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Unusual Zeeman-field effects in two-dimensional spin-orbit-coupled Fermi superfluids
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We investigate the Zeeman field effects on the bulk superfluid properties and the collective modes in two-
dimensional (2D) attractive atomic Fermi gases with Rashba-type spin-orbit coupling. In the presence of a
large spin-orbit coupling, the system undergoes a quantum phase transition to a topological superfluid state at a
critical Zeeman field. We show that the nonanalyticities of the thermodynamic functions as well as other physical
quantities at the quantum phase transition originate from the infrared singularities caused by the gapless fermionic
spectrum. The same argument applies also to the BCS-BEC evolution in 2D fermionic superfluids with p- or
d-wave pairing. The superfluid density ns and the velocity of the Goldstone sound mode cs behave oppositely in
the normal and the topological superfluid phases: they are suppressed by the Zeeman field in the normal superfluid
phase, but get enhanced in the topological superfluid phase. The velocity of the Goldstone sound mode also shows
nonanalyticity at the quantum phase transition. For large Zeeman field, we find ns → n and cs → υF, where n

is the total fermion density and υF is the Fermi velocity of noninteracting system. The unusual behavior of the
superfluid density and the collective modes can be understood by the fact that the spin-orbit-coupled superfluid
state at large Zeeman field can be mapped to the px + ipy superfluid state of spinless fermions.
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The Zeeman field (ZF, denoted by h) effects on BCS su-
perconductivity have been a longstanding problem for several
decades [1]. At weak coupling, the BCS state undergoes a first-
order phase transition to the normal state at hCC = 0.707�0 [2]
where �0 is the pairing gap at h = 0. Further studies showed
that the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [3] survives in a narrow window between
hCC and hFFLO = 0.754�0. The ZF effects on the fermionic
superfluidity in the whole BCS-BEC crossover [4] regime
have been experimentally studied in recent years [5]. Two-
component atomic Fermi gases with population imbalance
were realized to simulate the ZF effects. Around the Feshbach
resonance, the phase separation between the superfluid and
the normal phases has been observed in accordance with the
first-order phase transition. Despite the rich phase structure in
the BCS-BEC crossover [6], the superfluidity is completely
destroyed at large enough ZF.

Recent progress on synthetic spin-orbit coupling (SOC)
for neutral atoms [7–9] provides new ways to study SOC
effects on fermionic superfluidity [10]. Previous studies of
two-dimensional (2D) solid-state systems showed that the
SOC induces spin-triplet pairing, even though the attractive
interaction is s wave [11]. By applying a large ZF, the
2D system undergoes a topological phase transition to a
topological superconducting state, where the non-Abelian
topological order and Majorana fermionic modes can be
realized [12]. However, the properties of the bulk phase
transition and the collective modes are less understood for
such systems.

In this paper, we study the bulk phase transition and the
collective modes in 2D atomic Fermi gases with combined
SOC and ZF effects. The main results can be summarized
as follows: (i) The bulk phase transition originates from
the infrared singularities caused by the gapless fermionic
spectrum. The analyticity of any physical quantity across the
phase transition can be determined by analyzing the infrared
behavior of the momentum integrals. For the present system,

we find that the quantum phase transition is of third order.
(ii) The superfluid density ns and the velocity of the Goldstone
sound mode cs behave oppositely in the normal and the
topological superfluid phases. They are suppressed by the ZF
in the normal superfluid phase but turn to increase with the
ZF in the topological superfluid phase. The sound velocity cs

also shows nonanalyticity across the phase transition. (iii) For
very large ZF (h → ∞), we obtain analytically ns → n and
cs → υF, where n is the total fermion density and υF is the
Fermi velocity of noninteracting systems. We show that the
unusual behavior of the superfluid density and the collective
modes is manifest in the fact that the spin-orbit-coupled
superfluid state at large ZF can be mapped to the px + ipy

superfluid state of spinless fermions.
Model and effective potential. The many-body Hamiltonian

for the 2D Fermi system we considered can be written as
H = Hs + Hint, where

Hs =
∫

d2rψ†(r)

(
p̂2

2M
− μ + HSO + HZ

)
ψ(r),

(1)
Hint = −U

∫
d2r ψ

†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r).

Here, ψ(r) = [ψ↑(r),ψ↓(r)]T represents the two-component
fermion fields, p̂ = p̂xex + p̂yey is the 2D momentum
operator with p̂i = −ih̄∂i , σ = σxex + σyey with σi being the
Pauli matrices, and μ is the chemical potential. The contact
coupling U > 0 denotes the attractive s-wave interaction
between unlike spins. The ZF term reads HZ = −hσz and the
spin-dependent termHSO = λσ · p̂ is the 2D SOC [13]. We set
h > 0 and λ > 0 without loss of generality. In the following
we use the units h̄ = kB = M = 1.

In the imaginary-time functional integral formalism
(temperature T = 1/β), the partition function of the
system is Z = ∫

DψDψ† exp{−S[ψ,ψ†]} with the action

S[ψ,ψ†] = ∫ β

0 dτ [
∫

d2rψ†∂τψ + H (ψ,ψ†)]. Introducing
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the pair field 
(x) = −Uψ↓(x)ψ↑(x) [x = (τ,r)] and
integrating out the fermionic degrees of freedom, we obtain
Z = ∫

D
D
† exp{−Seff[
,
†]}, where the effective action
is given by

Seff[
,
†] = 1

U

∫
dx|
(x)|2 − 1

2
Trln[G−1(x,x ′)]. (2)

In the Nambu-Gor’kov representation, the inverse single-
particle Green’s function reads

G−1(x,x ′) =
(

G−1
+ (x) 
(x)


†(x) G−1
− (x)

)
δ(x − x ′), (3)

where G−1
± (x) = −∂τ + hσz ∓ (p̂2/2 + λσ · p̂ − μ).

In the superfluid state, the pairing field 
(x) acquires a
nonzero expectation value 〈
(x)〉 = � which we set to be
real without loss of generality. By separating the pairing field
as 
(x) = � + φ(x), the effective action Seff[
,
†] can be
expanded in powers of the complex fluctuation field φ(x). We
have

Seff[
,
†] = S (0)
eff (�) + S (2)

eff [φ,φ†] + · · · , (4)

where S (0)
eff (�) ≡ Seff[�,�] is the saddle-point or mean-field

effective action with the pair potential � determined by the
saddle point condition ∂S (0)

eff /∂� = 0. The collective modes
are determined by the Gaussian-fluctuation part S (2)

eff [φ,φ†].
Infrared singularity and bulk phase transition. The single-

particle excitation spectra can be read from the pole of the
fermion Green’s function G(K), which is obtained from G by
the replacement 
 → �. Here, K = (iωn,k) with ωn being
the fermion Matsubara frequency. Working out the explicit
form of G(K), we obtain the quasiparticle dispersion ±Eα

k
(α = ±), where Eα

k is given by

Eα
k =

√
E2

k + η2
k + 2αζk. (5)

Here we have defined Ek = (ξ 2
k + �2)1/2, ηk =

(λ2k2 + h2)1/2, and ζk = (ξ 2
kη2

k + h2�2)1/2 with
ξk = k2/2 − μ. From the identity (E+

k )2(E−
k )2 =

(E2
k − η2

k)2 + 4λ2k2�2, we find that the fermionic excitations
are fully gapped for � �= 0 except for the case that the
condition C0 = μ2 + �2 − h2 = 0 is satisfied. For C0 = 0,
the lower branch E−

k has a linear dispersion near k = 0; that
is, E−

k = υc|k| + O(|k|2), where the velocity υc = λ�/h.
The gapless fermionic spectrum causes nonanalyticities of

some physical quantities at the critical point C0 = 0. To be
specific, we consider the thermodynamic potential �(μ,h) ≡
�(μ,h,�(μ,h)) at zero temperature, where

�(μ,h,�) =
∑

k

(
�2

k2 + εB
− E+

k + E−
k

2
+ ξk

)
. (6)

Here we have used the usual regularization U−1 = ∑
k(k2 +

εB)−1 for 2D systems [14] with εB being the binding energy of
the two-body bound state in the absence of SOC. To obtain the
thermodynamic potential �(μ,h), the pair potential �(μ,h),
which is regarded as an implicit function of μ and h, should
be determined by the gap equation ∂�(μ,h,�)/∂� = 0.

To study the analyticity of the thermodynamic potential
or its derivatives with respect to μ and h, we consider the

following susceptibilities:

χμμ = −∂2�(μ,h)

∂μ2
, χhh = −∂2�(μ,h)

∂h2
, (7)

which are related to the isothermal compressibility and
the spin susceptibility, respectively. To obtain their ex-
plicit expressions, we need the derivatives ∂�(μ,h)/∂μ and
∂�(μ,h)/∂h. They can be obtained from the gap equation
∂�(μ,h,�)/∂� = 0. Finally, the two susceptibilities can be
evaluated as

χμμ = ∂n(μ,h,�)

∂μ
+ 1

A

(
∂n(μ,h,�)

∂�

)2

,

(8)

χhh = ∂m(μ,h,�)

∂h
+ 1

A

(
∂m(μ,h,�)

∂�

)2

.

Here, A = ∂2�(μ,h,�)/∂�2, n = −∂�(μ,h,�)/∂μ is the
total density, and m = −∂�(μ,h,�)/∂h is the spin polariza-
tion.

We find that the expressions of χμμ and χhh contain some
momentum integrals of the following type:

Iij ∼
∫ ∞

0
kdk

QiQj

(E−
k )3

g(k), (9)

where Q1 = 1 − h2/ζk, Q2 = 1 − η2
k/ζk, and Q3 = 1 −

E2
k/ζk. The function g(k) approaches some nonzero constant

for k → 0. At C0 = 0, the integrals Iij are infrared safe since
the quantities Qi go as k2 for k → 0. Therefore, χμμ and
χhh are continuous across the phase transition. However, the
lth derivatives of the susceptibilities with respect to μ or h

contain momentum integrals whose infrared behavior goes as∫ ε

0
kdk

k4−2l

k3
=

∫ ε

0
dkk2−2l . (10)

For l = 2, the infrared divergence shows up. Therefore,
the fourth derivative of �(μ,h) is divergent at the phase
transition. Then the third derivative is discontinuous and hence
the susceptibilities show nonanalyticities. Based on these
observations, we conclude that the quantum phase transition
at C0 = 0 is of third order [15].

For homogeneous systems, the pair potential � and the
chemical potential μ are determined by imposing the total den-
sity n = k2

F/(2π ) = εF/π . The system can be characterized by
two dimensionless parameters: the attractive strength ln(kFa2D)
and the SOC strength λ/kF. Here, the 2D scattering length a2D

is defined as εB = 4e−2γ /(Ma2
2D) [16] with γ = 0.577 216

being Euler’s constant. The numerical results presented in this
paper are for ln(kFa2D) = 2 and λ/kF = 0.5. The quantum
phase transition occurs at h = hc = (μ2 + �2)1/2 
 0.51εF.
Increasing the attraction and/or SOC enhances the pairing
potential and hence the critical field hc, but does not lead
to qualitatively different results. As shown in Fig. 1, the
pair potential �, although it is suppressed by the ZF, goes
smoothly but never vanishes at large h. The chemical potential
μ goes smoothly and reaches a maximum at the phase
transition. For h > hc, the system is a topological superfluid
[12]. Figure 1(c) shows the susceptibilities χμμ and χhh.
They are continuous but not smooth at the phase transition,
as we expected. Figure 1(d) shows the bulk excitation gap
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FIG. 1. (Color online) Pair potential � (a), chemical potential μ (b), susceptibilities χμμ and χhh (c), and bulk excitation gap Eg (d) as
functions of h. All quantities are properly scaled by the Fermi energy εF = πn. The dashed lines denote the critical ZF hc = (μ2 + �2)1/2.

Eg = mink{E+
k ,E−

k }. It equals the pair potential � only at
h = 0. Near the phase transition, it goes nonmonotonically.

For a trapped system, h is fixed and the chemical potential
μ(r) = μ0 − V (r) in the local-density approximation (LDA),
where V (r) = 1

2ω2
⊥r2 is the trap potential. In the LDA, the

susceptibility χμμ(r) can be obtained by the relation

χμμ(r) = − 1

ω2
⊥r

dn(r)

dr
. (11)

Therefore, the quantum phase transition can be identified by
analyzing the density profile n(r).

Superfluid density and collective modes. To study the
behavior of the superfluid density ns and the collective modes
across the quantum phase transition, we consider the Gaussian-
fluctuation part S (2)

eff [φ,φ†]. It can be written in a bilinear form

S (2)
eff = 1

2

∑
Q

�†(Q)M(Q)�(Q), (12)

where Q = (iνn,q) with νn being the boson Matsubara
frequency, �(Q) = [φ(Q),φ†(−Q)]T, and the 2 × 2 matrix
M(Q) is the inverse of the collective-mode propagator. The
matrix elements of M(Q) are constructed by using the fermion

propagator G(K). We have

M11(Q) = M22(−Q)

= 1

U
+ 1

2

∑
K

Tr[G11(K + Q)G22(K)],

M12(Q) = 1

2

∑
K

Tr[G12(K + Q)G12(K)],

M21(Q) = 1

2

∑
K

Tr[G21(K + Q)G21(K)]. (13)

Taking the analytical continuation iνn → ω + i0+, the
dispersions ω(q) of the collective modes are determined by
the equation det M[ω(q),q] = 0.

We can decompose M11(ω,q) as M11(ω,q) = M+
11(ω,q) +

M−
11(ω,q), where M+

11(ω,q) and M−
11(ω,q) are even and

odd functions of ω, respectively. Meanwhile, M12(ω,q) and
M21(ω,q) are even functions of ω and can be expressed as
M12(ω,q) = M∗

21(ω,q) = M+
12(ω,q) + iM−

12(ω,q). The term
M−

12(ω,q) ∝ hλ2 vanishes when h or λ is zero. Then we
decompose the complex field φ(x) into its amplitude mode
ρ(x) and phase mode θ (x), φ(x) = ρ(x) + i�θ (x). The
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effective action S (2)
eff then takes the form

S (2)
eff = 1

2

∑
Q

[ρ(−Q) θ (−Q)]N(Q)

(
ρ(Q)
θ (Q)

)
, (14)

where the matrix N(Q) reads N11(Q) = 2(M+
11 + M+

12),
N22(Q) = 2�2(M+

11 − M+
12), N12(Q) = 2i�(M−

11 − iM−
12),

and N21(Q) = −2i�(M−
11 + iM−

12). Since M−
11(0,q) = 0 and

M−
12(ω,0) = 0, the amplitude and phase modes decouple

completely at (ω,q) = (0,0). At the saddle point we have
precisely M+

11(0,0) = M+
12(0,0). Therefore, the phase mode

at q = 0 is gapless; that is, the Goldstone sound mode or the
Anderson-Bogoliubov mode for neutral Fermi superfluids.

To study the low-energy behavior of the collective modes,
we make a small q and ω expansion of N(Q) at zero
temperature. In general, the expansion takes the form N11 =
A + Cq2 − Dω2 + · · · , N22 = Jq2 − Rω2 + · · · , and N12 =
N∗

21 = −iBω + · · · . The term M−
12(ω,q) does not contribute in

this expansion. The explicit forms of the expansion parameters
are given by [17]

A = 1

2

∑
α=±

∑
k

[
�2(
Eα

k

)3

(
1 + α

h2

ζk

)2

+ α
h4�2

Eα
k ζ 3

k

]
,

B = �

4

∑
α±

∑
k

[
ξk(

Eα
k

)3

(
1 + α

λ2k2

ζk
− h2E2

k

ζ 2
k

)

+ 4ξk

(E+
k + E−

k )2

h2

ζ 2
k

E2
k + αζk

Eα
k

]
,

D = 1

8

∑
α=±

∑
k

[(
Eα

k

)2 − �2(
Eα

k

)5

λ2k2ξ 2
k

ζ 2
k

+ �2(
Eα

k

)5

λ2k2h2

ζ 2
k

]

+
∑

k

1

(E+
k + E−

k )3

h2ξ 2
k

ζ 2
k

(
1 + E2

k − η2
k

E+
k E−

k

)
,

R =
∑

k

�2

(E+
k + E−

k )3

h2E2
k

ζ 2
k

(
1 + E2

k − η2
k

E+
k E−

k

+ 2λ2k2�2

E+
k E−

k E2
k

)

+ 1

8

∑
α=±

∑
k

�2(
Eα

k

)3

λ2k2ξ 2
k

ζ 2
k

,

J = n

4M
− 1

4M

∑
α=±

∑
k

λ2

2Eα
k

[ (
1 − λ2k2ξ 2

k

2ζ 2
k

)

+α

(
1 + h2E2

k

ζ 2
k

+ λ2k2h2�2

ζ 2
k E2

k

)
E2

k

2ζk

]
. (15)

The parameter A equals the quantity ∂2�/∂�2 in Eq. (5)
at the saddle point. The phase stiffness J is related to the
superfluid density ns by J = ns/(4M) (M = 1 in our units).
ns can also be obtained from its standard definition [18]. When
the superfluid moves with a uniform velocity υs , the pair field
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FIG. 2. Expansion parameters A, B, D, and R as functions of h. All quantities are properly scaled by the Fermi energy εF = πn.
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transforms as 
 → 
e2iMυs ·r. The superfluid density ns is
defined as the response of the thermodynamic potential � to
an infinitesimal velocity υs ; that is, �(υs) = �(0) + 1

2nsυ
2
s +

O(υ4
s ).

Analyzing the infrared behavior of the momentum integrals,
the analyticities of the expansion parameters across the phase
transition can be summarized as follows: (1) The phase
stiffness J and hence the superfluid density ns is smooth;
(2) The parameters A, B,and R are continuous but not smooth;
(3) D is divergent. The numerical results for these expansion
parameters and the sound velocity

cs =
√

J

R + B2/A
(16)

in the homogeneous system are shown in Figs. 2 and 3. Note
that the superfluid density does not equal the total density n

even at h = 0 due to the lack of Galilean invariance in the
presence of SOC [19]. Due to the nonanalyticities of A, B,
and R, the sound velocity cs also shows nonanalyticity at
the phase transition. Moreover, we find that ns and cs behave
oppositely in the normal and the topological superfluid phases.
They are suppressed by the ZF in the normal superfluid phase,
but get enhanced by the ZF in the topological superfluid
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FIG. 3. Superfluid density ns (divided by n) and velocity of
the Goldstone mode cs (divided the Fermi velocity υF = kF/M) as
functions of h.

phase. This is quite unusual since we generally expect that
the superfluidity should be suppressed by the ZF. On the
other hand, the divergence of D indicates that the amplitude
or Higgs mode becomes a soft mode around the phase
transition.

Analytical results for large Zeeman field. To understand the
unusual behavior of ns and cs in the topological superfluid
phase, it is useful to reexpress the mean-field theory in the
helicity representation [20]. The helicity basis (ψ+,ψ−)T is
related to the ordinary basis (ψ↑,ψ↓)T by a SU(2) transfor-
mation. In the helicity basis the single-particle Hamiltonian
is diagonal; that is, Hs = ∑

α=±
∑

k ξα
k ψ†

α(k)ψα(k) where
ξα

k = ξk + αηk. Therefore, the system can be viewed as a
two-band system. The ZF provides a band gap 2h at k = 0. In
the presence of pairing, the mean-field approximation for Hint

reads

Hint 
 1

2

∑
α,β=±

∑
k

[�αβ(k)ψ†
α(k)ψ†

β(−k) + H.c.]. (17)

The new k-dependent pair potentials �αβ(k) read
�+−(k) = −�−+(k) = −�s(k) and �++(k) = �∗

−−(k) =
−�t(k), where the interband and the intraband pair potentials
are given by �s(k) = h�/ηk and �t(k) = λ(kx − iky)�/ηk.
Using these new pair potentials, the quasiparticle dispersions
E±

k can be expressed as

E±
k =

√[√
ξ 2

k + |�s(k)|2 ± ηk
]2 + |�t(k)|2. (18)

For h � hc, we find that the pair potential goes as � 

a/h2, while the chemical potential μ 
 −h + b, where a and
b are some constants and b � h. Therefore, the upper band
with dispersion ξ+

k has a large gap and essentially plays no role
in fermion pairing. The lower band ξ−

k opens a Fermi surface
at

k = k̃F =
√

2[λ2 + μ +
√

λ4 + 2λ2μ + h2]. (19)

Since the pair potential � � h, the total density n is
carried by the lower band. We have n 
 ∑

k �(ηk − ξk) =
k̃2

F/(4π ) where �(x) is the standard step function, and
hence k̃F 
 √

2kF. Then the system can be regarded as a
weakly coupled px + ipy superfluid of spinless fermions
where the pairing occurs around the Fermi surface k = k̃F.
The interband pair potential �s(k) can be safely dropped
and we have E−

k 
 [(ξ−
k )2 + |�t(k)|2]1/2. Near the Fermi

surface, we get E−
k 
 [υ̃2

F(k − k̃F)2 + E2
g]1/2 where the Fermi

velocity υ̃F 
 √
2υF(1 − λ2/ηF) and the bulk excitation

gap reads Eg 
 �λk̃F/ηF. Here, we have defined ηF =
(λ2k̃2

F + h2)1/2.
Based on the above observations, the superfluid density ns

can be approximated as

ns 
 n

(
1 − λ2

ηF

)
. (20)

Therefore, for h → ∞, we have ns → n. It manifests the
fact that, for large h, the pairing occurs only in the lower
band which carries nearly the total density. Meanwhile, the
other expansion parameters A, B, and R are dominated
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by the terms that are peaked at the Fermi surface k = k̃F.
Using the same integral technique in BCS theory, we obtain
B2/A 
 0 and R 
 1/[8π (1 − λ2/ηF)]. Therefore, the sound
velocity cs → υF for h → ∞. This result can be reexpressed
as

cs 
 υ̃F√
2
, (21)

which is just the sound velocity of weakly coupled 2D Fermi
superfluids.

These analytical results show that, as the ZF is increased,
the system behaves more and more like a px + ipy superfluid
of spinless fermions. Therefore, the fermion pairing in the
topological superfluid phase feels less stress than in the normal
superfluid phase. This explains the unusual behaviors of ns and
cs at large ZF.

Indication for p- and d-wave pairings. Finally, we point
out that the infrared singularities which cause the nonan-
alyticities should also show up in other systems, such as
the 2D BCS-BEC evolution with p- and d-wave pairings
[21]. In such systems, the single-particle excitation spectrum
is Ek = [ξ 2

k + |�(k)|2]1/2, where �(k) ∼ k for p-wave and
�(k) ∼ k2 for d-wave pairings. At the quantum critical
point μ = 0, the dispersion at low k goes as Ek ∼ k for
p-wave and Ek ∼ k2 for d-wave pairings. Therefore, we
expect that the collective-mode properties in such systems
also show nonanalyticities. The nonanalytical behavior of
the collective modes can be measured by using Bragg
spectroscopy [22].

Acknowledgments. This work is supported by the Helmholtz
International Center for FAIR within the framework of the
LOEWE program. XGH also acknowledges the support from
Indiana University, Bloomington.

[1] For a review, see R. Casalbuoni and G. Nardulli, Rev. Mod. Phys.
76, 263 (2004).

[2] B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962); A. M.
Clogston, Phys. Rev. Lett. 9, 266 (1962); G. Sarma, J. Phys.
Chem. Solid 24, 1029 (1963).

[3] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I.
Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762
(1965).

[4] D. M. Eagles, Phys. Rev. 186, 456 (1969); A. J. Leggett, in
Modern Trends in the Theory of Condensed Matter (Springer-
Verlag, Berlin, 1980); P. Nozieres and S. Schmitt-Rink, J. Low
Temp. Phys. 59, 195 (1985); C. A. R. Sa de Melo, M. Randeria,
and J. R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993); J. R.
Engelbrecht, M. Randeria, and C. A. R. SadeMelo, Phys. Rev.
B 55, 15153 (1997); Q. Chen et al., Phys. Rep. 412, 1 (2005);
S. Giorgini et al., Rev. Mod. Phys. 80, 1215 (2008).

[5] M. W. Zwierlein et al., Science 311, 492 (2006); G. B. Partridge
et al., ibid. 311, 503 (2006).

[6] For theoretical papers, see D. E. Sheehy and L. Radzihovsky,
Ann. Phys. (NY) 322, 1790 (2007), and references
therein.

[7] J. Dalibard et al., Rev. Mod. Phys. 83, 1523 (2011); J. D. Sau,
R. Sensarma, S. Powell, I. B. Spielman, and S. Das Sarma, Phys.
Rev. B 83, 140510(R) (2011); D. L. Campbell, G. Juzeliunas, and
I. B. Spielman, Phys. Rev. A 84, 025602 (2011); G. Juzeliunas,
J. Ruseckas, and J. Dalibard, ibid. 81, 053403 (2010).

[8] K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein,
Phys. Rev. Lett. 95, 010403 (2005); J. Ruseckas, G. Juzeliunas,
P. Ohberg, and M. Fleischhauer, ibid. 95, 010404 (2005); T. D.
Stanescu, C. Zhang, and V. Galitski, ibid. 99, 110403 (2007);
X. J. Liu, M. F. Borunda, X. Liu, and J. Sinova, ibid. 102, 046402
(2009); Y. J. Lin et al., Nature (London) 462, 628 (2009); Y. J.
Lin, M. F. Borunda, X. Liu, and J. Sinova, ibid. 471, 83 (2011).

[9] P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012); L. W. Cheuk,
A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W.
Zwierlein, ibid. 109, 095302 (2012).

[10] J. P. Vyasanakere and V. B. Shenoy, Phys. Rev. B 83, 094515
(2011); J. P. Vyasanakere, S. Zhang, and V. B. Shenoy, ibid.
84, 014512 (2011); H. Hu, L. Jiang, X. J. Liu, and H. Pu,

Phys. Rev. Lett. 107, 195304 (2011); Z.-Q. Yu and H. Zhai,
ibid. 107, 195305 (2011); M. Gong, S. Tewari, and C. Zhang,
ibid. 107, 195303 (2011); M. Iskin and A. L. Subasi, ibid. 107,
050402 (2011); L. Han and C. A. R. Sa de Melo, Phys. Rev. A
85, 011606(R) (2012).

[11] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004
(2001).

[12] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008);
C. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, ibid.
101, 160401 (2008); J. D. Sau, R. M. Lutchyn, S. Tewari, and
S. Das Sarma, ibid. 104, 040502 (2010); J. D. Sau, S. Tewari,
and S. Das Sarma, Phys. Rev. B 84, 085109 (2011); J. D. Sau,
S. Tewari, R. Lutchyn, T. Stanescu, and S. Das Sarma, ibid.
82, 214509 (2010); P. Ghosh, J. D. Sau, S. Tewari, and S. Das
Sarma, ibid. 82, 184525 (2010); S. Tewari et al., New J. Phys.
13, 065004 (2011); M. Sato and S. Fujimoto, Phys. Rev. B
79, 094504 (2009); M. Sato, Y. Takahashi, and S. Fujimioto,
Phys. Rev. Lett. 103, 020401 (2009); M. Sato, Y. Takahashi, and
S. Fujimoto, Phys. Rev. B 82, 134521 (2010).

[13] The SOC term can be mapped to the standard Rashba SOC
λ(σxp̂y − σyp̂x) by a spin rotation σx → σy and σy → −σx .
For neutral cold atoms, the SOC can be realized by coupling
the atoms to a synthetic 2D non-Abelian gauge potential A =
−λh̄(σxex + σyey).

[14] M. Randeria, J. M. Duan, and L. Y. Shieh, Phys. Rev. Lett. 62,
981 (1989).

[15] Precisely speaking, the quantum phase transition is of nth order,
where 2 < n � 3.

[16] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. B 82, 054524
(2010); G. Bertaina and S. Giorgini, Phys. Rev. Lett. 106, 110403
(2011).

[17] The details of the derivations will be published elsewhere; see
L. He and X.-G. Huang, arXiv:1207.2810.

[18] E. Taylor, A. Griffin, N. Fukushima, and Y. Ohashi, Phys. Rev.
A 74, 063626 (2006); L. He, M. Jin, and P. Zhuang, Phys. Rev.
B 74, 024516 (2006).

[19] K. Zhou and Z. Zhang, Phys. Rev. Lett. 108, 025301 (2012);
J. P. Vyasanakere and V. B. Shenoy, arXiv:1201.5332; L. He
and X.-G. Huang, Phys. Rev. Lett. 108, 145302 (2012); Phys.
Rev. B 86, 014511 (2012).

043618-6

http://dx.doi.org/10.1103/RevModPhys.76.263
http://dx.doi.org/10.1103/RevModPhys.76.263
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1016/0022-3697(63)90007-6
http://dx.doi.org/10.1016/0022-3697(63)90007-6
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/PhysRev.186.456
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1103/PhysRevLett.71.3202
http://dx.doi.org/10.1103/PhysRevB.55.15153
http://dx.doi.org/10.1103/PhysRevB.55.15153
http://dx.doi.org/10.1016/j.physrep.2005.02.005
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1126/science.1122318
http://dx.doi.org/10.1126/science.1122876
http://dx.doi.org/10.1016/j.aop.2006.09.009
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/PhysRevB.83.140510
http://dx.doi.org/10.1103/PhysRevB.83.140510
http://dx.doi.org/10.1103/PhysRevA.84.025602
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevLett.99.110403
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevB.83.094515
http://dx.doi.org/10.1103/PhysRevB.83.094515
http://dx.doi.org/10.1103/PhysRevB.84.014512
http://dx.doi.org/10.1103/PhysRevB.84.014512
http://dx.doi.org/10.1103/PhysRevLett.107.195304
http://dx.doi.org/10.1103/PhysRevLett.107.195305
http://dx.doi.org/10.1103/PhysRevLett.107.195303
http://dx.doi.org/10.1103/PhysRevLett.107.050402
http://dx.doi.org/10.1103/PhysRevLett.107.050402
http://dx.doi.org/10.1103/PhysRevA.85.011606
http://dx.doi.org/10.1103/PhysRevA.85.011606
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.101.160401
http://dx.doi.org/10.1103/PhysRevLett.101.160401
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.84.085109
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.184525
http://dx.doi.org/10.1088/1367-2630/13/6/065004
http://dx.doi.org/10.1088/1367-2630/13/6/065004
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevB.82.134521
http://dx.doi.org/10.1103/PhysRevLett.62.981
http://dx.doi.org/10.1103/PhysRevLett.62.981
http://dx.doi.org/10.1103/PhysRevB.82.054524
http://dx.doi.org/10.1103/PhysRevB.82.054524
http://dx.doi.org/10.1103/PhysRevLett.106.110403
http://dx.doi.org/10.1103/PhysRevLett.106.110403
http://arXiv.org/abs/1207.2810
http://dx.doi.org/10.1103/PhysRevA.74.063626
http://dx.doi.org/10.1103/PhysRevA.74.063626
http://dx.doi.org/10.1103/PhysRevB.74.024516
http://dx.doi.org/10.1103/PhysRevB.74.024516
http://dx.doi.org/10.1103/PhysRevLett.108.025301
http://arXiv.org/abs/1201.5332
http://dx.doi.org/10.1103/PhysRevLett.108.145302
http://dx.doi.org/10.1103/PhysRevB.86.014511
http://dx.doi.org/10.1103/PhysRevB.86.014511


UNUSUAL ZEEMAN-FIELD EFFECTS IN TWO- . . . PHYSICAL REVIEW A 86, 043618 (2012)

[20] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[21] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000); S. S.

Botelho and C. A. R. Sa de Melo, ibid. 71, 134507 (2005);
J. Low Temp. Phys. 140, 409 (2005).

[22] D. M. Stamper-Kurn, A. P. Chikkatur, A. Gorlitz, S. Inouye,
S. Gupta, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 83,
2876 (1999); T. A. Corcovilos, S. K. Baur, J. M. Hitchcock, E. J.
Mueller, and R. G. Hulet, Phys. Rev. A 81, 013415 (2010).

043618-7

http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.71.134507
http://dx.doi.org/10.1007/s10909-005-7324-3
http://dx.doi.org/10.1103/PhysRevLett.83.2876
http://dx.doi.org/10.1103/PhysRevLett.83.2876
http://dx.doi.org/10.1103/PhysRevA.81.013415



