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Location of the vortex phase in the phase diagram of a rotating two-component Fermi gas
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We determine the conditions under which superfluidity with and without quantized vortices appears in a
weakly interacting two-component atomic Fermi gas that is trapped in a rotating cylindrical symmetric harmonic
potential. We compute the phase diagram as a function of rotation frequency, scattering length, temperature, total
number of trapped atoms, and population imbalance. Our analysis is based on solving the Bogoliubov–de Gennes
equation.
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I. INTRODUCTION

Superfluids are fluids that can flow with hardly any friction.
If a superfluid is put into a rotating container, vortices
carrying quantized circulation can be formed. These vortices
are the hallmark of superfluidity and have been observed
experimentally in 4He, in atomic Bose-Einstein condensates
[1,2], and in a two-component atomic Fermi gas made out of
6Li atoms [3,4].

In this article we will focus on vortex formation in an
equilibrated weakly interacting two-component Fermi gas
that is trapped in a rotating cylindrical symmetric harmonic
potential. The two components of this gas consist of atoms
in different hyperfine states, and will be labeled by ↑,↓.
We will consider a situation in which both components have
equal mass M . In experiment, one can vary the strength of
the interaction between the components using the Feshbach
resonance. Furthermore, one can control the rotation frequency
�, temperature T , total number of atoms, and the relative
difference between the number of atoms in each component P

(population imbalance) [3,4]. When the interaction is tuned to
be attractive, the gas is cooled to low enough T , and � and P

are made small enough, the components will form Cooper pairs
resulting in a Bardeen-Cooper-Schrieffer (BCS) superfluid [5].

The aim of this article is to determine in which region of
the parameter space, that is accessible to experiment, vortices
will be formed. So far only very limited information about
this region is available. Only for weak interactions, T = 0 and
P = 0, the lower critical � has been obtained theoretically.
This frequency was estimated in [6] using a Ginzburg-Landau
approach and computed by the author through solving the
Bogoliubov–de Gennes (BdG) equation [7]. Experimentally
only the critical P for vortex formation at one specific � has
been determined for different scattering lengths in the strongly
interacting regime [4].

We will consider the following trapping potential: U (x) =
1
2Mω2ρ2, where we have introduced cylindrical coordinates,
i.e., x = (ρ cos φ,ρ sin φ,z). This trapping potential implies
harmonic confinement with frequency ω in the x-y plane and
infinite extent in the z direction. In an experiment this situation
can be approached by choosing the trapping frequency in the z

direction (ωz) much smaller than ω. The characteristic length

*warringa@th.physik.uni-frankfurt.de

scale of the potential is the harmonic oscillator length λ =√
h̄/Mω. In the setup of Ref. [4] the radial trapping frequency

was taken to be ω/(2π ) = 110 Hz. In that case λ ∼ 3.9 μm
and the characteristic energy scale h̄ω/kB ∼ 5.3 nK.

Rotation of the system at constant angular frequency � in
the x-y plane can be achieved by superimposing the following
time-dependent stirring perturbation to the trapping poten-
tial δU (x,t) = 1

2Mω2ε[(x2 − y2) cos(2�t) + 2xy sin(2�t)],
where ε denotes the stirring anisotropy. From now on, we will
work in a frame that is rotating with frequency � in the x-y
plane. The stirring perturbation is static in this frame. In this
article we will assume that the stirring anisotropy |ε| is very
small. In that case the deformation of the trapping potential
due to stirring can be neglected (ε = 0) to first approximation,
so that the trapping potential in the rotating frame then reads
U (x).

The order parameter for superfluidity is the pairing field

(x). For a single vortex that is located at the center of the
trap it has the following form: 
(x) = 
̃(ρ) exp(ikφ), with k

the winding number of the vortex. The k = 0 case corresponds
to a superfluid without vortices. We will assume that 
̃(ρ) ∈
R. There is no superfluidity at the core of a vortex, hence

̃(ρ = 0) = 0 for k �= 0. If � = 0, T = 0, and P = 0, the
whole system of atoms forms a vortex-free superfluid. In that
situation the superfluid with a vortex is metastable. This is
because energy that is contained in the superfluid condensate
is lost near the vortex core, the atoms traveling around the
vortex core have an average velocity resulting in a kinetic
energy cost, and the system has to expand to compensate for
the density depletion at the vortex core [7]. This expansion
costs energy because of the attractive interaction.

Starting from a situation in which � = 0, let us now imagine
increasing �. If both T = 0 and P = 0, the whole system
stays superfluid up to a critical frequency �b. Above �b part
of the system will turn into a normal gas due to breaking of
Cooper pairs [8]. If either T �= 0 or P �= 0 there are unpaired
atoms present for any nonzero �. The unpaired atoms are
predominantly located in the outer regions of the system. They
rotate like a rigid body and acquire therefore rotational energy.
A vortex is also a source of rotational energy since it induces
angular momentum in the system. If the rotational energy gains
overcome the costs, a single vortex will be preferred above a
frequency �l . Because of symmetry and energy arguments,
this vortex has unit winding number (k = 1) and is located at
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the center of the trap (ρ = 0) [2,6]. By further increasing �

more vortices can be created resulting in a vortex lattice [9,10].
At the same time increasing � will shrink the size of the
superfluid region [11], while the system as a whole will
expand due to the centrifugal force. At some point the
superfluid region will be so small that it can only support
a single vortex at ρ = 0. By further increasing � this vortex
will disappear at a upper critical rotation frequency �u. Then
at an even larger rotation frequency �s superfluidity will
vanish completely via a second order transition [9]. The upper
critical frequency for superfluidity �s has been computed
in Refs. [11,12] for a balanced gas using the local density
approximation (see also [13] for related analyses of the phase
boundary of superfluidity). In this article we will obtain �s by
solving the BdG equation. Finally, above � = ω the system
will be torn apart.

As pointed out above, the first vortex that appears and
the last vortex that disappears when increasing � has k = 1
and is located at ρ = 0. Moreover, in experiment it has been
observed that the number of vortices goes continuously to
zero when increasing P at fixed � [4]. Therefore, we can
map out the entire region in which one or more vortices
are thermodynamically the lowest energy state globally, by
determining the conditions under which the k = 1 situation
has lower Helmholtz free energy than the k = 0 situation. For
studies of real-time dynamics of vortex formation we refer to
Refs. [10,14]. To obtain �s we will determine the point at
which 
(ρ = 0) vanishes for k = 0.

II. SETUP

We will now briefly discuss the details of the calculation,
a more extensive discussion can be found in our earlier
work [7]. To obtain the Helmholtz free energy one first
needs to compute the pairing field 
(x) = 
̃(ρ) exp(ikφ)
and the density profiles ρ↑↓(x) = ρ↑↓(ρ) for each component
separately. For a weakly interacting gas these can be found by
solving the BdG equation self-consistently:(

H↑(�) 
(x)


∗(x) −H∗
↓(�)

) (
ui(x)

vi(x)

)
= Ei

(
ui(x)

vi(x)

)
. (1)

Here H↑↓ contains the single-particle Hamiltonian in the
rotating frame, the Hartree self-energy, and the chemical po-
tential μ↑↓. Explicitly, it reads H↑,↓(�) = p2

2M
+ 1

2Mω2ρ2 −
�Lz − μ↑,↓+gn↓,↑(ρ), where the z component of the angular
momentum is given by Lz = −ih̄∂/∂φ, and g = 4πah̄2/M is
the coupling constant with a the s-wave scattering length.
The wave functions ui(x) and vi(x) have to be normal-
ized as

∫
d3x [|ui(x)|2 + |vi(x)|2] = 1. The number densi-

ties are given by n↑(x) = ∑
i f (Ei)|ui(x)|2 and n↓(x) =∑

i f (−Ei)|vi(x)|2, where f (E) = [exp(βE) + 1]−1 with
β = 1/(kBT ). The pairing field follows from the regular (reg)
part of the anomalous propagator in the following way 
(x) =
gG

reg
↑↓(x,x) where G↑↓(x,x′) = ∑

i f (Ei)ui(x)v∗
i (x′). To ob-

tain this regular part we have used a method [7] based on the
procedures discussed in Refs. [15,16].

We will consider a fixed number of atoms per unit length
λ in the z direction, and denote this number by N↑,↓ =
λ

∫
dx dy n↑,↓(x). We will write N = N↑ + N↓ for the total

number of atoms per unit length. The population imbalance or
polarization is defined as P = (N↑ − N↓)/N . The chemical
potentials μ↑,↓ will be solved for such that the required N↑,↓
is obtained.

To solve the BdG equation numerically, we have discretized
the radial part of the wave functions on a Lagrange mesh
[17] based on Maxwell polynomials [7]. Typically we could
reach a relative accuracy of order 10−3 with about 64 to 96
mesh points for N = 1000. The angular and z dependence
of the wave functions were treated exactly. Integration over
the z momentum was performed using the adaptive Simpson
method. To solve for self-consistency we have used the
Newton-Broyden rootfinding method. The full details of our
numerical procedure are explained in [7]. Examples of pairing
field and density profiles with and without a vortex can be
found in Refs. [7,15,18,19]. In particular, we have obtained
excellent agreement with Ref. [19], in which a vortex profile
for an imbalanced gas that is also trapped in a cylindrical
symmetric harmonic potential is presented.

Once the pairing field and the density profiles have been
obtained, the Helmholtz free energy per unit length (which is
ultraviolet finite) can be computed in the following way:

F = − λ

L

∑
i

[ |Ei |
2

+ 1

β
ln(1 + e−β|Ei |)

]
+ μ↑N↑ + μ↓N↓

− λ

L

∫
d3x [G↑↓(x,x)∗
(x) + gn↑(x)n↓(x)]

+ λ

L

∑
i

εi , (2)

where εi are the eigenvalues of the Hartree-Fock Hamiltonian
HHF = [H↑(� = 0) + H↓(� = 0)]/2 and L is the length of
the system in the z direction which is taken to be infinite.
We have computed 
F = Fk=1 − Fk=0 for several values of
the external parameters and obtained the phase boundary by
determining the point at which 
F = 0. Typically we could
locate this boundary with a relative accuracy of about 10−2 to
10−3.

III. RESULTS

We will now present several phase diagrams from which
it can be seen for which values of the rotation frequency �,
scattering length a, temperature T , total number of atoms per
unit length N , and imbalance P , superfluidity with one or
more vortices will be formed (light gray area). Also we will
indicate in these phase diagrams when the system exhibits
superfluidity without any vortex (dark gray area) and when
there is no superfluidity (SF) at all in the system (white area).
As a measure of the interaction strength we will use 1/|kF0a|,
where kF0 denotes the Fermi momentum of the superfluid at
T = 0, P = 0, � = 0, and ρ = 0.

In Ref. [7], we have computed the critical frequency for
unpairing (�b) and the lower critical frequency for vortex
formation (�l) as a function of scattering length for T = 0,
P = 0, and N = 1000. In Fig. 1 we display the full phase
diagram at T ≈ 0. Here we write T ≈ 0 to indicate that the
vortex phase boundaries and the unpairing transition were
computed at T = 0 exactly, whereas �s was computed at
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FIG. 1. (Color online) Phase diagram: a-� plane, for T ≈ 0,
N = 1000, and P = 0. The dotted line indicates �b. Here 0.8 �
1/(kF0|a|) � 2.6.

T = 0.01h̄ω. We have used this very small T to ensure that

̃(ρ = 0) approaches zero continuously when increasing �,
so that we could determine �s . Exactly at T = 0, 
̃(ρ = 0)
does not seem to vanish when increasing �, although it does
become very small.

The successive transitions that one encounters when
increasing � were already described in the Introduction and
can be clearly seen in the diagram. The first transition is the
unpairing transition occurring at � = �b. It is of second order
and turns into a crossover for T > 0. Therefore, it is a quantum
phase transition and at �b the system resides at a quantum
critical point. If |a| increases, it will become more difficult
to break the Cooper pairs, hence �b grows in that case. For
|a| � 0.085λ vortices will be formed for �l � � � �u. The
structure of �l is a result of the interplay of two effects [7]. The
first is that the energy cost of a vortex at � = 0 increases when
increasing |a|. That naturally leads to a larger �l . The second
effect is that unpairing becomes easier for smaller |a|, which
favors the superfluid without a vortex. This leads to an increase
of �l for weak interactions and is the reason that for small |a|
no vortices will be formed for any �. The size of the superfluid
region in the system shrinks above �b when increasing �. If
|a| grows at fixed �, it becomes more difficult to destroy
superfluidity by rotation. This results in a larger superfluid
region, so that a vortex can fit more easily. For these reasons
both �l and the upper critical frequency for superfluidity �s
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FIG. 2. (Color online) Phase diagrams: N -� plane, for T ≈ 0,
P = 0, and 1/(kF0|a|) = 1.2 (left) and 1/(kF0|a|) = 0.8 (right). The
dotted line indicates �b.
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FIG. 3. (Color online) Phase diagrams: �-T plane, for N =
1000, P = 0, and a = −0.10λ [left, 1/(kF0|a|) = 1.2] and a =
−0.13λ [right, 1/(kF0|a|) = 0.8]. The dot indicates the unpairing
quantum critical point.

grow with increasing |a|. The behavior of �s is qualitatively
in agreement with the results of Refs. [11,12]. The staircase
behavior of �u might be explained by the filling of Landau
levels.

This phase diagram will be modified quantitatively when
changing N . However, the qualitative structure will remain
the same if N is large enough. To illustrate this, we display in
Fig. 2 the phase diagram in the N -� plane for two different
interaction strengths. A larger N implies a larger system, and
hence for a given � the atoms at the boundaries have a larger
velocity. This makes pairing more difficult, leading to a smaller
�b as can be seen in Fig. 2. To explain the behavior of �l ,
we can use that the rotational energy gain of the vortex is
proportional to the angular momentum which is proportional
to N . The energy costs of the vortex grow much slower when
increasing N . Hence a larger N leads to a smaller �l . Below
a certain N no vortices will be formed for any �. The upper
critical frequencies �u and �s increase if N grows.

If T is increased the window in � in which vortices are
formed narrows. This can be seen from Fig. 3 in which we
display the phase diagram in the �-T plane for N = 1000,
P = 0, and two different scattering lengths. Above a certain
T , vortices will not be formed for any � while the system
is still partly superfluid. It is the easiest to make vortices at
intermediate �, since in that case the window in T is the
largest. This �-T phase diagram is qualitatively very similar
to that of a rotating Bose-Einstein condensate [20].

In Fig. 4 we display the phase diagram in the �-P plane
for T = 0 and two different scattering lengths. The larger the
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FIG. 4. (Color online) As in Fig. 3, but now in �-P plane for
T = 0.
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FIG. 5. (Color online) Phase diagram: P -T plane, for N = 1000,
� = 0.636ω, and a = −0.13λ. Here 1/(kF0|a|) = 0.8.

P , the narrower the window in � in which vortices are formed
becomes. Above a certain P part of the system can still be
superfluid, but vortices will not be formed for any �.

From Figs. 3 and 4 it can be seen that the critical T and
critical P for vortex formation and superfluidity grow when
increasing the interaction strength. When � is increased, �s

always decreases. Especially for large interaction strengths �u

and �s lie very close each other.
In the experiment described in Ref. [4] a strongly interacting

two-component Fermi gas made out of ∼7 × 106 atoms was
trapped in a cigar-shaped potential with a frequency ratio
of ωz/ω = 23/110. Using the Thomas-Fermi approximation
at T = 0 we estimate that in this experiment N (z = 0) ∼
1 × 105. The atoms were stirred with a laser at a frequency
of � = (70/110)ω ≈ 0.636ω. After stirring, one waited until
the system had equilibrated and measured the number of
vortices as a function of P . In this way an upper critical
imbalance for vortex formation (Pc) could be determined.
Although this situation is not completely equivalent to our
setup it is nevertheless interesting to make a comparison to
this experiment. Therefore, we display in Fig. 5 the phase
diagram in the P -T plane for � = 0.636ω, N = 1000, and
1/(kF0|a|) = 0.8. In qualitative agreement with the experiment
it can be seen that Pc is weakly dependent on T for small
temperatures. We find that for P > Pc there is a small window
in which part of the system is in the superfluid phase without
any vortex, as in the experiment.

In Fig. 6 we display the phase diagram in the N -P
plane for T = 0, � = 0.636ω and two different interaction
strengths. As expected and seen in experiment, weaker
interactions imply a lower Pc. In the experiment it was
found that Pc ∼ 0.1 at 1/(kF0|a|) = 0.5 [4]. The values of
Pc we have obtained seem to be large compared to this value,
because we consider weaker interactions and our N (z = 0) is
much smaller. This quantitative difference could have been
caused by the different stirring method, by the shape of
the trapping potential, or by the fact that the temperature
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FIG. 6. (Color online) Phase diagrams: N -P plane, for T =
0, � = 0.636ω, and 1/(kF0|a|) = 1.0 (left) and 1/(kF0|a|) = 0.8
(right).

in the experiment was not exactly zero. Also it could signal
that dynamical effects of vortex formation could be important
or that one should take into account beyond the mean field
corrections at 1/(kF0|a|) = 0.8.

IV. CONCLUSIONS

We have discussed the full phase diagram of a trapped,
rotating, and weakly interacting two-component Fermi gas
including vortices. We have made detailed predictions for the
conditions under which superfluidity with and without vortices
is formed as a function of rotation frequency, scattering length,
temperature, number of atoms, and population imbalance. The
phase diagrams we have obtained are in principle directly
comparable to a possible future experimental determination.
To obtain our results we have used the Bogoliubov–de Gennes
approximation. This implies that our results are in principle
quantitatively reliable for weak enough interactions. However,
how weak this is we cannot say at this point. It is therefore
important to obtain a reliable estimate of the accuracy of
our results for which we need to compute the higher order
corrections in the interaction parameter [7]. Obtaining higher
order corrections or applying density functional theory [21]
can also give us reliable results for strongly coupled Fermi
gases in the unitary regime. Our analysis can be extended
to more complicated systems, like Fermi gases with p-wave
pairing, Fermi gases with more than two components, and
Fermi gases in which the two components have unequal mass.
This will be useful for the experimental search for superfluidity
in such systems.
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