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Polaronic properties of an impurity in a Bose-Einstein condensate in reduced dimensions
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The application of optical lattices allows a tuning of the geometry of Bose-Einstein condensates to effectively
reduced dimensions. In the context of solid-state physics the consideration of the low-dimensional Fröhlich
polaron results in an extension of the polaronic strong coupling regime. With this motivation we apply the
Jensen-Feynman variational principle to calculate the ground-state properties of the polaron consisting of an
impurity in a Bose-Einstein condensate in reduced dimensions. Also the response of this system to Bragg
scattering is calculated. We show that reducing the dimension leads to a larger amplitude of the polaronic
features and is expected to facilitate the experimental observation of polaronic properties. In optical lattices not
only Feshbach resonances but also confinement-induced resonances can be used to tune the polaronic coupling
strength. This opens up the possibility to experimentally reveal the intermediate and strong polaronic coupling
regimes and resolve outstanding theoretical questions regarding polaron theory.
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I. INTRODUCTION

In recent years ultracold atomic systems have revealed
themselves as quantum simulators for many-body theories
[1]. Their high degree of tunability makes them especially
attractive for this purpose. An example of a system that
can be simulated in this way is the Fröhlich polaron,
which is well-known from solid-state physics, where it is
used to describe charge carriers in a polar solid (see, for
example, Ref. [2] for an extended overview). In the context
of ultracold gases the system of impurities embedded in a
Bose-Einstein condensation can be mapped onto the Fröhlich
polaron Hamiltonian [3,4]. In this case the role of the charge
carriers is played by the impurities and the lattice vibrations
are replaced by the Bogoliubov excitations. Recently, this
system has gained much interest both theoretically [5–14] and
experimentally [15–19].

For the present work we focus on a single Fröhlich
polaron for which the Hamiltonian cannot be analytically
diagonalized and one has to rely on approximation methods.
The most advanced theory for the ground-state properties is
the Jensen-Feynman variational principle [20], which can be
extended through the Feynman-Hellwarth-Iddings-Platzman
(FHIP) approximation for the response properties [21,22].
The optical absorption of the Fröhlich solid-state polaron
was later also obtained through a diagrammatic Monte Carlo
calculation and a comparison with the FHIP approximation
showed a good agreement at weak and intermediate polaronic
coupling but in the strong coupling regime deviations were
revealed [23,24]. Since there is no known material that
exhibits the strong coupling behavior only the weak and
intermediate coupling regime could be experimentally probed,
which resulted in a good agreement with the theory [25,26].
A better understanding of the strong coupling regime could
also shed light on the possible role of polarons and bipolarons
in unconventional pairing mechanisms for high-temperature
superconductivity [27,28]. Recently, it was shown that for an
impurity in a condensate the use of a Feshbach resonance
allows an external tuning of the polaronic coupling parameter,
which makes it a promising system to probe the strong

polaronic coupling regime for the first time [10]. Recent
experiments have shown the feasibility of using Feshbach
resonances for the tuning of interparticle interactions between
different species [29–31].

Since the impurities are considered as not charged it is not
possible to conduct optical absorption measurements to reveal
the polaronic excitation structure, as is possible for the Fröhlich
solid-state polaron. It was shown in Ref. [13] that Bragg
spectroscopy is suited to experimentally probe the polaronic
excitation structure of an impurity in a condensate. Bragg
scattering is a well-established experimental technique in the
context of ultracold gases (see, for example, Refs. [32,33]).
The setup consists of two laser beams with different frequen-
cies ω1 and ω2 and different momenta �k1 and �k2 that are
radiated on the impurity. The impurity can then absorb a photon
from laser 1 and emit it to laser 2, during which process it has
gained an energy ω = ω1 − ω2 and a momentum �k = �k1 − �k2.
The response is reflected in the number of impurities that have
gained a momentum �k as a function of �k and ω. This number
is proportional to the imaginary part of the density response
function χ (ω,�k) [34]:

χ (ω,�k) = i

h̄

∫ ∞

0
dteiωt 〈[ρ̂�k(t),ρ̂†

�k]〉, (1)

with ρ̂�k the density operator of the impurity.
Another powerful tool in the context of ultracold gases

is the application of optical lattices, which can be employed
to modify the geometry of the system [35]. This makes it
possible to confine the system in one or two directions such that
the confinement length is much smaller than all other typical
length scales, which results in an effectively low-dimensional
system. For these systems the interparticle interactions can be
described through a contact pseudopotential with an amplitude
that is a function of the three-dimensional scattering length
and the confinement length. This makes it possible to experi-
mentally tune the interactions between the particles by varying
the strength of the confinement which results in a resonant
behavior. These confinement-induced resonances have been
studied both theoretically [36–40] and experimentally [41–45].
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In the present work we adapt the calculations of the
ground-state and response properties of the polaronic system
consisting of an impurity in a condensate to the case of
reduced dimensions. This was done for the Fröhlich solid-state
polaron in Refs. [46–48], which led to the polaronic scaling
relations. These are applicable for polaronic systems of which
the interaction amplitude V�k (see later) is a homogeneous
function. Unfortunately, this is not the case for the polaron
consisting of an impurity in a Bose-Einstein condensate. We
start by showing that also in lower dimensions the Hamiltonian
of an impurity in a condensate can be mapped onto the Fröhlich
polaron Hamiltonian. Then the Jensen-Feynman variational
principle is applied to calculate an upper bound for the free
energy and an estimation of the effective mass and the radius
of the polaron, as was done in Ref. [10] for the three-
dimensional case. Subsequently, the treatment of Ref. [13]
for the response to Bragg spectroscopy in three dimensions
is adapted to reduced dimensions. All results are applied
to the specific system of a lithium-6 impurity in a sodium
condensate.

II. IMPURITY IN A CONDENSATE IN d DIMENSIONS

The Hamiltonian of an impurity in an interacting bosonic
gas is given by

H̃ = p̂2

2mI

+
∑

�k
E�kâ

†
�kâ�k + 1

2

∑
�k,�k′,�q

VBB(�q )̂a†
�k′−�q â

†
�k+�q â�kâ�k′

+
∑
�k,�q

VIB(�q)ei �q ·̂r â†
�k′−�q â�k′ . (2)

The first term in this expression represents the kinetic energy
of the impurity with p̂ ( r̂ ) the momentum (position) operator
of the impurity with mass mI . The second term on the
right-hand side of (2) describes the kinetic energy of the
bosons with creation (annihilation) operators {̂a†

�k} ({̂a�k}) and

energy E�k = h̄2k2

2mB
− μ, where μ is the chemical potential of

the bosons and mB their mass. The last two terms represent
the interaction energy with VBB(�q) the Fourier transform
of the boson-boson interaction potential and VIB(�q) of the
impurity-boson interaction potential. All vectors in expression
(2) are considered as d-dimensional.

In Refs. [49] and [50] it is shown that in one and two
dimensions, respectively, at temperatures well below a critical
temperature Tc a trapped weakly interacting Bose gas is
characterized by the presence of a true condensate, while just
below Tc this is a quasicondensate. A quasicondensate exhibits
phase fluctuations with a radius Rφ that is smaller than the
size of the system but greatly exceeds the coherence length
ξ [49,50]. Since the radius of the polaron Rpol is typically of
the order ξ (see later) we have Rpol � Rφ , which shows that
the polaronic features are also present in a quasicondensate.
In the following we no longer make the distinction and use
the name condensate for both situations. The presence of a
condensate can be expressed through the Bogoliubov shift,
which (within the local density approximation) transforms the
Hamiltonian (2) into Ref. [10]

Ĥ = EGP + gIBN0 + Ĥpol, (3)

where use was made of contact interactions, that is, VBB(�q) =
gBB and VIB(�q) = gIB . In order to have a stable condensate the
boson-boson interaction should be repulsive, that is, gBB > 0.
The sign of the impurity-boson interaction strength gIB is, in
principle, arbitrary; however, for the Bogoliubov approxima-
tion to be valid the depletion of the condensate around the im-
purity must remain smaller than the condensate density, which
means the formalism is not valid for a large negative gIB [7,51].
The first term on the right-hand side of Eq. (3) represents the
Gross-Pitaevskii energy EGP of the condensate and the second
term gives the interaction of the impurity with the condensate
(with N0 the number of condensed bosons in a unit volume).
The third term is the polaron Hamiltonian, which describes
the interaction between the impurity and the Bogoliubov
excitations:

Ĥpol = p̂2

2mI

+
∑
�k �=0

h̄ω�kα̂
†
�kα̂�k +

∑
�k �=0

V�kρI (�k)(̂α�k + α̂
†
−�k), (4)

where {̂α†
�k} ({̂α�k}) are the creation (annihilation) operators of

the Bogoliubov excitations with dispersion,

h̄ω�k = h̄2k

2mBξ

√
(ξk)2 + 2, (5)

with ξ the healing length: ξ =
√

h̄2

2mBN0gBB
. The interaction

amplitude V�k is given by

V�k =
√

N0gIB

(
(ξk)2

(ξk)2 + 2

)1/4

. (6)

III. POLARONIC GROUND-STATE PROPERTIES
IN d DIMENSIONS

In this section we summarize the main results from
standard polaron theory regarding the ground-state properties
with emphasis on the dependency on the dimension (see,
for example, Ref. [52] for more details) and we apply
this to the polaronic system consisting of an impurity in a
condensate.

A. Jensen-Feynman variational principle

The most accurate available description of the ground-state
properties of a polaron is based on the Jensen-Feynman
inequality, which states [20,53]

F � F0 + 1

h̄β
〈S − S0〉S0 , (7)

with F the free energy of the system, F0 the free energy of
a trial system, β = (kBT )−1 the inverse temperature with kB

the Boltzmann constant, S the action of the system, and S0

the action of the trial system. It was suggested by Feynman
to consider the particle harmonically coupled to a mass M

with a coupling constant MW 2 for the trial system [20]. This
leads to the following expression for the Jensen-Feynman
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inequality (7) [46]:

F � d

β

{
ln

[
2 sinh

(
βh̄	

2

)]
− ln

[
2 sinh

(
βh̄	

2
√

1+M/m

)]}

− 1

β
ln

[
V

(
m + M

2πh̄2β

)d/2]

− d

2β

M

m + M

[
h̄β	

2
coth

(
h̄β	

2

)
− 1

]

−
∑

�k

|V�k|2
h̄

∫ h̄β/2

0
duG(�k,u)MM,	(�k,u), (8)

with d the dimension, V the volume, 	 = W
√

1 + M/mI ,
and G(�k,u) the Green’s function of the Bogoliubov
excitations,

G(�k,u) = cosh[ω�k(u − h̄β/2)]

sinh[h̄βω�k/2]
, (9)

and MM,	(�k,u) the memory function,

MM,	(�k,u) =
[
e
− h̄k2

2(m+M)

{
u − u2

h̄β
− M

m

× cosh[	h̄β/2] − cosh[	(h̄β/2 − u)]

	 sinh(h̄β	/2)

}]
.

(10)

The parameters 	 and M are then determined variationally
by minimizing the expression (8). The present treatment also
allows an estimation of the radius of the polaron as the root
mean square of the reduced coordinate �r of the model system
[54]:

〈r2〉 = d
h̄

2	

mI + M

MmI

coth

(
βh̄	

2

)
. (11)

In Ref. [20] Feynman also presented a calculation of the
polaronic effective mass m∗ at zero temperature,

m∗ = mI + 1

d

∑
�k

k2 |V�k|2
h̄

∫ ∞

0
due−ω�kuFM,	(�k,u)u2, (12)

with

FM,	(�k,u) = lim
β→∞

MM,	(�k,u)

=
{
e
− h̄k2

2(m+M)	

[
M

m
(1 − e−	u) + 	u

]}
.

(13)

As far as we know there exists no generalization of
Eq. (12) to finite temperatures but as a first estimation we use
(12) with the temperature-dependent variational parameters M

and 	.

B. Polaron consisting of an impurity in a condensate

Here we introduce the Bogoliubov spectrum (5) and the
interaction amplitude (6) which are specific for the polaronic
system consisting of an impurity in a condensate. This allows
us to write the Jensen-Feynman inequality (8) as (we also use

polaronic units, i.e., h̄ = ξ = mI = 1)

F � d

β

{
ln

[
2 sinh

(
β	

2

)]
− ln

[
2 sinh

(
β	

2
√

1 + M

)]}

− 1

β
ln

[
V

(
1 + M

2πβ

)d/2 ]
− d

2β

M

1 + M

×
[

β	

2
coth

[
β	

2

]
− 1

]
− α(d)

4π

(
mB + 1

mB

)2

×
∫ ∞

0
dk

kd

√
k2 + 2

∫ β/2

0
duG (k,u)MM,	 (k,u) , (14)

where we introduced the dimensionless coupling parameter
α(d) as follows:

α(d) = 4π
2πd/2

�
(

d
2

)N0g
2
IB

(
mIξ

2

h̄2

)2
V

(2πξ )d

(
mB

mB + mI

)2

,

(15)

with � (x) the � function. The prefactor was chosen to
be in agreement with the definition for α(3) in Ref. [10].
Note that the coupling parameter depends on the impurity-
boson interaction amplitude gIB and also on the boson-boson
interaction amplitude gBB through the healing length ξ . As
mentioned in the Introduction these interaction amplitudes,
and thus also the coupling parameter, can be externally tuned
through a Feshbach resonance or in reduced dimensions also
with a confinement-induced resonance.

For d = 2 the k integral in Eq. (14) contains an ultraviolet
divergence. This is also the case in three dimensions and it
was shown in Ref. [10] that this is solved by applying the
Lippmann-Schwinger equation up to second order for the
interaction amplitude in the second term of the Hamiltonian
(3). This results in a renormalization factor that is incorporated
through the following substitution [10]:

N0gIB → N0

⎛
⎝T (E) + g2

IB

∑
�k

1
h̄2k2

2mr
− E

⎞
⎠ , (16)

with T (E) the scattering T matrix. In two dimensions the
limit E → 0 in Eq. (16) results in an infrared divergence. The
second term in Eq. (16) can be written as

N0g
2
IB

∑
�k

1
h̄2k2

2mr
− E

= α(2)

2π

h̄2

mIξ 2

mB + mI

mB

×
∫ ∞

0

k

k2 − 2mrE/h̄2 dk, (17)

which lifts the ultraviolet divergence in Eq. (14). For numerical
considerations a cutoff Kc is introduced for the k integral which
enables us to calculate the integral in Eq. (17):

α(2)

2π

h̄2

mIξ 2

mB + mI

mB

∫ Kc

0

k

k2 − 2mrξ 2E/h̄2 dk

= α(2)

4π

h̄2

mIξ 2

mB + mI

mB

ln

( h̄2K2
c

2mr
− E

E

)

≈ α(2)

4π

h̄2

mIξ 2

mB + mI

mB

ln

(
h̄2K2

c

2mrE

)
, (18)
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where in the second step we used the fact that the energy
related to the cutoff is much larger than the typical energy of
the scattering event E. Equation (18) shows that the chosen
value of E is not important since it only results in an energy
shift and therefore has no influence on the physical properties
of the system.

C. Results

We apply the presented treatment to the system of a lithium-
6 impurity in a sodium condensate (mB/mI = 3.822 07). All
results are presented in polaronic units, that is, h̄= ξ = mI = 1.

In Fig. 1 the results for the polaronic ground-state
properties in two dimensions as a function of the coupling
parameter α(2) are presented. In panel (a) the radius of the
polaron is shown and in panel (b) the effective mass at
different temperatures is shown. The observed behavior is
analogous to the three-dimensional case (see Ref. [10]) and
suggests that for growing α(2) the self-induced potential
becomes stronger, leading to a bound state at high enough
α(2). However, as compared to the three-dimensional case, the
transition is much smoother with a transition region between
α(2) ≈ 1 and α(2) ≈ 3. This behavior is in agreement with
the mean-field results of Refs. [7,55], where also a smooth
transition to the self-trapped state was found for d = 2. For
the cutoff Kc we used the inverse of the Van der Waals radius
for sodium, which results in Kc = 200. To check whether this
cutoff is large enough the variational parameter M is plotted
in the inset of Fig. 1(b) for different values of Kc, which
reveals already a reasonable convergence at Kc ≈ 5.

In Fig. 2 the results for the one-dimensional case are
presented. In panel (a) the radius of the polaron is plotted and
panel (b) shows the effective mass at different temperatures.
For growing α(1) the characteristics of the appearance of a
bound state in the self-induced potential are again observed.
The characteristics of the weak coupling regime are, however,

0 2 3 4
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β = ∞
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(b)

FIG. 1. (Color online) The ground-state properties of the polaron
consisting of a lithium-6 impurity in a sodium condensate in two
dimensions. In (a) the radius of the polaron (11) is presented and in
(b) the effective mass (12) as a function of the polaronic coupling
parameter α(2) at different temperatures [β = (kBT )−1] and with
a cutoff Kc = 200 is presented. The inset shows the variational
parameter M for different values of the cutoff Kc at β = 50. All
results are presented in polaronic units (h̄ = mI = ξ = 1).
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FIG. 2. (Color online) The polaronic ground-state properties of
a lithium-6 impurity in a sodium condensate in one dimension.
The radius (a) and the effective mass (b) are presented as a
function of the polaronic coupling parameter α(1) at different tem-
peratures [β = (kBT )−1]. All results are presented in polaronic units
(h̄ = mI = ξ = 1).

not present and the transition region is between α(1) = 0 and
α(1) ≈ 1. This is again in agreement with the mean-field results
of Refs. [7,55] for d = 1.

IV. RESPONSE TO BRAGG SCATTERING
IN d DIMENSIONS

The response of a system to Bragg spectroscopy is
proportional to the imaginary part of the density response
function (1). In Ref. [13] it was shown that the use of
the Feynman-Hellwarth-Iddings-Platzman approximation (as
introduced in Ref. [21] for a calculation of the impedance of
the Fröhlich solid-state polaron and generalized in Ref. [22]
for the optical absorption) leads to the expression for the Bragg
response

Im[χ (ω,�k)] = − k2

mI

Im[�(ω,�k)]

{ω2 − Re[�(ω,�k)]}2 + {Im[�(ω,�k)]}2
,

(19)

with �(ω,�k) the self-energy,

�(ω,�k) = 2

mINh̄

∑
�q �=0

|V�q |2 (�k · �q)2

k2
(20)

×
∫ ∞

0
dt(1 − eiωt ) Im{[eiω�q t + 2 cos(ω�q t)n(ω�q)]

× [e−(�k+�q)2D(t)]}, (21)

n(ω) = ([eβh̄w] − 1)−1 the Bose-Einstein distribution and

D(t) = t2

2β(mI + M)
− i

h̄

2(mI + M)
t + h̄M

2mI	(mI + M)

×
[

1 − ei	t + 4 sin2

(
	t

2

)
n(	)

]
. (22)

For numerical calculations the representation for the self-
energy as derived in the Appendix is used.
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A. Sum rule

As was first noted in Ref. [56] for the Fröhlich polaron and
generalized in Ref. [13] for an impurity in a condensate, the
f -sum rule can be written as

π

2

1

[1 − R(α,k)]
+ mI

k2

∫ ∞

ε

dωω Im[χ (ω,�k)] = π

2
, (23)

with ε a small number such that the Drude peak (see later) is
not included in the integral and

R(α,k) = lim
ω→0

Re[�(ω,�k)]

ω2
. (24)

In the limits β → ∞ and k → 0 the function (24) is related to
the Feynman effective mass (12) [56]:

m∗ = mI

(
1 − lim

β→∞
R(α,0)

)
. (25)

This relation provides a powerful experimental tool to deter-
mine the effective mass from the optical response, which was
recently applied for the Fröhlich solid-state polaron [57,58].

B. Self-energy for an impurity in a condensate

Introducing the interaction amplitude (6) and the coupling
parameters (15) in expressions (A9) and (A12) for the
imaginary and real part of the self-energy results in (using
polaronic units)

Im[�(ω,�k)] =
√

2πβ(1 + M)
α(d)

8π

�(d/2)

2πd/2

(
mB + 1

mB

)2

B(β,n,n′)
∞∑

n,n′=0

∫
d �q q√

q2 + 2

(�k · �q)2

k2
|�k + �q|2(n+n′)−1e−a2(β)(�k+�q)2

×
{

[1 + n(ω�q)]

[
e
− β(1+M)(A++ω)2

2(�k+�q)2 − e
− β(1+M)(A+−ω)2

2(�k+�q)2

]
+ n(ω�q)

[
e
− β(1+M)(A−+ω)2

2(�k+�q)2 − e
− β(1+M)(A−−ω)2

2(�k+�q)2

]}
; (26)

Re[�(ω,�k)] =
√

2β(1 + M)
α(d)

4π

�(d/2)

2πd/2

(
mB + 1

mB

)2

B(β,n,n′)
∞∑

n,n′=0

∫
d �q q√

q2 + 2

(�k · �q)2

k2
|�k + �q|2(n+n′)−1e−a2(β)(�k+�q)2

×
{

[1 + n(ω�q)]

[
2F

(√
β(m + M)

2

A+

|�k + �q|

)
− F

(√
β(m + M)

2

A+ + ω

|�k + �q|

)
− F

(√
β(m + M)

2

A+ − ω

|�k + �q|

)]

+ n(ω�q)

[
2F

(√
β(m + M)

2

A−

|�k + �q|

)
− F

(√
β(m + M)

2

A− + ω

|�k + �q|

)
− F

(√
β(m + M)

2

A− − ω

|�k + �q|

)]}
. (27)

See the Appendix for the definition of the different functions. These expressions are suited for numerical calculations of the
Bragg response.

C. Weak coupling limit

At weak polaronic coupling the Bragg response (19) to lowest order in α is given by (in polaronic units)

Im[χW (ω,�k)] = − k2

ω4
Im[�W (ω,�k)]. (28)

In the weak coupling limit the variational parameter M tends to zero and the imaginary part of the self-energy (26) becomes

Im[�W (ω,�k)] =
√

2βπ

2

∑
�q �=0

|V�q |2 (�k · �q)2

k2
|�k + �q|−1

(
[1 + n(ω�q)]

{[
e
− 2β(B++ω)2

4(�k+�q)2

]
−

[
e
− 2β(B+−ω)2

4(�k+�q)2

]}

+ n(ω�q)

{[
e
− 2β(B−+ω)2

4(�k+�q)2

]
−

[
e
− 2β(B−−ω)2

4(�k+�q)2

]})
, (29)

with

B± = ±ω�q + (�k + �q)2

2
. (30)

These expressions coincide with the weak coupling result
obtained in the framework of Gurevich, Lang, and Firsov [59].

D. Results

We present the Bragg response for a lithium-6 impurity
in a sodium condensate (mB/mI = 3.822 07). All results are
presented in polaronic units, that is, h̄ = ξ = mI = 1.

In Fig. 3 the Bragg response (19) is presented for different
temperatures and for a momentum exchange k = 1 in one
and two dimensions at weak polaronic coupling (α(1) = 0.01
and α(2) = 0.1). In both cases we observe the Drude peak
centered at ω = 0 and a peak corresponding to the emission
of Bogoliubov excitations. This is qualitatively the same
behavior as in the three-dimensional case [13]; quantitatively
we observe that the amplitude of the Bogoliubov emission
peak increases as the dimension is reduced. The Drude
peak is a well-known feature in the response spectra of
the Fröhlich polaron (see, for example, Refs. [58,60,61])
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FIG. 3. (Color online) The Bragg response (19) at weak polaronic
coupling, momentum exchange k = 1, and different temperatures
[β = (kBT )−1] in one dimension (a) and two dimensions (c). In both
cases a peak corresponding to the emission of Bogoliubov excitations
is observed together with the anomalous Drude peak at ω = 0. In
one dimension another sharp peak is present at ω = ωk , with ωk

the Bogoliubov dispersion (5). In (b) we have zoomed in on this
sharp peak in one dimension. All quantities are in polaronic units
(h̄ = mI = ξ = 1).

and is a consequence of the incoherent scattering of the
polaron with thermal Bogoliubov excitations. The width of the
Drude peak scales with the scattering rate for absorption of a
Bogoliubov excitation which is proportional to the number of
thermally excited Bogoliubov excitations [62]. This explains
the temperature dependence of the width of the Drude peak in
Fig. 3.

In one dimension another sharp peak is observed in Fig. 3
at ω = ωk [with ωk the Bogoliubov dispersion (5) and k the
exchanged momentum], which broadens as the temperature
is increased and dominates the Bogoliubov emission peak
at relatively high temperatures. This extra peak in one
dimension is associated with the weak coupling regime since
at intermediate coupling the sharp structure disappears and
the peak merges with the Bogoliubov emission peak. The
location indicates that it corresponds to the process where
both the exchanged energy h̄ω and the momentum �k are
transferred to a Bogoliubov excitation. Whether this extra
peak is experimentally observable is questionable since it is
only visible at relatively high temperatures, where in reduced
dimensions thermal phase fluctuations can become important
and destroy the polaronic features.

Figure 4 presents the Bragg response for different momenta
exchange at a temperature β = 100 (where the sharp peak at
the Bogoliubov dispersion in 1D is too narrow to perceive). The
insets show the location of the maximum of the Bogoliubov
emission peak as a function of the exchanged momentum
together with a least-squares fit to the Bogoliubov spectrum
(5), which results in a good agreement. The optimal fitting
parameter is determined as mB = 4.3159 (4.2216) in one
dimension (two dimensions).

In Figs. 5 and 6 we have zoomed in on the tail of the
Bogoliubov emission peak for different values of the coupling
parameter in one and two dimensions, respectively. At larger
values for the polaronic coupling parameter α(d) the emergence
of a secondary peak is observed. This behavior is also observed
in the optical absorption of the Fröhlich solid-state polaron
where the secondary peak corresponds to a transition to the
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FIG. 4. (Color online) The Bragg response at weak polaronic
coupling (α(d) = 0.1) for different exchanged momenta k in one and
two dimensions and at a temperature β = 100. The inset shows
the location of the maximum of the peak as a function of the
exchanged momentum (markers) together with a least square fit to
the Bogoliubov spectrum (5) (solid line), this results in mB = 4.3159
(4.2216) for the fitting parameter in one dimension (two dimensions).
Everything is in polaronic units (h̄ = mI = ξ = 1).

relaxed excited state accompanied by the emission of phonons
[63]. The relaxed excited state denotes an excitation of the
impurity in the relaxed self-induced potential, where relaxed
means that the self-induced potential is adapted to the excited-
state wave function of the impurity. In the inset the location of
this secondary peak is plotted as a function of the exchanged
momentum together with a least-squares fit to the following
quadratically spectrum:

ω (k) = ω + h̄2k2

2m
, (31)

which shows a good agreement at small k. This suggests that
the state corresponding to the secondary peak is characterized
by a transition frequency ω and an effective mass m (this was
also observed for the three-dimensional case in Ref. [13]).
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FIG. 5. (Color online) Here we zoomed in on the tail of the
Bogoliubov emission peak for momentum exchange k = 1 and
temperature β = 100 in one dimension. It is clear that at larger values
for α(1) a secondary peak emerges. The inset shows the location of
the maximum of this secondary peak at α(1) = 3 as a function of
the exchanged momentum (markers) together with a least-squares fit
to a quadratic spectrum (31) (solid line); this results in ω = 1.6386
and m = 2.0107 for the fitting parameters. Everything is in polaronic
units (h̄ = mI = ξ = 1).
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FIG. 6. (Color online) Here we zoomed in on the tail of the
Bogoliubov emission peak for momentum exchange k = 1 and
temperature β = 100 in two dimensions. As in the one-dimensional
case a secondary peak emerges at larger values for α(2). The inset
shows the location of the maximum of this secondary peak at α(2) = 4
as a function of the exchanged momentum (markers) together with a
least-squares fit to a quadratic spectrum (31) (solid line); this results
in ω = 2.0601 and m = 2.0755 for the fitting parameters. Everything
is in polaronic units (h̄ = mI = ξ = 1).

Finally, we have checked whether the spectra satisfy the
sum rule (23). We calculated the sum of the two terms on
the left-hand side of expression (23), which is presented in
Table I for d = 1 and in Table II for d = 2 at β = 100 and at
different values for α and k. These values should be compared
to π/2 = 1.5708, which results in a fair agreement with small
deviations which are to be expected since numerically we had
to introduce a cutoff for the ω integral in Eq. (23) and the
choice of the parameter ε in Eq. (23) is somewhat arbitrary,
resulting in a double counting of part of the weight of the
Drude peak.

V. DISCUSSION AND CONCLUSIONS

We have applied the calculations for the polaronic
ground-state properties of an impurity in a Bose-Einstein
condensate and the response of this system to Bragg
spectroscopy to reduced dimensions. For this purpose
we introduced a polaronic coupling parameter α(d) (15)
which depends on the dimension. For growing α(d) the
ground-state properties suggest that the self-induced
potential accommodates a bound state. As compared to the
three-dimensional case the transition to the self-trapped state
is much smoother in reduced dimension and for d = 1 the
characteristics of the weak coupling regime are absent.

The Bragg response of the system revealed a peak cor-
responding to the emission of Bogoliubov excitations, the
Drude peak, and the emergence of a secondary peak in the
strong coupling regime. The amplitude of these polaronic

TABLE I. Here we show the sum of the two terms on the left-hand
side of the f -sum rule (23) in one dimension at β = 100 and at
different values for α(1) and k.

α(1) = 0.1 α(1) = 3

k = 1 1.5440 1.5547
k = 3 1.5544 1.5743

TABLE II. Here we show the sum of the two terms on the left-hand
side of the f -sum rule (23) in two dimensions at β = 100 and at
different values for α(2) and k.

α(2) = 1 α(2) = 4

k = 1 1.5678 1.5734
k = 3 1.5669 1.5800

features grows when we go to reduced dimensions. This is
important since this indicates that going to reduced dimensions
can facilitate an experimental detection of polaronic features.
In one dimension another sharp peak is observed at weak
polaronic coupling that corresponds to the full transition of the
exchanged energy and momentum to a Bogoliubov excitation.

Another advantage of considering reduced dimensions
is the possibility of using confinement-induced resonances,
which permits a tuning of the polaronic coupling parame-
ter. These results show that considering an impurity in a
Bose-Einstein condensate in reduced dimensions is a very
promising candidate to experimentally probe the polaronic
strong coupling regime for the first time.
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APPENDIX: OTHER REPRESENTATION
FOR THE SELF-ENERGY

Here we rewrite the self-energy (20) to a form which is more
suited for numerical calculations. The presented derivation is
based on the approach for the optical absorption of the Fröhlich
solid-state polaron, as proposed in Refs. [22,64]. We start by
rewriting D (t) (22) as

D(t) = t2

2β(m + M)
− i

h̄

2(m + M)
t + h̄M

2m	(m + M)

×
{

coth

(
h̄β	

2

)
− [1 + n(	)]ei	t − n(	)e−i	t

}
,

(A1)

which allows us to write

e−k2D(t) = e−a2(β)k2
∑
n,n′

k2(n+n′)B(β,n,n′)

× e
− k2 t2

2β(m+M) +it[ k2h̄
2(m+M) +	(n−n′)]

, (A2)

with

a2(β) = h̄M

2m	(m + M)
coth

(
h̄β	

2

)
;

(A3)

B(β,n,n′) = 1

n!

1

n′!
{a2[1 + n(	)]}n[a2n(	)]n

′
;
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and a = a(∞). If we now use (A2) in the expression for the self-energy (20) we get

�(ω,�k) = 2

mINh̄

∞∑
n,n′=0

∑
�q �=0

|V�q |2 (�k · �q)2

k2
|�k + �q|2(n+n′)B(β,n,n′)e−a2(β)(�k+�q)2

×
∫ ∞

0
dt(1 − eiωt ) Im

{
[1 + n(ω�q)]e− (�k+�q)2

2β(m+M) t
2+iA+t + n(ω�q)e− (�k+�q)2

2β(m+M) t
2+iA−t

}
, (A4)

with

A± = ±ω�q + (�k + �q)2h̄

2(m + M)
+ 	(n − n′). (A5)

We now split the self-energy into an imaginary part and a real part. Taking the imaginary part of Eq. (A4) results in

Im[�(ω,�k)] = − 2

mINh̄

∞∑
n,n′=0

∑
�q �=0

|V�q |2 (�k · �q)2

k2
(�k + �q)2(n+n′)B(β,n,n′)e−a2(β)(�k+�q)2

× Im

( ∫ ∞

0
dt sin(ωt)

{
[1 + n(ω�q)]e− (�k+�q)2

2β(m+M) t
2+iA+t + n(ω�q)e− (�k+�q)2

2β(m+M) t
2+iA−t

})
. (A6)

The time integration can now be done (with C2 = (�k+�q)2

2β(m+M) ),∫ ∞

0
dt sin(ωt)

{
[1 + n(ω�q)]e−C2t2+iA+t + n(ω�q)e−C2t2+iA−t

}
= 1

2iC

{
[1 + n(ω�q)]

[√
π

2
e
− (A++ω)2

4C2 + iF

(
A+ + ω

2C

)
−

√
π

2
e
− (A+−ω)2

4C2 − iF

(
A+ − ω

2C

)]

+ n(ω�q)

[√
π

2
e
− (A−+ω)2

4C2 + iF

(
A− + ω

2C

)
−

√
π

2
e
− (A−−ω)2

4C2 − iF

(
A− − ω

2C

)]}
, (A7)

where we introduced the Dawson integral F (x),

F (x) = e−x2
∫ x

0
ey2

dy = 1

2

√
πe−x2

erfi(x), (A8)

where erfi(x) is the imaginary error function: erfi(x) = −i erf(ix), with erf(x) the error function. This finally results in the
following expression for the imaginary part of the self-energy:

Im[�(ω,�k)] =
√

2πβ(m + M)

2mINh̄

∞∑
n,n′=0

∑
�q �=0

|V�q |2 (�k · �q)2

k2
(�k + �q)2(n+n′)−1B(β,n,n′)e−a2(β)(�k+�q)2

× {
[1 + n(ω�q)]

[
e
− β(m+M)(A++ω)2

2(�k+�q)2 − e
− β(m+M)(A+−ω)2

2(�k+�q)2
] + n(ω�q)

[
e
− β(m+M)(A−+ω)2

2(�k+�q)2 − e
− β(m+M)(A−−ω)2

2(�k+�q)2
]}

. (A9)

For the real part of Eq. (A4) we have

Re[�(ω,�k)] = 2

mINh̄

∞∑
n,n′=0

∑
�q �=0

|V�q |2 (�k · �q)2

k2
(�k + �q)2(n+n′)B(β,n,n′)e−a2(β)(�k+�q)2

× Im

( ∫ ∞

0
dt[1 − cos(ωt)]

{
[1 + n(ω�q)]e− (�k+�q)2

2β(m+M) t
2+iA+t + n(ω�q)e− (�k+�q)2

2β(m+M) t
2+iA−t

})
. (A10)

The time integration is, in this case,∫ ∞

0
dt[1 − cos(ωt)]

{
[1 + n(ω�q)]e−C2t2+iA+t + n(ω�q)e−C2t2+iA−t

}
= 1

2C

{
[1 + n(ω�q)]

[√
πe

− (A+)2

4C2 + 2iF

(
A+ + ω

2C

)
−

√
π

2
e
− (A++ω)2

4C2 − iF

(
A+ + ω

2C

)
−

√
π

2
e
− (A++ω)2

4C2 − iF

(
A+ − ω

2C

)]

+ n(ω�q)

[√
πe

− (A− )2

4C2 + 2iF

(
A− + ω

2C

)
−

√
π

2
e
− (A−+ω)2

4C2 − iF

(
A− + ω

2C

)
−

√
π

2
e
− (A−+ω)2

4C2 − iF

(
A− − ω

2C

)]}
. (A11)
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This results in the following expression for the real part of the self-energy:

Re[�(ω,�k)] =
√

2β(m + M)

mINh̄

∞∑
n,n′=0

∑
�q �=0

|V�q |2 (�k · �q)2

k2
(�k + �q)2(n+n′)−1B(β,n,n′)e−a2(β)(�k+�q)2

(
(1 + n(ω�q))

{
2F

[√
2β(m+M)A+

2|�k + �q|

]

−F

[√
2β(m + M)(A+ + ω)

2|�k + �q|

]
− F

[√
2β(m + M)(A+ − ω)

2|�k + �q|

]}
+ n(ω�q)

{
2F

[√
2β(m + M)A−

2|�k + �q|

]

−F

[√
2β(m + M)(A− + ω)

2|�k + �q|

]
− F

[√
2β(m + M)(A− − ω)

2|�k + �q|

]})
. (A12)
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