
PHYSICAL REVIEW A 86, 043625 (2012)

Macroscopic quantum coherence in spinor condensates confined in an anisotropic potential
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We investigate the macroscopic quantum spin coherence of a spinor condensate confined in an anisotropic
potential. Under the single-mode approximation, we show that a spin-1 Rb condensate can be modeled as a
biaxial quantum magnet. A direct consequence of the biaxial anisotropy is that the tunneling splitting oscillates
as a function of the external magnetic field applied along the hard axis. We also propose an experimental scheme
to detect the oscillatory behavior of the tunneling splitting by employing the Landau-Zener tunneling.
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I. INTRODUCTION

Tunneling of a macroscopic variable into a classically
forbidden region provides one of the most striking manifes-
tations of quantum mechanics [1]. The model of quantum
tunneling often involves a particle moving in a multistable
potential. Quantum mechanically, there is a finite probability
for the particle to tunnel through the barrier and escape from a
metastable state to an absolutely stable one, which is often
referred to as macroscopic quantum tunneling (MQT). In
a symmetric double-well, the particle tunnels through the
barrier to oscillate back and forth between the degenerate
states, known as macroscopic quantum coherence (MQC).
Quantum tunneling removes the degeneracy of the ground
states, resulting in a tunneling splitting between the true ground
state and the first excited state.

Because of its small size and precise characterizability, the
single-molecule nanomagnet represents an ideal platform for
demonstrating the MQT and MQC of the spin [2–6]. For such
a system, MQT consists of tunneling of the magnetization out
of the metastable easy directions in the presence of an external
field, which was experimentally observed as a series of steps
in the hysteresis loops in Mn12-acetate and Fe8 molecules at
low temperatures [7–10]. MQC in spin systems represents the
resonance between two equivalent easy directions. Of partic-
ular interest, in the presence of a general biaxial anisotropy,
the spin has two preferred tunneling paths via the medium axis
when the external field is applied along the hard direction.
As a result, constructive and destructive interferences give
rise to oscillatory tunneling splitting [11,12], which is direct
evidence of the topological quantum interference of two
tunnel paths of opposite windings in magnetic molecular
clusters [13].

In the context of ultracold atomic gases, the MQC problem
was previously studied for a spinor condensate trapped in
a double-well potential, where the magnetic dipole-dipole
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interaction (MDDI) between the condensates confined in
different wells induces a uniaxial anisotropy, with the easy axis
being along the direction connecting two potential wells [14].
In fact, even in a single axially symmetric trap, a dipolar spinor
condensate can be treated as a uniaxial quantum magnet [15],
whose magnetic properties, spin squeezing, magnetization
steps, macroscopic entanglement generation, and MQC were
studied [16,17]. However, for a uniaxial quantum magnet,
the tunneling splitting of the model is a monotonically
increasing function of the transverse field strength [14].
The possibility of obtaining oscillatory tunneling splitting in
ultracold atomic gases was explored by considering a con-
densate coupled dispersively with an ultrahigh-finesse optical
cavity [18].

In the present work, we investigate the MQC of a spin-1
Rb condensate confined in a three-dimensional anisotropic
harmonic oscillator potential. Under the single-mode approx-
imation (SMA), we show that the interplay of the MDDI and
the anisotropic trap results in a biaxial quantum magnet whose
magnetic structure can be approximately specified by the
geometry of the trapping potential. Subsequently, we study the
MQC of the condensate by applying an external magnetic field
along the hard axis. We show that the tunneling splitting of our
system oscillates as a function of the field strength, similarly
to the molecular magnet,. Finally, utilizing the Landau-Zener
transition, we propose an experimental scheme to detect MQC
in spin-1 condensates by measuring the atom number in each
spin component.

This paper is organized as follows. In Sec. II, we derive
the Hamiltonian of the system under the SMA. In Sec. III,
the magnetic structure of the system is explored. Section IV
is devoted to the properties of MQC and its experimental
detection. Finally, we conclude in Sec. V

II. MODEL

We consider a trapped gas of N spin F = 1 Rb atoms
subjected to an external magnetic field B. Atoms interact via
s-wave collisions and the MDDI. In the second quantized form,
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the total Hamiltonian of the system reads [15]

H =
∫

drψ̂†
α(r)

[(
−h̄2∇2

2M
+ Vext(r)

)
δαβ − gF μBB · Fαβ

]
ψ̂β(r)

+ c0

2

∫
drψ̂†

α(r)ψ̂†
β(r)ψ̂α(r)ψ̂β(r) + c2

2

∫
drψ̂†

α(r)ψ̂†
α′ (r)Fαβ · Fα′β ′ψ̂β(r)ψ̂β ′ (r)

+ cd

2

∫
drdr′

|r − r′|3
[
ψ̂†

α(r)ψ̂†
α′(r′)Fαβ · Fα′β ′ψ̂β(r)ψ̂β ′ (r′) − 3ψ̂†

α(r)ψ̂†
α′ (r′)(Fαβ · e)(Fα′β ′ · e)ψ̂β(r)ψ̂β ′(r′)

]
, (1)

where ψ̂α is the field operator for the mF = α spin state, Vext is
the anisotropic confining potential, F is the angular momentum
operator, gF is the Landé g factor, and μB is the Bohr
magneton. The spin-independent and spin-exchange s-wave
collsions are characterized by c0 = 4πh̄2(a0 + 2a2)/(3M) and
c2 = 4πh̄2(a2 − a0)/(3M), respectively, with af =0,2 being
the scattering length of two spin-1 atoms in the combined
symmetric channel of the total spin f [19,20]. In particular,
we have c2 < 0 for Rb atoms, indicating that the spin-exchange
interaction is ferromagnetic. The strength of the MDDI is
cd = μ0μ

2
Bg2

F /(4π ), with μ0 being the vacuum permeability.
To proceed further, we adopt the SMA, which assumes that

atoms in different spin states share a common spatial mode
function φ(r). The field operators can then be decomposed
into [21]

ψ̂α(r) � φ(r)âα, (2)

where âα is the annihilation operator of the spin component
α. The validity of the SMA can be justified by noting that
c0 � |c2| and cd � 0.1|c2| for Rb atoms [22]. By substituting
Eq. (2) into Eq. (1) and dropping the constant terms, the total
Hamiltonian reduces to

H = (c′
2 − c′

d )Ŝ2 + 3c′
d Ŝ

2
z − 3c′′

d

(
Ŝ2

x − Ŝ2
y

) − gF μBB · Ŝ

+ 3c′
d â

†
0â0 + 3c′′

d (â†
−1â1 + â

†
1â−1), (3)

where Ŝ = ∑
αβ â†

αFαβaβ is the total many-body

angular momentum operator and Ŝη (η = x,y,z) is its
projection along the η axis, c′

2 = (c2/2)
∫

dr|φ(r)|4
is the strength of spin-exchange interaction, and the
strength of the MDDI is characterized by two parameters,
c′
d = (cd/4)

∫
dr dr′|φ(r)|2 |φ(r′)|2 |r − r′|−3 (1 − 3 cos2 ϑ)

and c′′
d = (cd/4)

∫
drdr′|φ(r)|2|φ(r′)|2|r − r′|−3 sin2 ϑ e2iϕ ,

with ϑ and ϕ being the polar and azimuthal angles of the
vector r − r′, respectively. It can be shown that c′′

d = 0 if
the mode function φ(r) possesses an axial symmetry [15].
One should note that the last line in Eq. (3) originates from
the commutation relations between the bosonic operators.

It is convenient to rescale the Hamiltonian, Eq. (3), by
using |c′

2| as the energy unit, which yields the dimensionless
Hamiltonian

H = H0 + H′, (4)

H0 = −3 + D

3
Ŝ2 − DŜ2

z + E
(
Ŝ2

x − Ŝ2
y

) − H · Ŝ, (5)

H′ = −Dâ
†
0â0 − E(â†

−1â1 + â
†
1â−1), (6)

where D = −3c′
d/|c′

2| and E = −3c′′
d/|c′

2| are, respectively,
the axial and transverse anisotropy constants and H =
gF μBB/|c′

2| is the strength of the external magnetic field. Ap-
parently, the Hamiltonian, Eq. (5), describes a biaxial quantum
magnet. More specifically, we assume that the mode function
is a Gaussian, φ(r) = π−3/4(qxqyqz)−1/2e− ∑

η=x,y,z η2/(2q2
η ), with

qη being the width of the condensate along the η direction. It
can be shown that

D(κx,κy) = −4πcd

|c2| κxκy

∫ ∞

0
dt te−(κ2

x +κ2
y )t2/2

× I0

(
1

2

(
κ2

x − κ2
y

)
t2

)
[2 − 3

√
π tet2

erfc(t)],

E(κx,κy) = −4π3/2cd

|c2| κxκy

∫ ∞

0
dt t2e−(κ2

x +κ2
y )t2/2

× I1

(
1

2

(
κ2

x − κ2
y

)
t2

)
et2

erfc(t),

where (κx,κy) ≡ (qx/qz,qy/qz) characterizes the shape of the
condensate, I0,1(·) is the modified Bessel functions of the
first kind, and erfc(·) is the complementary error function.
Figure 1 shows the values of D(κx,κy) and E(κx,κy) for a Rb
condensate. In particular, E(κx,κy) = 0 when κx = κy , and the
condensate becomes a uniaxial magnet [15,16].

III. MAGNETIC STRUCTURE

The ground-state wave function of the system can be found
by numerically diagonalizing the Hamiltonian, Eq. (4), in the
basis formed by the common eigenstates of Ŝ2 and Ŝz, i.e.,
{|S,m〉}, which satisfy

Ŝ2|S,m〉 = S(S + 1)|S,m〉,
Ŝz|S,m〉 = m|S,m〉,

FIG. 1. (Color online) Anisotropic constants (a) D(κx,κy) and
(b) E(κx,κy) for Rb condensates.
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FIG. 2. Magnetic structure of a Rb condensate on the parameter
(κx,κy) plane in terms of (easy, medium, hard) axes in the absence
of magnetic field. Solid lines correspond to uniaxial magnets. With
the help of Eq. (8), the easy (hard) axis corresponds to the direction
of minimum (maximum) energy, while the medium axis direction is
associated with a saddle point in the energy.

where the total spin, S = N,N − 2, . . ., is a non-negative
integer and m = −S,−S + 1, . . . ,S is the projection of the
spin along the z axis [21,23]. For the parameter regime
covering 0.1 � κx,y � 10 and under an arbitrary magnetic
field, we find that 〈S2〉 � N (N + 1) for N � 5, which implies
that the condensate with a sufficiently large number of atoms
always remains in a ferromagnetic state with total spin S � N .
In addition, it is also found that the contribution of H′ [Eq. (6)]
is negligible. Consequently, we may drop the constant S2 term
in H0 and the linear term H′ such that Eq. (4) reduces to the
familiar biaxial Hamiltonian [12],

Heff � −DŜ2
z + E

(
Ŝ2

x − Ŝ2
y

) − H · Ŝ, (7)

for quantum magnet with total spin S = N .
In the absence of the external magnetic field, the magnetic

properties of the Hamiltonian Heff is completely determined
by the anisotropy constants D and E: the axial term, −DŜ2

z ,
splits the degeneracy of the spin states of different m’s, whereas
the transverse term, E(Ŝ2

x − Ŝ2
y ), mixes them up. In Fig. 2, we

classify the magnetic structure of the system on the (κx,κy)
parameter plane in terms of the easy, medium, and hard axes,
which essentially states that the easy (hard) axis corresponds
to the direction with the weakest (strongest) trap confinement.
Intuitively, the results presented in Fig. 2 can be understood
as follows. Without the MDDI, the ground-state energy is
degenerate with respect to the orientation of the spin. The
MDDI removes this degeneracy by pointing the spin to certain
directions. Note that, for two magnetic dipoles, the dipolar
interaction is attractive (repulsive) for a head-to-tail (side-
by-side) configuration. Therefore, the spins prefer to align
along the direction such that the possibility for a head-to-tail
configuration is maximized, which is exactly the direction
corresponding to the weakest confinement.

IV. MACROSCOPIC QUANTUM COHERENCE

A simple model for studying the MQC problem is a uniaxial
magnet with easy-axis anisotropy, which can be realized, for
example, by taking D < 0 and E = 0 in Hamiltonian (4). For
ultracold atomic gases, the MQC of this model was previously

studied in Refs. [14,17]. Here, without loss of generality, we
focus on the MQC of a biaxial magnet with D > E > 0, which
corresponds to the geometric parameters (κx,κy) in the shaded
region in Fig. 2. The magnetic field is applied along the hard
axis, i.e., H = Hx x̂.

We first consider the classical counterpart of the reduced
Hamiltonian, (7), by treating Ŝ as a vector of length |S| = N .
The total energy then becomes

E(θ,φ) = −DN2 cos2 θ + EN2 sin2 θ cos 2φ

−HxN sin θ cos φ, (8)

where (θ,φ) denotes the direction of S. Apparently, for Hx <

H ∗
x ≡ 2N (D + E), there exist two degenerate ground states,

located at (θ0,0) and (π − θ0,0) with sin θ0 = Hx/[2N (D +
E)]. When Hx � H ∗

x , the double degeneracy is removed such
that the system is fully polarized along the x axis by the
external field.

Quantum mechanically, the classical degeneracy of the
ground states is lifted by quantum tunneling even when
Hx < H ∗

x , which results a tunneling splitting 
E between
the true ground state and the first excited state. Of particular
interest, with biaxial anisotropy, there exist two tunneling
paths with opposite windings on the yz easy-anisotropy plane.
Constructive and destructive interferences of quantum spin
phases of the different paths cause the tunneling splitting to
oscillate with the magnetic field. This phenomenon was first
predicted by Garg [11] and was experimentally observed by
Wernsdorfer and Sessoli in Mn12 molecules [12]. Using the
instanton method, the tunneling splitting can be expressed
analytically as [11,24]


Ein = 
ε0| cos(π�)|, (9)

where �(Hx) = N − Hx/[2
√

2E(D + E)] is the area on the
Bloch sphere enclosed by the two instanton paths and 
ε0 is
the tunneling splitting under zero external field, which contains
the contributions from the classical action and the fluctuations
around the instanton paths [11,24]. Surprisingly, quantum
tunneling is completely quenched whenever � = n + 1/2,
with n being an integer. The period of this oscillation is [11]


Hx = 2
√

2E(D + E). (10)

We want to emphasize that the instanton method is only valid
for Hx < H ∗

x , as it depends on the classical paths of the
tunneling.

In Fig. 3, we present the field dependence of the tunneling
splitting 
E obtained via the exact numerical diagonalization
of the full Hamiltonian, (4), for N = 10, log10 κx = −0.9, and
log10 κy = −0.1. As a comparison, we also plot 
Ein [Eq. (9)]
by adopting the analytic expression of 
ε0 in Ref. [24].
For small Hx , the results obtained from the numerical and
the instanton methods are in good agreement, which further
confirms that our system is well described by the reduced
Hamiltonian. However, a significant discrepancy is observed
for the larger external field. It is also found that, by increasing
the atom number N , the agreement between the numerical and
the instanton methods can be improved.

We now discuss the experimental detection of MQC in
spin-1 Rb condensates. Here we adopt a scheme similar to
that used in the molecular magnet experiment by utilizing
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FIG. 3. (Color online) Tunneling splitting as a function of
external magnetic field for log10 κx = −0.9, log10 κy = −0.1, and
N = 10. The vertical dash-dotted line marks the position of the
critical field.

the Landau-Zener transition [12]. More specifically, the
experiment can be carried out as follows. In addition to the
constant transverse field Hx x̂, we introduce a time-dependent
longitudinal magnetic field Hz(t)ẑ which is swept linearly at
a constant rate v > 0; i.e., Hz(t) = H (i)

z + vt for t � 0, where
H (i)

z < 0 is the initial field. When the longitudinal field reaches

the value H
(f )
z ≡ H (i)

z + vtf > 0 at t = tf , one measures the
number of atoms Nα in each spin component.

As can be seen from the reduced Hamiltonian, (7), if the
initial longitudinal field H (i)

z is sufficiently large, the initial
state roughly stays at the Sz = −N level, which anticrosses
with the Sz = N level at Hz = 0. When the longitudinal
field sweeps through this avoided crossing, a Landau-Zener
transition occurs. Since the energy gap between the levels
Sz = −N and N at the anticrossing is exactly the tunneling
splitting 
E , which depends on the transverse field, it is
expected that Nα will also oscillate as a function of Hx .

The proposed experiment can be simulated by numerically
evolving the full Hamiltonian, (4), with the initial state being
the ground state under the magnetic field H (i)

z . Figure 4(a)
shows the typical transverse field dependence of N0 for various
final longitudinal fields H

(f )
z . As expected, N0 oscillates as

a function of the transverse field strength. The oscillation
period is also in very good agreement with that of 
E .
In addition, with increasing H

(f )
z , more anticrossings in

the energy spectrum of Hamiltonian (4) are swept through.
As a result, the oscillation amplitude decreases with H

(f )
z ,

and eventually N0(Hx) will roughly converge to the curve
corresponding to H

(f )
z = 8 as one increases H

(f )
z further.

Experimentally, it is possible that the transverse field is
misaligned such that it forms an angle δϕ to the x axis. In

FIG. 4. (Color online) N0/N as a function of Hx for (a) δϕ = 0
with different H (f )

z and (b) δϕ �= 0 with H (f )
z = 0.2. Other param-

eters are N = 10, log10 κx = −0.9, log10 κy = −0.1, v = 10−3, and
H (i)

z = −8.

Fig. 4(b), we plot N0(Hz) for δϕ �= 0. The oscillation remains
for small δϕ, however, it will disappear for large δϕ. Finally,
we remark that N1 and N−1 also exhibit oscillatory behavior
similar to that of N0(Hz).

V. CONCLUSION

To conclude, we have studied the MQC of a spin-1 Rb
condensate confined in an anisotropic trap. Under the SMA,
we have shown that this system can be described as a biaxial
quantum magnet. Physically, biaxial anisotropy is induced
by the interplay of the MDDI and the anisotropic trap.
Subsequently, we showed that the magnetic structure of the
system is determined by the geometric parameters of the
trapping potential. We have then studied the MQC of the spinor
condensate by applying an external magnetic field along the
hard axis of the system, it was shown that the tunneling splitting
oscillates as a function of the field strength. Finally, we have
proposed an experimental scheme to detect MQC by utilizing
the Landau-Zener transition.
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