase under the effect of an additional ring-exchange term was
studied in Ref. [73]. Here, we determine the full phase diagram
(shown in Fig. 1) as a function of the temperature and the
chemical potential. We begin by considering measurements of
the superfluid stiffness. In d > 2 dimensions, as the critical
temperature is approached, the superfluid stiffness vanishes
continuously as [74]

ρs ∼ |Tc − T |(d−2)ν, (10)

where the exponent ν determines how the correlation length
diverges when approaching the critical temperature, i.e.,

ξ ∼ |T − Tc|−ν . (11)

As a result, at the critical temperature, the superfluid stiffness
scales with the linear size of the system as ρs ∼ L2−d . This,
in turn, allows one to write the scaling hypothesis for the
superfluid stiffness as a function of the system size and the
temperature as

ρsL
d−2 = F (|T − Tc|L1/ν), (12)

which we utilize to determine the critical temperature. In
Fig. 4(a), we show results for the superfluid stiffness in a
3D lattice vs T for different system sizes.

We numerically extract the scaling function F by studying
the rescaled superfluid stiffness [left-hand side in Eq. (12)]
vs the rescaled temperature (T − Tc)L1/ν . Classical Monte
Carlo simulations yield the correlation length exponent ν =
0.6717 ± 0.0001 [52], and ν = 0.6717 ± 0.0003 [53], which
we use to produce the collapse presented in Fig. 4(b). With ν

at hand, it is enough to fix Tc such that the best collapse of the
data is achieved. Furthermore, the inset shows the rescaled
superfluid stiffness as a function of temperature, which
becomes system-size independent at the critical temperature,
as implied by the scaling hypothesis in Eq. (12). Our best
estimation of the critical temperature for μ = 0 is Tc/t =
2.0169 ± 0.0005 (to be compared with Tc/t = 1.94 from
Ref. [71] and more recently with Tc/t = 2.016 ± 0.004 from
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FIG. 4. (Color online) (a) Superfluid stiffness of the 3D system
for μ = 0 and several values of L. (b) Data collapse according to the
relation in Eq. (12). The inset shows the rescaled superfluid stiffness
as a function of T .
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FIG. 5. (Color online) (a) Condensate fraction in 3D for μ = 0
and several values of L. (b) Data collapse according to the relation
in Eq. (14). The inset shows the rescaled condensate fraction as a
function of T .

Ref. [75]). We perform a similar analysis for different values
of the chemical potential to complete the three-dimensional
phase diagram in Fig. 1.

Additionally, since the superfluid to normal phase transition
in our model in 3D is accompanied by the emergence of true
long-range order, one can study the transition by computing
the condensate fraction f0 associated with the appearance of
BEC. Following Penrose and Onsager [76], the condensate
fraction is defined as the ratio of the largest eigenvalue of the
one-body density matrix to the total number of particles Nb.
For the system under consideration, condensation occurs to the
zero-momentum state due to translational invariance, thus the
condensate fraction is f0 = n0/Nb. The behavior of n0 can be
obtained from the Fourier transform of the one-body density
matrix in the long-distance limit, which in 3D is given by

〈â†
i âi+r〉 ∝ r−(1+η) exp (−r/ξ ) . (13)

Here, η is the correlation function exponent, also known as the
anomalous scaling dimension. On approach to Tc, n0 diverges
with the correlation length as [29]

n0 ∼ ξ 2−η. (14)

In a finite system, this relation implies that the condensate
fraction vanishes at the critical point as f0 ∼ L−(1+η), which
we adopt to formulate the following scaling hypothesis for the
condensate fraction:

f0L
1+η = F (|T − Tc|L1/ν). (15)

In the determination of Tc through the scaling relation in
Eq. (15), we use the value η = 0.0381 ± 0.0002 [52]. The
results are summarized in Fig. 5, where a plot of the condensate
fraction vs T is shown in panel (a). In Fig. 5(b), the data
collapse of the rescaled condensate fraction f0L

1+η vs the
rescaled temperature is apparent. Furthermore, in the inset,
one can observe that curves of the rescaled condensate fraction
vs T become system-size independent at Tc, as implied in
Eq. (15). This procedure results in a Tc/t = 2.0167 ± 0.0005
for μ = 0, which is in remarkably good agreement with our
previous estimate using the superfluid stiffness.

1. Critical value from dn0/dT

Similarly to the 2D case, dn0/dT diverges in the vicinity
of the superfluid to normal phase transition. It diverges with

the correlation length as

dn0

dT
∼ −ξ 2−η+1/ν . (16)

Also, as in 2D, in a finite 3D system at a temperature T ∗ (L)
close to Tc, the role of the correlation length is taken over by
L when ξ � L. The characteristic temperature T ∗ (L) is given
by

T ∗ (L) = Tc + c′/L1/ν, (17)

where c′ is a nonuniversal factor. At T ∗ (L), dn0/dT scales
with the system size as

dn0

dT

∣∣∣∣
T ∗(L)

∼ −L2−η+1/ν . (18)

Furthermore, in a finite system, dn0/dT reaches its minimum
value at T = T ∗ (L) because the divergence of the correlation
length can no longer be sustained. This is expected from the
behavior of n0 vs T , shown in the inset in Fig. 6(a), where n0

is first seen to increase as the temperature is lowered and then
to saturate as T → 0. The changes observed, dn0/dT , in that
low-temperature regime originate in the smooth dependence
of the correlation function exponent on the temperature, as
opposed to the fast change produced by the strong divergence
of the correlation length. Hence, once again, dn0/dT exhibits
a sharp minimum at the size-dependent temperature T ∗ (L) in
Eq. (17) and then goes to zero.

In Fig. 6(a), we display results for dn0/dT vs T for different
system sizes. The divergence in the derivative, anticipated by
Eqs. (16) and (18), is confirmed by the presence of sharp
minima that grow with system size. The finite-size scaling of
the height of the sharp minimum in Eq. (18) is presented in
Fig. 6(b), where we plot the logarithm of the maximum height
of |dn0/dT | vs ln L. According to Eq. (18), such a plot should
turn into a straight line with a slope given by m = 2 − η + 1/ν.
A fit of our data to the function g(ln L) = a0 + a1 ln L yields
a1 = 3.47 ± 0.01. The scaling relation given by Eq. (18) is thus
confirmed as our value of a1 is compatible with the exponents
from Ref. [52], which yield m = 3.450. The size dependence
of the position of the peaks anticipated in Eq. (17) is verified
in the inset of Fig. 6(b). Within this procedure, we find that
the critical temperature in the thermodynamic limit is Tc/t =
2.012 ± 0.002, which is in relatively good agreement with
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the one obtained through the finite-size scaling of both the
superfluid stiffness and the condensate fraction.

We conclude this section by mentioning that in determining
the critical temperature, we have used the leading scaling forms
and subleading corrections to scaling have been neglected.
For the 3D XY universality class, such corrections have
been reviewed in Ref. [77]. We note that in our calculations,
there is an excellent collapse of the data, which suggests
that the effects of the subleading corrections to scaling are
small. Furthermore, the most accurate results obtained for Tc

follow from completely independent measurements, i.e., the
superfluid and condensate fractions. They agree within the
error bars, which further supports the relevance of the scaling
relations used.

C. Mean field

To gain an understanding of the effects of quantum
fluctuations in our systems, we have also calculated the mean-
field phase diagram for this model. We utilize the standard
decoupling of the kinetic energy term in the Hamiltonian in
Eq. (1) [78],

â
†
i âj � â

†
i 	j + âj	

∗
i − 	∗

i 	j , (19)

where 	i = 〈âi〉 is the condensate order parameter, to be
determined self-consistently. The angle brackets denote the
usual thermal average. The above mean-field decoupling
allows one to write a mean-field Hamiltonian for Eq. (1) as

ĤMF = −t
∑
〈i,j〉

(â†
i 	j + 	∗

i âj − 	∗
i 	j ) + H.c. −

∑
i

μi n̂i .

(20)

For homogeneous systems, i.e., V0 = 0, Eq. (20) can be
recast in the following manner:

ĥMF = −2dt 	(â† + â) − μn̂, (21)

where ĥMF is the mean-field Hamiltonian per lattice site. Note
that in this case, the superfluid order parameter can be taken to
be real. The corresponding partition function at finite inverse
temperature β is

Z = 2e−β
μ

2 cosh β

√
μ2

4
+ (2dt 	)2. (22)

A self-consistency condition for the superfluid order
parameter can be derived by noting that

dZ

d	
= 4βdt〈â〉Z. (23)

Using the relation (23), we arrive at the equation that
determines the order parameter 	,√

μ2

4
+ (2dt 	)2 = dt tanh β

√
μ2

4
+ (2dt 	)2, (24)

which is valid whenever 	 > 0. We solve Eq. (24) numerically
and determine the superfluid region, 	 > 0, as a function of the
temperature and the chemical potential. The phase boundaries
are determined as the values of μ and T for which 	 → 0.
For μ = 0, Eq. (24) reduces to

2	 = tanh β 2dt 	, (25)

which is the equation that determines the mean-field magne-
tization of the Ising model in the absence of a magnetic field.
The critical temperature is, of course, Tc/td = 1, which is
quite different from the results of our quantum Monte Carlo
simulations in two and three dimensions.

IV. TRAPPED SYSTEMS

In experiments involving ultracold atoms, an additional
trapping potential is necessary to contain the gas. While a
qualitative (and sometimes a reasonably good quantitative)
description of the trapped system can be obtained within the
local density approximation (LDA) from the properties of the
homogeneous system, this approximation may break down in
regimes of interest. In particular, the latter occurs at criticality,
where the correlation length diverges and deviations from the
LDA description can be large [29]. Furthermore, as we explain
below, in trapped 2D systems care needs to be taken with
the application of the Mermin-Wagner-Hohenberg theorem.
Therefore, we focus our attention on those two aspects, namely,
the possibility to have BEC in the presence of an additional
external confining potential in 2D, and the study of criticality
in 2D and 3D.

A. Absence of BEC in interacting 2D systems

We mentioned in Sec. I that homogeneous 2D systems are
special because thermal fluctuations destroy any order at finite
temperature. However, harmonically confined noninteracting
bosons can undergo BEC at finite temperature [79]. In this
case, the arguments by Mermin et al. are not violated because
condensation does not occur to the zero-momentum state, but
to a single-particle eigenstate of the trapped system. One can
then wonder whether finite-temperature BEC persists in the
presence of interactions. By following analogous arguments to
those in Ref. [80], we show below that interactions do preclude
the formation of a condensate in the Bose-Hubbard model in
the presence of the trap. This is so because there is a close
connection between the formation of a condensate and the
macroscopic population of the zero-momentum occupation,
which is forbidden in 2D at finite temperature.

Generally speaking, the emergence of BEC is established
through the evaluation of the condensate fraction f0, which is
defined as the ratio of the largest eigenvalue of the one-body
density matrix nM to the total number of particles Nb,

f0 = nM

Nb

. (26)

If after taking the appropriate thermodynamic limit f0 remains
finite, then the system exhibits BEC. Otherwise, if it becomes
zero, there is no condensation [76].

Alternative forms of the criteria expressed through Eq. (26)
can be useful when the system is not spatially uniform; they
are based on the following inequality [76]:

n2
M �

∑
a

n2
a � nM

∑
a

na = nMNb, (27)
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where na are the eigenvalues of the one-body density matrix
ρij . We define the quantity

A2 = N−2
b

∑
i,j

|ρij |2, (28)

which is just a lattice version of its analogous quantity defined
on the continuum in Ref. [76]. It follows from Eqs. (27)
and (28) that

f 2
0 � A2 � f0. (29)

Therefore, if A2 remains finite in the thermodynamic limit,
then the system exhibits BEC. A further criterion can be
defined and it depends on the quantity

A1 = (NbL
d )−1

∑
i,j

|ρij |. (30)

Notice that (A1Nb/L
d )2 is the square of the mean value of the

function |ρij |, while A2(Nb/L
d )2 is the mean value of |ρij |2.

Since the variance of the function |ρij | is either positive or
zero, it follows that

A2
1 � A2. (31)

Now, since ρij is a positive-semidefinite Hermitian matrix, its
elements satisfy [76,81]

|ρij | � √
ρii ρjj � 1

2 (ρii + ρjj ) � αNb/L
d, (32)

where αNb/L
d is an upper bound of the local density ρii . By

summing over i and j in Eq. (32) and the square of it, we find
a lower bound for A1,

A2 � αA1. (33)

As long as the local density ρii remains finite throughout
the whole system, α can be taken to be finite and independent
of Nb/L

d . This, in turn, implies that if A1 > 0, then BEC
takes place; otherwise if A1 = 0, then no BEC occurs [76].
Notice that if ρij � 0, then A1 coincides with the ratio of the
zero-momentum occupation to the total number of particles,
i.e., the fraction of particles in the system that condenses to
the zero-momentum state. Since in two dimensions n0/Nb

vanishes because of the Mermin et al. theorem, A1 is zero too.
In the specific case of the Bose-Hubbard model in the presence
of an inhomogeneous potential in thermal equilibrium, we have
that ρij � 0. Furthermore, the density is finite everywhere
across the system because of the on-site interaction, implying
that A1 = 0.

Hence, even in the presence of the trap, there is no conden-
sation in the 2D Bose-Hubbard model at finite T . Note that this
argument does not preclude condensation in the noninteracting
limit, where the density can diverge at the minimum of the
inhomogeneous potential in the thermodynamic limit and BEC
can indeed occur to the lowest single-particle eigenstate, but
not to the zero-momentum state. Moreover, the criteria above
implies that for the Bose-Hubbard model in d > 2 in thermal
equilibrium, condensation to any state has to be accompanied
by condensation to the zero-momentum state.

In our proof, we have stated that for the Bose-Hubbard
model in thermal equilibrium, ρij � 0 holds. We now present
two independent arguments for why ρij � 0. The first one
is based on the fact that the matrix elements of the von

Neumann’s statistical operator in the position representation
are strictly positive [82]. Since the one-body density matrix
corresponds to a partial trace of the von Neumann’s statistical
operator [76], it follows that its elements are positive too.
A rather technical, but yet rigorous, argument is based on
the series-expansion representation of the one-body density
matrix that we used in our Monte Carlo implementation.
Within this representation, the measurements of the one-body
density matrix are based on the extension of the configuration
space where these off-diagonal quantities are well defined
[59]. In such extended space, the one-body density matrix
is represented as the sum of strictly positive matrix elements
(hence ρij � 0), which are, in turn, efficiently sampled during
the construction of the loop operators in the directed-loop
update algorithm [83].

B. Two dimensions

1. Local compressibility

Exactly as in the homogeneous system, even though there
is no condensation in 2D, a superfluid phase is expected
in the trapped system at low temperatures. Because of the
inhomogeneity introduced by the confining potential, the
coexistence of space separated normal and superfluid domains
can occur at intermediate temperature. In that case, there
must be a region in the trap where superfluidlike domains
transition into normal ones. Within the LDA, this region is
such that the local chemical potential μi coincides with the
critical μ of the bulk system for the normal to superfluid phase
transition.

Based on this idea, Zhou and collaborators proposed a
method to identify the phase boundaries of the homogeneous
system from a high-resolution scan of the local density ρ(r)
across the confined system [31]. This method requires the
determination of the local compressibility defined as

κdiff (r) = − 1

2V0r

dρ (r)

dr
, (34)

and relies on the expectation that the local density profile
ρ(r), as well as the local compressibility κdiff (r), can be
well approximated by their bulk values through the LDA.
The existence of sharp features in the local compressibility
at specific locations in the trap is then associated with
phase transitions occurring in the homogeneous system as a
function of the chemical potential. This method is expected
to be accurate in the limit of very shallow traps where
the contribution from density gradients due to the trapping
potential are small [84].

In Fig. 7, we present QMC results for the density profile
of a 2D trapped system, as well as the local compressibility,
as a function of the distance from the center of the trap. The
expected sharp features in the local compressibility due to
critical fluctuations are smoothed by finite-size effects. They
are replaced by a rounded maximum, which can be associated
with the superfluid to normal transition [84]. The location
of the maximum rc is connected to the critical chemical
potential through μc = μ − V0r

2
c . For the case in Fig. 7, we

get μc/t = −3.57 ± 0.03. This value is to be contrasted with
μc/t = −3.5, which we obtained in the homogeneous system
calculations. As T increases, however, the agreement between
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FIG. 7. (Color online) (a) Two-dimensional density at T/t =
0.2012 and a trapping potential V0/t = 0.0003, for μ = 0 in the
center of the trap. (b) The corresponding density profile ρ(r), as well
as the local compressibility κdiff (r), as a function of the distance
from the center of the trap r . All distances x, y, and r are measured
in units of a, while the local compressibility is measured in units
of 1/t .

the estimates of the critical chemical potential based on the
local compressibility and the results of the homogeneous
system worsens. For instance, for T/t = 0.4562, we find that
μc/t = 2.99 ± 0.04, as opposed to the homogeneous system
result where μc/t = 2.5. This occurs presumably because
closer to the tip of the superfluid lobe, critical fluctuations are
stronger, and thus larger violations of the LDA are expected.

2. Momentum distribution function

Another quantity that can be measured in experiments with
ultracold atoms is the momentum distribution function. At
fixed chemical potential (μ � 0), when lowering T , the normal
to superfluid crossover in the trapped system proceeds via the
creation and growth of a superfluid domain in the center of the
trap. (The rate of growth of the superfluid domain will depend
on the functional form and strength of the confining potential.)
Hence, the zero-momentum state becomes increasingly popu-
lated. As follows from the discussion for finite homogeneous
systems, it is expected that as T decreases and approaches
Tc for the normal to superfluid transition in the center of the
trap, the rate of growth of n0 will increase. Below Tc, on the
other hand, dn0/dT will eventually decrease because of the
finite extend of the system imposed by the confining potential.
If T is lowered well below Tc, then almost the entire system
will become superfluid and the observables will saturate their
(finite) zero-temperature values.

Hence, just as in the homogeneous case, one can attempt to
estimate Tc for the superfluid to normal phase transition for the
density in the center of the trap by measuring the temperature
at which the rate of change of n0 is extremal. This approach
provides an accurate estimate for the homogeneous system and
it is expected to be accurate in confined systems with shallow
trapping potentials. Figure 8(a) depicts the evolution of n0 vs T

as well as the inverse temperature β of a harmonically confined
2D system with V0/t = 0.0015 (L = 128) and μ = 0 in the
center of the trap. In Fig. 8(b), we show dn0/dT which, as
expected, exhibits a minimum located at T/t = 0.66 ± 0.02.
This temperature is compatible with the value of Tc/t obtained
for the homogeneous case where, after a finite-size scaling, we
obtained Tc/t = 0.685 ± 0.001. Our estimate derived from the
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FIG. 8. (Color online) (a) n0 as a function of T and β in a trapped
2D system with V0/t = 0.00125, μ = 0 in the center of the trap, and
L = 128. (b) Derivatives of n0 with respect to β and with respect
to T .

study of a single trapped system is about 4% off the value of
the homogeneous system.

One can perform the same analysis based on measurements
of n0, but now as a function of the inverse temperature β. In that
case, one expects a maximum in the derivative dn0/dβ instead
of a minimum. In general, for finite and not very large systems,
the position of such maximum βc will not coincide with 1/Tc

obtained from the minimum of dn0/dT . Overall, we find that
for the system sizes available to our QMC simulations, the
analysis based on dn0/dβ provides more accurate estimates
of the critical temperature than the one based on dn0/dT .
Furthermore, the maximum found in dn0/dβ is consistently
sharper and better defined with respect to the minimum found
for dn0/dT , which instead is shallower and broader, and thus
harder to detect and numerically less reliable.

Based on measurements of dn0/dβ presented in Fig. 8(b)
on the same system with V0/t = 0.0015 (L = 128), μ = 0,
we find Tc/t = 0.72 ± 0.02, which is also very close to the
critical temperature of the homogeneous system. When the
maximum is sharply defined, in the limit of very shallow
traps with large numbers of bosons, the two approaches are
expected to coincide (i.e., their difference is due to finite-size
effects). As a matter of fact, for the homogeneous 2D and 3D
systems in Sec. III, where the minima of dn0/dT are sharp,
we find that the analysis using dn0/dT and dn0/dβ yields
essentially the same results for Tc. In the Appendix, we provide
an analytic understanding of this in terms of a simple function.
Therefore, for the determination of the phase diagram based on
measurements in harmonically confined systems, we consider
only measurements based on dn0/dβ.

In Fig. 9, we summarize our results for the determination of
the critical parameters with the local compressibility as well
as with the derivative of the zero-momentum occupation with
respect to β, and contrast them with the phase diagram of
the homogeneous system. Clearly, all methods work well for
large values of μ/t and small values of Tc/t (equivalent to
approaching the continuum limit in a lattice system). Close
to the tip of the superfluid region, the method based on n0

performs much better than the one based on κdiff (r).
At the tip of the superfluid lobe, where the size effects

are expected to be the strongest, we observe that as the size
of the system is increased (or the strength of the trap is
decreased), keeping constant the chemical potential in the
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FIG. 9. (Color online) Estimate of the critical points based on the
local compressibility (black dots; based on a system with L = 256) as
well as the derivative of the zero-momentum occupation with respect
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the superfluid lobe, we include further results for different system
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L = 64; violet empty circle: L = 256). The phase diagram of the
homogeneous system is also shown.

center of the trap, the estimate of the critical temperature
decreases, approaching the result in homogeneous systems.

C. Three dimensions

We now turn our attention to the study of criticality in 3D
trapped systems. We make use of the same ideas developed for
2D system to extract the critical parameters, i.e., measurements
based on the zero-momentum occupation as well as on the local
compressibility.

Additionally, in 3D, we can utilize a method that is based on
the analysis of the shape of the central peak for the momentum
distribution. With it, one can construct a quantity that exhibits
a minimum at the critical point [29]. The idea behind this
method is that close to criticality, the momentum distribution
develops a bimodal structure whose evolution as a function
of temperature contains information about the formation of
a superfluid region in the center of the trap. At Tc, when a
superfluid domain begins to form, the major contribution to the
occupation of the zero-momentum state comes from regions
that are not critical, i.e., from regions that are far away from the
center of the trap. However, the derivatives of the momentum
distribution dmnk/dkm are critical, in the sense that they can
be understood in terms of an LDA integral that diverges at the
center of the trap, where the system is critical. Based on that
idea, the following quantity was devised in order to extract the
critical temperature [29]:

Q(T ) = (n0 − nkmax )(kmax)s , (35)

where kmax is the momentum at which |dnk/dk| is maximum
and the exponent s > 2 − η. In Ref. [29], it was shown that
Q(T ) should exhibit a minimum at the critical temperature Tc.

We plot Q(T ) vs T in Fig. 10(a). Q(T ) exhibits a minimum
at Tc/t = 2.04 ± 0.03. In the inset, we show the evolution
of the momentum distribution function as the temperature
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FIG. 10. (Color online) (a) The quantity Q(T ) as a function of
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inset. The exponent in Eq. (35) has been set to s = 3. (b) Derivatives
of n0 with respect to β and with respect to T . The three-dimensional
system is prepared with V0/t = 0.04, μ = 0, and L = 32.

of the system is reduced. This result is compatible with
the critical temperature found for the homogeneous system
Tc/t = 2.0169 ± 0.0005. In principle, similar ideas to the ones
presented in Ref. [29] could be used to devise a quantity Q(T )
to locate the critical parameters in 2D. In that case, however,
the structure of the momentum distribution is different because
the transition is in another universality class. As a result, the
LDA integrals for the central peak and the derivatives of the
momentum distribution get substantially modified. We find
that both the central peak and the derivatives of nk are critical
in 2D because the LDA integrals of those quantities diverge
in the center of the trap where the system is critical. Hence,
one cannot define a Q(T ), as done in 3D, that will exhibit a
minimum at Tc.

In Fig. 10(b), we also display results obtained for dn0/dβ

(dn0/dT ) in the same system. The temperature at which the
maximum (minimum) occurs for those quantities exhibits a
larger deviation from Tc, from the homogeneous case, than
Q(T ). However, with increasing system size, we find that the
maxima of dn0/dβ (minima of dn0/dT ) slowly approach the
homogeneous result. In experiments where the system sizes
are much larger than the ones studies here, we expect that
dn0/dT and dn0/dβ will both produce accurate results for Tc.

In Fig. 11, we present a summary of our estimates of
the critical parameters based on the local compressibility,
the derivatives of n0 with respect to β, and Eq. (35). The
method based on Q(T ) is found to be more accurate than
those based on dn0/dβ and the local compressibility. This
is understandable because the former approach uses precise
information of the nature and universality class of the transition
in 3D. Nevertheless, as argued before, we anticipate that if one
decreases the strength of the confining potential and increases
the number of bosons, as to reach the system sizes that are
studied experimentally, then dn0/dβ will provide accurate
results (at least similar to the ones obtained in 2D). This
effect is studied in Fig. 11 where we show the evolution of
the critical temperature at the tip of the lobe as a function
of system size. As the strength of the confining potential is
decreased and the size of the system is increased, the estimate
of the critical temperature based on dn0/dβ tends to increase
and approach Tc in the homogeneous system. The method
based on the local compressibility is found to be inadequate
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close to the tip of the lobe. This is because the maximum
of κdiff (r) becomes very broad and finite-size effects are
stronger. In that regime, one also needs a higher accuracy in
the determination of the density in order to accurately compute
the local compressibility. In spite of this, in 3D, the method
based on the local compressibility yields more accurate results
than in 2D (compare Figs. 9 and 11).

V. CONCLUSIONS

We have presented a detailed study of the finite-temperature
phase diagram of strongly correlated bosons in the hard-core
limit (or the XY model) in two and three dimensions. The
critical parameters in the homogeneous case were determined
through a finite-size scaling analysis of the superfluid stiffness
and the condensate fraction. We introduced an approach to esti-
mate the critical temperature from measurements of n0 in finite
systems. It makes use of the behavior of the derivative dn0/dT

and we derived finite-size scaling relations that can be used
to extrapolate the results to the thermodynamic limit. This ap-
proach can be applied to systems that exhibit a diverging zero-
momentum occupation in any dimension, irrespective of the
universality class to which the transition belongs. We showed
that this method is also accurate in 2D, where the system
does not exhibit BEC. Furthermore, we computed the phase
diagram using mean-field theory and found it to be quanti-
tatively quite different from the results of numerically exact
QMC simulations in 2D and 3D. Hence, for this model, thermal
and quantum fluctuations are strong even in three dimensions,
and mean-field theory is a poor approximation.

In the presence of an additional confining potential, we
proved that the Bose-Hubbard model does not exhibit finite-
temperature BEC in two dimensions, provided that density
remains finite across the entire system in the thermodynamic

limit. Moreover, we considered measurements of the critical
temperature and chemical potential of the homogeneous
system based on experimentally measurable quantities such
as the momentum distribution function and the local density
profile. The accuracy of each method discussed depends on the
dimensionality of the system and the range of temperatures
and chemical potentials considered. In two dimensions, we
found that the approach introduced in this work, based on the
derivatives of n0 with respect to β, is accurate in all regions
of the phase diagram. A method based on the measurement
of the local density was found to be reliable when Tc is low,
while close to the tip of the superfluid lobe this approach is
less effective, even when the trap is very shallow. This can be
understood to be due to the strong deviations from the LDA
close to the tip of the superfluid lobe. A quantitative account
of these deviations based on trapped finite-size scaling, as
presented in Ref. [85,86], would in principle allow one to
perform an accurate size-scaling analysis in the presence of
the confining potential, which might potentially improve the
capabilities of the methods based on the measurements of the
density profile. The accuracy of the latter method improves in
3D, but still remains inadequate as one approaches the tip of
the superfluid lobe. In three dimensions, the approach based
on Q(T ) was found to be the most accurate.
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APPENDIX: DIFFERENCES BETWEEN dn0/dT
AND dn0/dβ

We briefly illustrate, by means of a simple analysis, why the
estimate of the critical temperature based on dn0/dT differs
from the estimate based on dn0/dβ. We also discuss under
which conditions the two estimates should approach each
other.

We consider n0(β) to be the zero-momentum occupation
in the vicinity of βc. Its first derivative, which exhibits a
maximum at β∗, can be written as

dn0

dβ
= d0 + a(β − β∗)2, (A1)

where the curvature of the parabola is a < 0, the height of the
maximum is d0, and β is assumed to be very close to β∗. If
instead we now compute dn0/dT , we anticipate a minimum
of this function located at a temperature T ∗ = 1/β∗ given by

1

T ∗ =
3aβ∗ − |a|

√
β∗2 − 8d0

a

4a
. (A2)

In general, the position of the minimum as a function of T

depends on the position of the maximum β∗, its curvature a,
and its height d0. However, in the limit of very large system
sizes and very shallow traps, one expects the maximum of the
derivative dn0/dβ to be very sharp. In our simple example,
this regime corresponds to a large value of the curvature, i.e.,
|d0/a| � β∗2, which implies that T ∗ � 1/β∗.
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