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Density-induced processes in quantum gas mixtures in optical lattices
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We show that off-site processes and multiorbital physics have a crucial impact on the phase diagram of
quantum gas mixtures in optical lattices. In particular, we discuss Bose-Fermi mixtures where the intra-
and interspecies interactions induce competing density-induced hopping processes, the so-called bond-charge
interactions. Furthermore, higher bands strongly influence tunneling and on-site interactions. We apply a
multiorbital interaction-induced dressing of the lowest band, which leads to renormalized hopping processes.
These corrections give rise to an extended Hubbard model with intrinsically occupation-dependent parameters.
The resulting decrease of the tunneling competes with a decrease of the total on-site interaction energy, both
affecting the critical lattice depth of the superfluid to Mott-insulator transition. In contrast to the standard
Bose-Fermi Hubbard model, we predict a large shift of the transition to shallower lattice depths with increasing
Bose-Fermi attraction. The applied theoretical model allows an accurate prediction of the modified tunneling
amplitudes and the critical lattice depth, both being recently observed experimentally.
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Quantum gas mixtures in optical lattices are well suited
to study in detail interaction-induced effects in condensed
matter. They allow for the investigation of systems with spin
degree of freedom and with different species of particles
that can even obey different quantum statistics. In particular,
the experimental realization of atomic mixtures of bosonic
and fermionic particles (e.g., 87Rb-40K) in optical lattices
[1–4] triggered a vivid discussion on the role of inter-
and intraspecies interactions. These experiments allow for
the observation of the bosonic superfluid to Mott-insulator
transition in the presence of fermionic atoms. The prominent
feature observed in all experiments is the decay of visibility
and condensate fraction of the bosonic subsystem induced
by the interaction with the fermionic atoms. Two possible
explanations for this drop in bosonic coherence were proposed.
First, the process of adiabatic heating while ramping the lattice
has been suggested [5,6]. It is caused by different contributions
of the atomic species to the total entropy and is therefore
specific to the loading procedure of experiments with ultracold
gases. Second, an interaction-induced dressing of tunneling
and interaction processes has been found that causes a shift
of the superfluid to Mott-insulator phase transition [3,7–9].
The latter effect corresponds to a necessary extension of
the Hubbard model at zero temperature and is therefore
fundamental for various lattice systems. The important role of
interaction-induced processes in optical lattices is caused by
the specific shape of the Wannier functions and the possibility
of high filling factors.

The standard Bose-Fermi Hubbard model [10] is restricted
to the lowest single-particle band and on-site interactions.
Interestingly, it fails to describe interaction effects in boson-
fermion mixtures. For a fermionic band insulator, which can
be assumed in the experimental realizations of Refs. [1–4], the
boson-fermion interaction gives rise only to an irrelevant shift
of the global chemical potential. Even for realistic assumptions
for the confining potential, the interspecies interaction has
little influence [11]. In contrast to the experimental results, the
superfluid phase is even more stable within this framework.

This poses the question of the applicability of the standard
Hubbard model for quantum gas mixtures. It was pointed
out that off-site interactions have a direct density-dependent
influence on the total tunneling [9,12–18] and that the inclusion
of higher orbitals can have a strong impact on all Bose-Fermi
Hubbard parameters, i.e., tunneling and on-site interactions
[7–9].

In solid-state systems, the impact of off-site interactions
and higher orbitals has been addressed but is usually rather
small [12–15]. Unlike in solids, these effects can be significant
in optical lattice systems due to the characteristic shape
of the Wannier functions. However, they have been only
recently discussed, e.g., in Refs. [7,8,16,19–29], and are
mainly restricted to a single atomic species [16,19–29]. In
general, either only multiorbital effects [7,8,19–29] or off-site
interactions [16] are covered. As elaborated in Refs. [17,18]
for purely bosonic systems and Ref. [9], the combination of
both is essential for a correct description. The treatment of
higher orbitals is usually performed only for few-site systems
[19,22,24] or by applying mean-field theory [20,21,25,28],
which is insufficient in strongly correlated systems.

Recently, an exact band-dressing method has been devel-
oped for single-component bosonic systems [17,18] which
allows for an accurate treatment of higher-band processes.
Here, we generalize this method to multicomponent systems
and in particular, Bose-Fermi mixtures. The physical effects
discussed in the following are generally present for all
interacting quantum gas mixtures. The exact results, however,
depend on the quantum statistics of the particles and the
specific parameters such as the detuning from the light
field and the atomic masses. For the example of a mixture
of bosonic 87Rb and fermionic 40K, we present accurate
phase diagrams that significantly improve previous results.
We find a large shift of the superfluid to Mott-insulator
transition, which is considerably stronger than in Ref. [9].
In contrast to our exact band-dressing method, the latter
applies a band-elimination technique to treat orbital degrees of
freedom.

043623-11050-2947/2012/86(4)/043623(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.043623
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As a central result, we present the phase diagram of the
superfluid to Mott-insulator transition in a Bose-Fermi mixture
in Sec. I. Furthermore, we discuss the crucial effect of off-
site interactions and the corresponding shortcomings of the
standard Bose-Fermi Hubbard model in Sec. II. Subsequently,
we present the procedure to incorporate higher-band processes
in Sec. III. Afterward, the corresponding extended Hubbard
models and the implications for the bosonic phase transition
are discussed in detail in Sec. IV.

I. PHASE DIAGRAMS

We will now first discuss the resulting phase diagrams
of the bosonic superfluid to Mott-insulator transition in the
presence of a fermionic band insulator, where the individual
corrections to the standard Hubbard model are discussed in
detail below. For concreteness, we choose a mixture of bosonic
87Rb and fermionic 40K in an optical lattice with a spacing of
a = 377 nm (experimental parameters of Ref. [3]). For the
respective wavelength, the Wannier functions of both species
are almost identical. The interaction between the bosonic
atoms is fixed to a repulsive scattering length of aBB = 102 a0

[26], while the attractive interaction between the two species is
tunable over a wide range using a Feshbach resonance [3,30].
The fermionic nature of the spin-polarized potassium atoms
simplifies the system, as we can assume a band-insulating
phase and thus a fixed atom number of one fermion per lattice
site. This simplification is valid for experiments with high
particle numbers and a strong confinement [1–4,31,32]. In
principle, it is possible to directly apply the presented methods
and extensions to systems where this assumption does not
hold as well as to other quantum gas mixtures. In particular,
both atomic species can be bosonic or fermionic, and the
generalization to multicomponent systems with more than two
species is straightforward.

For a fermionic band insulator, the fermionic degrees of
freedom are frozen out and the physics can be described
by an effective bosonic model that takes into account all
effects induced by the interaction with the fermions. Within the
framework of this paper, we will discuss in detail the derivation
of an effective Hamiltonian which reads

H̃ext = −
∑
〈i,j〉

b̃
†
i b̃j J̃

tot
n̂j ,n̂i

+
∑

i

Ẽn̂i
− μ

∑
i

n̂i . (1)

We will see that despite its simplicity it already includes
higher-band and bond-charge off-site processes. The latter
gives rise to an occupation-dependent tunneling J tot

nj ,ni
= JB +

(ni + nj − 1)XBB + 2XBF, even within the lowest single-
particle band. Here, JB is the conventional tunneling; XBB

and XBF are the bond-charge tunneling elements arising from
Bose-Bose and Bose-Fermi interactions, respectively (Sec. II).
The interaction-induced occupation of higher orbitals leads to
a further occupation dependency of all parameters, i.e., J̃B,
X̃BB, X̃BF, and Ẽn.

The tilde above the parameters and operators in (1) indicates
the multiorbital dressing as discussed in Sec. III. The effective
single-band Hamiltonian (1) uses the ground state of the
interacting system, called the dressed band, instead of the
lowest single-particle band [17,18]. The dressed operators b̃i

and b̃
†
i annihilate and create bosonic particles on site i in

this dressed band, and n̂i = b̃
†
i b̃i counts the number of bosons

on site i. It is important to note that after the transformation
to the dressed band, the phase diagrams can be calculated
using standard single-band methods. The renormalized on-site
energy Ẽn is composed of the single-particle energies of
bosons ε̃B,n and fermions ε̃F,n, as well as the interaction
energies for the repulsion between the bosons 1

2n(n − 1)Ũn

and the attraction between the species nŨBF,n. The chemical
potential μ fixes the total number of bosonic atoms.

After calculating the dressed parameters, we apply
Gutzwiller mean-field theory to compute the critical lattice
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FIG. 1. (Color online) (a) Phase diagram for the superfluid to Mott-insulator transition of bosons with a fermionic band-insulator at different
interspecies attractions. The predictions of the standard Hubbard models are shown as a dashed black line. The attractive interaction effectively
reduces the total tunneling resulting in extended Mott-lobes. (b) The critical lattice depth of the superfluid to Mott-insulator transition as a
function of the interspecies scattering length aBF. The transition occurs at significantly shallower lattices than in the purely bosonic system
(aBF = 0). The dashed lines correspond to the Bose-Fermi Hubbard model and the dotted lines to an extended model with only lowest-band
processes (Sec. IV).
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depth of the transition from the superfluid to the Mott insulator.
The phase diagrams of the extended model (1) are shown in
Fig. 1(a). The effective chemical potential μ − Ẽ1 is given
in units of the Hubbard on-site interaction U , where Ẽ1

is the renormalized on-site energy of one boson and one
fermion. For vanishing interaction between the bosons and
fermions aBF = 0 and a repulsive interaction aBB = 102 a0

among the bosons, the Mott-lobes are contracted compared
with the standard Hubbard model. This is a result of a decrease
of the on-site energy and an increase of the total tunneling
caused by off-site interactions [17]. For increasing attraction
between bosons and fermions the effect is reversed [9] and the
Mott-lobes are extended, exhibiting a critical transition point
at much lower lattice depths. This effect can be attributed to
a strong reduction of the total tunneling amplitude induced by
interspecies off-site interactions.

In Fig. 1(b) the critical lattice depths for the superfluid to
Mott-insulator transition for one, two, and three bosons per
lattice site are shown as a function of the interspecies interac-
tion strength. The solid lines depict the results obtained using
the extended model (1), while the dashed lines correspond to
the standard Bose-Fermi Hubbard model, which predicts no
dependency on the interspecies interaction aBF. As discussed
above, for aBF = 0 the Mott-insulator transition is shifted to
deeper lattices, where the shift is increased with the bosonic
filling. This is mainly caused by the bosonic bond-charge
interaction X̃BB enhancing the total tunneling (Sec. II). With
increasing attractive interaction aBF the transition is strongly
shifted to shallower lattice depths. Depending on the filling, the
shift of the Mott-insulator transition caused by the fermionic
atoms is 3–4 ER for aBF = −300 a0. For a mixture of bosonic
87Rb and fermionic 40K the interspecies background scattering
length is aBF ≈ −205 a0 [30] and can be tuned by applying a
Feshbach resonance [3,30].

The predicted shift is considerably larger than calculated
with the adiabatic band elimination method in Ref. [9], which
also incorporates the bond-charge interactions. The effective
potential approach in Refs. [3,7] does not include the important
contributions of fermionic on-site energy and bosonic bond-
charge interaction. The extended Bose-Fermi Hubbard model
(1) discussed here contains all relevant energies that can affect
the superfluid to Mott-insulator transition at zero temperature.
As a result, the Mott-insulator shift in Ref. [3] can be partly
explained by interaction-induced effects. This provides a
consistent picture, where the experimental observations [1–3]
are a combined effect of the Hubbard extensions and the
adiabatic heating processes [5,6] which depend on the initial
temperature of the quantum gas.

II. OFF-SITE INTERACTIONS

We now turn back to the full description of the applied
extended Hubbard model which features two corrections to
the standard Hubbard model. First, off-site interactions lead
to a significant contribution to the total tunneling amplitude
by changing the effective tunneling potential. Second, the
inclusion of multiband processes causes a modification of all
model parameters.

As mentioned above, mixtures of ultracold spin-polarized
bosonic and fermionic atoms in optical lattices are usually
described by the standard Bose-Fermi Hubbard model. The
underlying tight-binding approximation restricts the model
to the lowest single-particle orbital and interactions between
particles on the same lattice site. The resulting Hubbard
Hamiltonian reads

ĤBFH = −
∑
〈i,j〉

(JBb̂
†
i b̂j +JFf̂

†
i f̂j ) + UBB

2

∑
i

n̂i(n̂i − 1)

+
∑

i

UBFn̂im̂i −
∑

i

(μBn̂i + μFm̂i). (2)

Here, b̂i (f̂i) is the bosonic (fermionic) annihilation operator
and n̂i (m̂i) the respective particle number operator. In general,
the tunneling matrix elements for bosons (JB) and fermions
(JF) can have different values. The on-site interaction is
fully described by the parameters UBB and UBF for intra-
and interspecies interaction, respectively. The total number
of bosonic and fermionic atoms are fixed by the chemical
potentials μB and μF. Under common experimental conditions
[1–4], the fermions are in a band-insulator phase where Pauli
blocking prohibits tunneling. This freezes out the fermionic
degrees of freedom, and the resulting Hamiltonian captures
the behavior of the bosons under the influence of exactly one
fermion per lattice site. Consequently, we can set f̂

†
i f̂j → 0,

m̂i → 1 and get

ĤFBI = −
∑
〈i,j〉

JBb̂
†
i b̂j + UBB

2

∑
i

n̂i(n̂i − 1)

+
∑

i

(UBF − μB)n̂i . (3)

The interaction energy UBF between bosons and fermions
can be absorbed into an effective chemical potential μeff =
μB − UBF and the resulting Hamiltonian does not differ from
the standard Bose-Hubbard model. Thus, the behavior of the
bosons is not influenced by the homogeneously distributed
fermions, which is in contradiction to the experimental
observations [1–3].

In the derivation of the standard Hubbard model, it
is argued that interaction processes between particles on
neighboring lattice sites can be neglected due to their small
amplitudes compared with on-site interactions. This argu-
ment is, however, only partly correct, since some of these
processes involve the hopping of particles. In particular, the
so-called bond-charge interactions (see Fig. 2) are of high
relevance and will be discussed in the following. Compared to
the conventional tunneling, these processes can be non-
negligible and consequently alter the phase diagrams. In par-
ticular, the Wannier functions in optical lattices differ strongly
from their counterpart in solid-state materials, leading to
comparably large matrix elements for bond-charge processes.
In addition, the possibility of larger fillings in bosonic systems
can enlarge these interaction effects. Consequently, off-site
interaction processes can be strongly enhanced for optical
lattice systems.

Consider the interacting part of the full two-particle
Hamiltonian for the lowest band and two neighboring lattice
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FIG. 2. (Color online) Interaction-induced off-site processes. Processes induced by the Bose-Bose interaction are (a) bosonic on-site
interaction, (b) density-density interaction, (c) pair tunneling, and (d) bond-charge tunneling. Analogous interaction processes are induced by
Bose-Fermi interaction, namely, (e) on-site interaction, (f) density-density interaction, (g) cross tunneling, (h) pair tunneling, (i) bond-charge
tunneling of a boson, and (k) bond-charge tunneling of a fermion. The shading indicates the most important processes that are taken into
account in the extended Hubbard model (1). The bond-charge tunneling processes (d) and (i) are illustrated in (l) and (m) via tunneling in
effective potentials.

sites L and R:

Ĥint = 1

2

∑
ijkl

UBB
ijkl b̂

†
i b̂

†
j b̂kb̂l +

∑
ijkl

UBF
ijkl b̂

†
i f̂

†
j f̂kb̂l , (4)

with i,j,k,l = L,R and

U
BB|BF
ijkl = gBB|BF

∫
wB∗

i (r) w
B|F∗
j (r′) V (r,r′)wB|F

k (r′)

×wB
l (r)d3r d3r ′. (5)

The single-particle basis functions w
B|F
i (r) are the maximally

localized Wannier functions, describing a boson/fermion
sitting on site i. In general, the Wannier functions can be
different for the individual atomic species depending on the
atomic masses and detunings. The interaction strengths are
given by gBB = 4πh̄2

mB
aB and gBF = 2πh̄2

mr
aBF, with the mass of

the bosonic atoms mB and the reduced mass mr of boson
and fermion. The interaction potential V (r,r′) we applied
describes the scattering properties using a finite-ranged box
potential (see [17]). In a lowest-band treatment, this is usually
replaced by contact interactions, i.e., a δ pseudopotential. In a
multiorbital framework, the latter would lead to mathematical
subtleties [19].

The distinct processes arising from the full two-body
Hamiltonian (4) for Bose-Bose and the Bose-Fermi inter-
action are depicted in Fig. 2. In addition to the on-site
interaction [Fig. 2(a)], the Bose-Bose interaction leads to the
density-density interaction process VBB n̂i n̂j [Fig. 2(b)], the
correlated tunneling of a particle pair PBB b̂

†2
i b̂2

j [Fig. 2(c)],

and the bond-charge-assisted tunneling −XBB b̂
†
i (n̂i + n̂j )b̂j

[Fig. 2(d)]. The respective matrix elements are VBB = UBB
ijj i ,

PBB = UBB
iijj /2, and XBB = −UBB

iiij = −UBB
ijjj . The amplitudes

of these processes are plotted in Fig. 3 as solid lines. While
the density-density interaction VBB and the pair tunneling
amplitude PBB are several orders of magnitude smaller than the
the standard Hubbard processes, the bond-charge interaction
XBB is only 1 order of magnitude smaller than the conventional
tunneling JB. As the bond-charge interaction −XBB b̂

†
i (n̂i +

n̂j )b̂j scales with the particle number on both involved sites, it

can easily reach non-negligible values and must be accounted
for (see also [17]). In addition, all interaction processes scale
linearly with the interaction strength, which can be tuned
experimentally. Here, it is essential that the bond-charge
interaction contributes to the tunneling of the particles rather
than the on-site interaction. These estimations hold for a
wide range of lattice depths V0 � 5 ER and scattering lengths
|aBB| � 100 a0.

For the Bose-Fermi interaction, more distinct processes
exist as the interacting particles are distinguishable—first,
the cross tunneling [Fig. 2(g)], which is similar to the
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FIG. 3. (Color online) Matrix elements for the different hopping
and interaction processes. The solid lines are the purely bosonic
processes, while the dashed lines correspond to Bose-Fermi interac-
tion and fermionic tunneling. Shown are the intra- and interspecies
on-site interaction UBB and UBF (green), the conventional tunneling
amplitudes JB and JF (red), the bosonic bond-charge tunneling
XBB and XBF (blue), as well as density-density interactions VBB

and VBF (orange), and correlated-pair tunneling PBB (cyan). The
amplitudes are calculated for scattering lengths aBB = 102 a0 and
aBF = −200 a0.
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density-density interaction [Fig. 2(f)] except that the particles
interchange, and second, the bond-charge interaction, where
either a bosonic [Fig. 2(i)] or a fermionic [Fig. 2(k)] particle
tunnels. However, assuming a fermionic band insulator, all
processes involving the hopping of a fermion are forbidden.
The respective amplitudes of the processes induced by Bose-
Fermi interaction are plotted as dashed lines in Fig. 3.

In conclusion, only on-site interactions and bond-charge
tunneling of bosons have to be taken into account (shaded in
Fig. 2), since other processes are prohibited by the fermionic
band insulator or contribute only with extremely small
amplitudes. Thus, the necessary extensions of the Hubbard
Hamiltonian, i.e., the bond-charge processes in Figs. 2(d) and
2(i), read

X̂ = X̂BB + X̂BF

= b̂
†
i

(
UBB

iiij b̂
†
i b̂i + UBB

ijjj b̂
†
j b̂j + UBF

iiij f̂
†
i f̂i + UBF

ijjj f̂
†
j f̂j

)
b̂j .

(6)

An intuitive physical understanding of the bond-charge
tunneling induced by Bose-Bose as well as by Bose-Fermi
interaction can be obtained by the analogy to an effective
tunneling potential [17]. Assuming contact interactions in the
single-band description and using the integral expressions (5),
we can rewrite the expression (6) as

X̂ = b̂
†
i b̂j

∫
d3r wB∗

i (r)
(
gBBρ̂BB

ij + gBFρ̂
BF
ij

)
wB

j (r), (7)

where we introduced the reduced densities

ρ̂BB
ij = n̂i

∣∣wB
i (r)

∣∣2 + (n̂j − 1)
∣∣wB

j (r)
∣∣2

, (8)

ρ̂BF
ij = m̂i

∣∣wF
i (r)

∣∣2 + m̂j

∣∣wF
j (r)

∣∣2
. (9)

The −1 in the bosonic density corresponds to the exclusion of
self-interactions and is directly obtained from the commutation
relations. Inside the integral, we can replace these operators
by the density functions ρ̂BB

ij → ρB(r) − |wB
j (r)|2 and ρ̂BF

ij →
ρF(r). In contrast to the operators ρ̂ij , the functions ρ(r) contain
the density of particles on distant sites (k �= i,j ). However,
this does not contribute to the integral (7) due to the small
overlap with the Wannier functions wi(r) and wj (r). The bond-
charge tunneling operator (7) can now easily be unified with
the conventional tunneling to find the expression

Ĵ + X̂ = 〈
wB

i (r)
∣∣ ( p2

2m
+ Veff(r)

) ∣∣wB
j (r)

〉
b̂
†
i b̂j , (10)

which corresponds to the conventional tunneling in an
effective potential Veff(r) = V (r) + gBB(ρB(r) − |wB

j (r)|2) +
gBFρF(r).

In Figs. 2(k) and 2(l), the tunneling in effective potentials
is sketched. Repulsive interactions, as between the bosons,
effectively reduce the lattice depth, while attractive inter-
actions have the opposite effect. Depending on the relative
scattering lengths, the total tunneling can be strongly enhanced
or reduced. This is consistent with the results for the fermionic
tunneling obtained in [4]. The modification of the total
tunneling in the lowest band already leads to a considerable
deformation of the well-known phase diagram of the superfluid
to Mott-insulator transition for bosons, as discussed later in
detail.

III. MULTIORBITAL RENORMALIZATION

Whereas in the previous section we introduced off-site
interactions as an important extension to the standard Hubbard
model, we will now discuss another important feature of the
Hamiltonian (1), namely, the effective inclusion of higher
bands. In the standard Hubbard model approach, only the low-
est single-particle band is assumed to be occupied. However, in
the strongly correlated system, particles are promoted to higher
orbitals due to the interaction-induced coupling between the
orbitals. By changing their wave functions, the particles
minimize their on-site interaction energy (see Sec. III B).

As a result of the population of higher orbitals, the effective
wave-function overlap of particles on neighboring lattice sites
changes. This leads to modified amplitudes of the tunneling
and the off-site interactions. The orbital occupation itself, how-
ever, is solely determined by on-site interactions due to their
dominating contribution to the total energy. Consequently, the
single-site problem can be handled separately (see Sec. III).
Note that off-site processes are negligible for the determination
of the orbital occupations, but not for the calculation of the
phase diagrams as elaborated in Secs. I and II.

A. Multiorbital dressing

The approach presented in the following can be divided
into four steps: (i) First, the single-site many-particle problem
is solved using the method of exact diagonalization, which is
described in Sec. III B. The respective ground state �(n) is a
fully correlated, many-particle state of n bosons containing the
full information on the population of higher orbitals. (ii) From
the ground state �(n), we construct a multiorbitally dressed
band with creation and annihilation operators that fulfill the
usual relations b̃i |�(n)〉i = √

n |�(n − 1)〉i and b̃
†
i |�(n)〉i =√

n + 1 |�(n + 1)〉i . For example, a tunneling processes in the
dressed band is represented by b̃

†
i b̃j . (iii) In the next step, the

amplitudes of, e.g., tunneling and bond-charge interactions in
the dressed band are calculated. These amplitudes effectively
contain processes in all orbitals and are explicitly occupation-
number dependent. (iv) Finally, we obtain an effective single-
band Hamiltonian, where the dressed band replaces the lowest
Bloch band. This dressed-band model now allows application
of standard single-band methods to calculate the phase diagram
(ranging from mean-field to quantum Monte Carlo methods).
In the following, we give a detailed description of the steps
(i)–(iii), while the last step (iv) is elaborated in Secs. I and IV.

(i) From the calculations in Sec. III B we obtain the
single-site ground state, which is a superposition of many-
particle states �(n) = ∑

N,M cN,M |N〉 |M〉. Here, |N〉 |M〉 =
|n0,n1, . . .〉 |m0,m1, . . .〉 is the product state with nα bosons
and mα fermions in the Wannier orbital w

(α)
B|F(r), where α

indicates the orbital and n = ∑
α nα . In the following we will

assume a fermionic band insulator with m = ∑
α mα = 1. The

state �(n) consists of the lowest single-particle band dressed
with small contributions of higher bands, and we will refer to
it in the following as the dressed band. At zero temperature the
particles will exclusively occupy the many-particle state �(n)
instead of the lowest single-particle band.

(ii) Now we turn to the representation of operators in
the dressed band using the ground state �(n). Within a
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lowest-band treatment, a general two-site operator can be
decomposed in operators of the form

Ôlowest−band = A ÔL ÔR, (11)

with an amplitude A and operators Oi consisting of creation
and annihilation operators b̂

†
i (b̂i) on the left (L) or right (R)

site. As an example, for the tunneling operator from the right
to the left site it is A = −J , ÔL = b̂

†
L, and ÔR = b̂R.

The corresponding operator of the dressed band Õi can be
directly obtained from Ôi by replacing the operators b̂

†
i and b̂i

with their dressed counterparts b̃
†
i and b̃i . The effective two-site

operator Õ in the dressed band takes the form

Õ = ÃnL,nRÕLÕR, (12)

with the occupation-number-dependent amplitude ÃnL,nR .
(iii) In order to calculate the dressed-band amplitude ÃnL,nR

that effectively includes all orbital processes, we start with the
multiorbital two-site operator. It can be decomposed in the
same way as for the lowest-band

Ô =
∑

{α},{β}
A{α},{β}Ô{α}

L Ô
{β}
R , (13)

where the summation is over all possible sets of orbitals {α} =
{α1,α2, . . .} and {β} = {β1,β2, . . .}. A{α},{β} is the amplitude
for the corresponding process and Ô

{α}
i consists of creation

and annihilation operators b̂
(αk )†
i and b̂(αk )

i for particles on site
i in the orbital αk . In the simplest case—the conventional
tunneling—we only have sets with a single orbital {α} = α and
{β} = β, the operators on the left and the right site Ôα

L = b̂
(α)†
L ,

Ô
β

R = b̂
(β)
R , and tunneling amplitudes Aα,β between the orbitals

α and β as defined below.
The effective amplitude ÃnL,nR is obtained from the matrix

element 〈�F| Ô |�I〉, where �I(nL,nR) denotes the initial and
�F = �(nL

′,nR
′) the final state of the process. It thereby

includes the summation over all multiorbital processes. Since
the states are product states of the individual lattice sites
|�(nL)〉 |�(nR)〉, also the effective amplitude Ã decomposes
into individual site contributions

ÃnL,nR = 1

N

∑
{α},{β}

A{α},{β} 〈�(nL
′)| Ô{α}

L |�(nL)〉

× 〈�(nR
′)| Ô{β}

R |�(nR)〉 , (14)

where N = 〈�F| ÕLÕR |�I〉 is needed for the correct nor-
malization. Note that the effective amplitude is intrinsically
occupation dependent.

As an example, for the conventional single-particle tun-
neling of bosons it follows that Aα,β = −Jαδα,β and N =√

nL
√

nR + 1. Here, Jα = −〈w(α)| p2

2m
+ V (r) |w(α)〉 is the

tunneling amplitude in band α. As another example, the
multiorbital bosonic bond-charge operator

X̂BB =
∑

{α},{β}
X

{α},{β}
BB b̂

(α1)†
L b̂

(α2)†
L b̂

(α3)
L b̂

(β1)
R

+
∑

{α′},{β ′}
X

{α′},{β ′}
BB b̂

(α′
1)†

L b̂
(β ′

1)†
R b̂

(β ′
2)

R b̂
(β ′

3)
R (15)
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FIG. 4. (Color online) (a) Contributions to the total tunneling in
the lowest band (dashed) and the dressed band (solid) for one boson
and one fermion on each site. The total tunneling (black) is composed
of conventional tunneling J (green), bosonic bond-charge tunneling
XBB (red), and fermionic bond-charge tunneling XBF (blue). The
absolute value of all matrix elements are enhanced by orbital degrees
of freedom, but due to their opposite signs the multiorbital effects
partly compensate each other. (b) Deviations of the total tunneling
J̃ tot

n,n = J̃B + (nL + nR − 1)X̃BB + 2X̃BF from the standard Hubbard
tunneling JB for different bosonic occupations nL = nR.

decomposes in left and right part Ô
{α}
L and Ô

{β}
R , which consist

of either one or three creation or annihilation operators. In con-
trast to the conventional tunneling, orbital-changing processes
are allowed for the multiorbital bond-charge operator.

The renormalized amplitudes are depicted in Fig. 4 for
all relevant contributions to the total tunneling in the case
of one boson and one fermion per site (solid lines). The
amplitudes for conventional tunneling J̃nL,nR (green line) as
well as bond-charge-induced tunneling X̃BB,nL,nR (red) and
X̃BF,nL,nR (blue) can differ strongly from the lowest band
values, which are indicated as dashed lines. The multiorbital
renormalization can enhance the conventional tunneling by
up to 30%, and the bond-charge-induced processes can even
be twice as strong as in the lowest single-particle band. In the
present situation of repulsive bosons and attractive Bose-Fermi
interactions, the effect is strongest for low boson numbers
[see Fig. 4(b)]. This is mainly caused by a compensation of
Bose-Bose and Bose-Fermi interaction-induced bond-charge
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tunneling. Processes with imbalanced boson numbers can be
calculated analogously and are similarly affected. Due to
symmetry reasons the relation JnL,nR = JnR+1,nL−1 holds for
all tunneling processes from left to right.

B. On-site problem and on-site interaction

This section is dedicated to the explicit solution of the
many-body problem on a single lattice site for a given number
of particles. We apply the method of exact diagonalization
to compute the ground state �(n) of n bosons and m = 1
fermion on a single lattice site. In particular, this leads directly
to an occupation-number-dependent on-site energy En. The
Hamiltonian of the single-site problem reads

Ĥsite =
∑

α

ε
(α)
B n̂(α) +

∑
α

ε
(α)
F m̂(α)

+ 1

2

∑
αβγ δ

U
(αβγ δ)
BB b̂(α)†b̂(β)†b̂(γ )b̂(δ)

+
∑
αβγ δ

U
(αβγ δ)
BF b̂(α)†f̂ (β)†f̂ (γ )b̂(δ), (16)

with the bosonic particle number operator n̂(α) = b̂(α)†b̂(α) and
the single-particle energies ε

(α)
B . The operators m̂(α), f̂ (α)†, f̂ (α)

and the energy ε
(α)
F are the fermionic analogs. The multiband

interaction amplitudes are defined as

U
(αβγ δ)
BB|BF = gBB|BF

∫
w

(α)∗
B (r) w

(β)∗
B|F (r′) V (r,r′)

×w
(γ )
B|F(r′) w

(δ)
B (r) d3r d3r ′, (17)

where the interaction potential V (r,r′) is a finite-range box
potential with a width of 7.5 nm (see Ref. [17] for details).
These processes reflect the interaction-induced transition of
particles from the orbitals γ and δ to the orbitals α and β.
This couples the different orbitals, resulting in a correlated
multiorbital ground state. We expand this Hamiltonian in
the basis of many-particle Fock states |N〉 |M〉 and apply
exact diagonalization, the so-called configuration interaction
method. We restrict the calculation to the lowest nine bands
per spatial direction and use a high-energy cutoff.1 The
on-site energy is directly obtained as the lowest eigenvalue
of the matrix, and its contributions can be computed as
expectation values of the individual operators in (16) using
the corresponding eigenvector.

The energy contributions are plotted in Fig. 5(a) for V0 =
15 ER and n = 3 bosons (solid lines). The values significantly
deviate from the lowest-band approximation (dashed lines).
The single-particle energies nε̃B + ε̃F (green line) are mea-
sured relative to the lowest-band values and thus are always
positive. The occupation of higher orbitals causes a contraction
of the wave functions, which leads to an increase of the
absolute value of the Bose-Fermi interaction. This results in a
large reduction of the total on-site energy (black line) for large
scattering lengths aBF. Of course, the repulsive interaction

1The resulting many-body product basis has a total length of
12 000n2, where n is the number of bosons.

among the bosonic particles (red line) also contributes but is
less drastically influenced.

The total on-site energies for various boson numbers
are shown in Fig. 5(b). The dashed lines correspond to a
calculation with a three times larger interaction range. In
general, the contributions of higher bands are reduced with
an increasing interaction range. The figure shows that the
energy is only weakly affected by a the change of the (finite)
interaction range. Additionally, we applied scaling theory to
estimate the value of convergence for the on-site energy at
the numerically most demanding parameters, V0 = 20 ER and
aBF = −300 a0, for an interaction range of 7.5 nm. We see
that the error (differences in energies) converges exponentially
with both the length of the many-particle basis and the number
of orbitals. Scaling our results according to the exponential
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FIG. 5. (Color online) (a) Total on-site energy En and its
contributions for n = 3 bosons and m = 1 fermion as functions
of the interspecies scattering length. The contributions are single-
particle energies εB,F (green), Bose-Bose interaction UBB (red),
and Bose-Fermi interaction UBF (blue). The total on-site energy is
visibly lower than the lowest band prediction (dashed lines). (b) The
total on-site energies En for various numbers of bosons n and one
fermion. With increasing interspecies interaction the total energy
decreases non-linearly. Without Bose-Fermi attraction, the on-site
energy increases with the boson number, whereas for strong attraction
the order is reversed. The dashed lines correspond to a three times
larger interaction range. The markers are obtained by applying scaling
theory as described in the text.
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behavior, we are able to determine the converged energy value,
where we first perform the scaling in respect to the basis
length for a given number of orbitals. The results, indicated
as crosses in Fig. 5(b), show only small deviations and justify
the constraints for the basis length and the number of orbitals
applied for the solid lines.

The total on-site energy becomes intrinsically occupation-
dependent [beyond the dependency in the standard Bose-Fermi
Hubbard model (2)] and can be written in terms of effective
n-particle collisions [18,23,26]:

Ẽn = nẼ1 + 1
2n(n − 1)Ē2 + 1

6n(n − 1)(n − 2)Ē3. . . (18)

The first term Ẽ1 describes the interaction energy by two-
particle collisions between bosons and fermions. The second
term is the interaction energy caused by processes that involve
two bosons Ē2 = Ẽ2 − 2Ẽ1, and the third term Ē3 = Ẽ3 −
3Ē2 − 3Ẽ1 involves three bosons. Although the restriction to
the first three terms is enough to describe well the energies for
up to n = 5 bosons, here we use the exact values for Ẽn.

IV. SUPERFLUID TO MOTT-INSULATOR TRANSITION

After discussing off-site interactions and multiorbital renor-
malizations, we now turn back to the full many-body quantum
gas problem. Obviously, from the above results it is necessary
to take both bond-charge interactions and higher bands into
account. First, we now define an extended model of the
lowest band that includes off-site interactions and discuss its
implications. Afterward, we replace the lowest single-particle
band and parameters with the respective dressed analogs and
thereby include higher bands in a very efficient way.

The extended Hubbard model of the lowest band reads

Ĥext = −
∑
〈i,j〉

[JB + XBB(n̂i + n̂j − 1) + 2 XBF] b̂
†
i b̂j

+ UBB

2

∑
i

n̂i(n̂i − 1) − μeff

∑
i

n̂i . (19)

While the repulsive interaction between the bosons increases
the total tunneling, the attractive fermions reduce the bosonic
mobility. As one central result and in strong contrast to the
predictions of the standard Hubbard model (see Sec. II), the
superfluid to Mott-insulator transition is shifted. The phase
diagrams are shown in Fig. 6 for different attractive Bose-
Fermi interaction strengths. For strong Bose-Fermi attraction
and low bosonic filling, the transition occurs at much shallower
lattices due to the effectively deepened tunneling potential.
The effect is reversed when the repulsion between the bosons
becomes stronger than the attraction to the fermions, which is
the case for weaker Bose-Fermi interaction and higher bosonic
filling. In Fig. 1(b) the critical lattice depth for the transition
is plotted as a function of the interspecies interaction strength
aBF. The dotted lines correspond to the extended Hamiltonian
(19) restricted to the lowest band.

When including higher bands we must replace the lowest-
band operators with those of the dressed band b̃i and b̃

†
i .

Also, the parameters J , X, and U must be renormalized
as discussed in Sec. III. All tunneling contributions, i.e.,
conventional tunneling, both bond-charge interactions, as well
as their multiorbital renormalizations, can be combined to one
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FIG. 6. (Color online) Phase diagrams of the lowest-band model
(19) with bond-charge interactions for different scattering lengths.
The Mott-insulator phase is enlarged for increasing Bose-Fermi
attraction. For comparison, the results of the standard Hubbard model
are shown as a dashed black line.

total tunneling parameter

J̃ tot
ni ,nj

= J̃ni ,nj
+ X̃BB,ni ,nj

(ni + nj − 1) + 2X̃BF,ni ,nj
, (20)

which is explicitly occupation-number dependent. The renor-
malized on-site energy

Ẽn = nε̃B,n + ε̃F,n + 1
2n(n − 1)Ũn + nŨBF,n (21)

is composed of the renormalized single-particle energies of
bosons ε̃B,n and fermions ε̃F,n, as well as the interaction
energies for the repulsion between the bosons 1

2n(n − 1)Ũn

and the attraction between the species nŨBF,n. This allows
definition of the extended Hamiltonian of the dressed band in
Eq. (1), namely,

H̃ext = −
∑
〈i,j〉

b̃
†
i b̃j J̃

tot
n̂j ,n̂i

+
∑

i

Ẽn̂i
− μ

∑
i

n̂i . (22)

The dressed-band Hamiltonian now takes into account all
higher-band processes and all relevant nearest-neighbor in-
teractions. The multiorbital corrections of the Bose-Fermi
interaction have a strong impact on the chemical potential at
which the transition to a certain Mott lobe occurs. This distorts
and shifts the phase diagram along the axis of the chemical
potential. Therefore, we plot Fig. 1(a) in terms of an effective
chemical potential μeff = μ − Ẽ1. Concerning the transition
point of the bosonic superfluid to Mott-insulator transition, the
reduction of the total on-site energy by multiorbital processes
counters the effect of reduced total tunneling. Nonetheless,
the total effect on the transition can be a shift of several
recoil energies ER, depending on interaction strengths and
filling factors [Fig. 1(b)]. Note that the lowest-band model
Ĥext underestimates the impact on the superfluid to Mott-
insulator transition by only up to 1ER, which is surprising,
keeping the strong changes of the individual amplitudes
in mind. However, this (coincidental) compensation of the
contributing amplitudes depends on the choice of system
parameters. Furthermore, it has been demonstrated that the
on-site interaction [26,33] and the effective tunneling matrix
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element [4] are experimentally accessible and can be measured
independently.

V. DENSITY-DENSITY INTERACTIONS
AND PAIR TUNNELING

In the above model, several off-site processes have been
neglected due to their small amplitude in the lowest band. In
this context the question arises as to whether the multiorbital
dressing can enhance them to non-negligible values. The
correlated-pair tunneling and the density-density interactions
both have very small amplitudes, because in the integrand the
small tail of the Wannier function enters quadratically on both
lattice sites. By contrast, in the bond-charge integral the tail is
multiplied three times with the center of a Wannier function.
However, when taking into account strongly delocalized
wave functions of higher bands, this argument no longer
applies and all processes need to be reconsidered, since the
overlap integrals become comparable for all types of off-site
interactions. These contributions are strongly suppressed in
the case of density-density interactions, because the initial
and final state both depend on higher-band contributions with
small coefficients cN 
 1 to produce a large integral, whereas
in the case of pair tunneling one of them can be the ground
state (cN ≈ 1). Although the multiorbitally renormalized pair
tunneling is usually smaller than the conventional tunneling, it
can, in general, reach the same order of magnitude. Due to this
structure it has very bad convergence properties in respect to
the total number of contributing bands. As a fourth-order con-
tribution in perturbation theory it can, however, be neglected
even for rather large amplitudes. Density-density interactions
are not as strongly influenced and remain small. This justifies
the restriction to the extensions incorporated in Hamiltonian
(1), which includes all relevant off-site interactions.

VI. CONCLUSIONS

We have discussed the important role of interaction effects
in atomic quantum gas mixtures in optical lattices. Off-site
interactions as well as higher-band processes turn out to have
a strong impact on these systems, which we are able to
calculate using an extended occupation-dependent Hubbard
model. In particular, we have focused on Bose-Fermi mix-
tures in this paper, where the standard Bose-Fermi Hubbard

model fails to cover all relevant processes. This manifests
itself in a strong shift of the superfluid to Mott-insulator
transition in the bosonic subsystem, which is not predicted
by the standard Hubbard model. The critical lattice depth is
shifted towards shallower lattices with increasing Bose-Fermi
attraction. Similar corrections are present for all experiments
with optical lattices and can be expected to be relevant, e.g., for
Bose-Bose mixtures, low-dimensional systems, or other lattice
geometries. Omitting the condition of having a fermionic
band insulator, which we have applied here, the presented
extensions of the Bose-Fermi Hubbard model can lead to very
rich physics, such as the formation of polarons.

We have shown that for optical lattice systems the bond-
charge tunneling [9,12–18] is the most important contribution
of the nearest-neighbor off-site interaction, as it can drastically
influence the tunneling. Repulsive interactions enhance the
total tunneling, whereas the attractive interactions reduce it.
In an intuitive picture, this can be described as lowered
and increased effective potentials, respectively. Furthermore,
higher-band processes not only reduce the total on-site energy
but also have an impact on the conventional tunneling and
the bond-charge interactions. We have treated the problem
by dressing [17,18] the lowest single-particle band with
interaction-induced occupations of higher-orbital states. This
leads to a renormalization of interactions and tunneling
parameters that become intrinsically occupation-dependent.
These parameters have been used in order to define an extended
Bose-Fermi Hubbard model capable of describing effects
of higher orbitals and off-site interactions in Bose-Fermi
mixtures.

The results show in general that interactions in multi-
component systems can have a crucial impact beyond the
standard Hubbard treatment. In the presented case, the standard
Hubbard model is incapable of describing the interspecies
interaction between bosonic and fermionic atoms correctly.
While here mainly the effects on the bosonic atoms have been
discussed, the mutual interaction affects the fermionic atoms
similarly, which has recently been observed in experiment [4].
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