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Delocalization of ultracold atoms in a disordered potential due to light scattering
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We numerically study the expansion dynamics of ultracold atoms in a one-dimensional disordered potential in
the presence of a weak position measurement of the atoms. We specifically consider this position measurement to
be realized by a combination of an external laser and a periodic array of optical microcavities along a waveguide.
The position information is acquired through the scattering of a near-resonant laser photon into a specific
eigenmode of one of the cavities. The time evolution of the atomic density in the presence of this light-scattering
mechanism is described within a Lindblad master equation approach, which is numerically implemented using
the Monte Carlo wave function technique. We find that an arbitrarily weak rate of photon emission leads to a
breakdown of Anderson localization of the atoms.
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I. INTRODUCTION

The realization of potentials with controlled disorder for
ultracold atoms has recently led to the observation of Anderson
localization with Bose-Einstein condensates [1,2]. In those
experiments, atomic Bose-Einstein condensates, prepared in
a harmonic trap, were released into one-dimensional optical
waveguides, which were superimposed with disordered poten-
tials realized with speckle fields [1,3,4] as well as with bichro-
matic optical lattices [2,5]. Absorption images of the atomic
cloud after the expansion process within the waveguide clearly
revealed an exponential decrease of the average atomic density
with the distance from the center of the former trap, which is
the characteristic signature of Anderson localization [6]. While
interaction effects were not the focus of those pioneering
experiments, more recent studies specifically explored the
interplay of atom-atom interaction and localization in disor-
dered potentials (e.g., Refs. [7,8]). Current research directions
include the exploration of Anderson localization with ultracold
atoms in three spatial dimensions [9,10], with the particular
aim of studying the Anderson metal-insulator transition [11].

Clearly, a key condition for the observability of Anderson
localization with ultracold atomic gases is the overall coher-
ence of the atomic cloud. Any mechanism of decoherence
would compromise the phenomenon of destructive wave
interference that lies at the heart of Anderson localization [6]
and thereby give rise to delocalization. This also concerns any
in situ monitoring of the evolution of the atomic cloud during
its expansion, by intermediate measurements of the positions
of atoms. Evidently, the strong refocusing of the atomic wave
function that results from a precise position measurement
would destroy the coherence of the atom, enhance its kinetic
energy, and eventually (when performed several times) let the
atom behave as a classical particle.

The situation is less obvious for “weak” measurement
processes, in which the position of the atom is determined
with a large spatial uncertainty that is of the order of the
expected localization length within the disordered potential.
Such weak measurements might still preserve coherence to

a certain extent, while, at the same time, providing some
rough in situ information on the position of the atom. For this
purpose, one could, for example, conceive of a periodic array
of optical microcavities placed around the waveguide in which
the atoms propagate, as depicted in Fig. 1. A near-resonant
laser beam which irradiates this configuration can be used
to transfer the atoms to an electronically excited state, from
which they can relax to the ground state by a spontaneous
emission of a photon into one of the cavities. Such emitted
photons could in turn be measured by photodetectors placed
behind the cavities [12]. The whole configuration possibly
could be fabricated on “atom chips” [13], in which case the
disordered potential could arise from imperfections in the
current-carrying wires that generate the magnetic waveguide
potential of the atoms [14,15]. However, our results below
are more general and we expect to see the same effects on
the localization in the presence of any mechanism of similar
position measurement.

The aim of this study is to investigate to which extent
this approximate realization of a “Heisenberg microscope”
gives rise to delocalization of an atom in a one-dimensional
disordered potential. For the sake of simplicity, we restrict
our consideration to the propagation of one single atom
and thereby discard collective processes arising within Bose-
Einstein condensates due to atom-atom interactions or su-
perradiance. Moreover, we assume that the atom will emit
photons into one single mode of the cavities only. Such
an emission will then give rise to a recoil that is mainly
perpendicular to the direction of propagation of the atom and
does therefore not dramatically enhance its longitudinal kinetic
energy. We neglect effects of transverse excitations within
the waveguide due to this recoil and assume that neither the
effective waveguide confinement nor the disordered potential
are affected by temporary populations of the excited electronic
state of the atom.

The dynamics of the atom is modeled via a one-dimensional
master equation for its density matrix ρ̂(t), which can be
unraveled using the Monte Carlo wave function technique
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FIG. 1. (Color online) Sketch of the configuration under con-
sideration. An atom, which is initially localized within a harmonic
trap at the center, is expanding within a one-dimensional waveguide
(indicated by the green [light gray] horizontal lines) to which a
disordered potential is superimposed. A periodic array of optical
microcavities (symbolized by the red [dark gray] arcs) is used
to measure the position of the atom, on a length scale that is
comparable to its localization length (indicated by the shadow plot
in the waveguide, which shows the density of a localized state).
For this purpose, the waveguide is considered to be irradiated by a
near-resonant laser beam, which may induce spontaneous emissions
of photons into one of the cavities, possibly to be measured by
photodetectors. The sketch is to scale with the parameters considered
in this study, as far as the horizontal length scales are concerned.

[16,17]. This master equation accounts both for the coherent
motion within the disordered potential and the incoherent
scattering of photons [18]. Similar tools have been used to
study dynamics of a (disorder-free) Bose-Einstein condensate
in the presence of a continuous position measurement induced
by an off-resonant laser beam [19]. In Sec. II, we first describe
the expansion and localization dynamics of a single atom in
a one-dimensional disordered potential in the absence of any
decoherence mechanism. In Sec. III, we outline the Monte
Carlo wave function approach that is used to integrate the
master equation for the special case of an atom that propagates
in a homogeneous, disorder-free waveguide. Decoherence and
disorder are finally put together in Sec. IV, in which we
discuss the expansion of an atomic wave packet in the presence
of disorder and spontaneous emission. We show that even
very rare position measurements of the atom give rise, on
average, to a gradual delocalization of the wave packet, and
we provide numerical evidence for superballistic expansion in
the presence of strong emission rates.

II. WAVE PACKET EXPANSION IN DISORDER

In this section, the expansion of an initially trapped wave
packet in a weak one-dimensional disordered potential is
discussed. For the sake of simplicity, we model the disorder
by a Gaussian correlated random potential V (x) defined along
the x axis, with the properties V (x) = 0 and

V (x)V (x ′) = U 2 exp[−(x − x ′)2/(2σ 2)] (1)

for the mean spatial correlation function. Here, U characterizes
the typical size of the fluctuations of the potential, and the
correlation length σ controls the average width of fluctuations.

In Fig. 2 we show the time evolution of the disorder-
averaged spatial density of wave packets propagating in
such disorder configurations. These wave packets are initially
prepared in the ground state of a harmonic trap with the
oscillator length a0 = √

h̄/mω. After the trapping potential
is switched off, the wave packet expands within the disordered
potential until it approaches, on average, a stationary profile.
The convergence to the average density distribution happens
faster at the center than in the wings. This is a consequence of
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FIG. 2. (Color online) Time evolution of the expansion process
of a Gaussian wave function, averaged over 100 disorder realizations,
for the strength U = 0.1 h̄ω and the correlation length σ = 0.2 a0 of
the disordered potential (the mean initial kinetic energy of the wave
function is E = 0.25 h̄ω, where a0 and ω are the oscillator length and
the frequency of the harmonic confinement potential, respectively).
Shown are the disorder-averaged probability densities ρ(x) for ωt =
20, 200, 400, 600, and 800 (with the trap opening at t = 0). The solid
line displays the analytical prediction (5) which is found to be in good
agreement with the numerical density distribution at large distances
|x| � a0, apart from a global prefactor of the order of 2.

the quadratic growth of the localization length as a function of
the wave vector, as described in Eq. (3) below.

The final density profile shown in Fig. 2 is fairly well
reproduced by a theory described in Ref. [20], which is based
on the assumption that the asymptotic probability distribution
is an incoherent sum of individually localized plane waves
with momentum p (see Ref. [4] for an alternative and more
elaborate theoretical approach). This consideration yields the
spatial density

ρloc(x) =
∫

dp
ρ0(p)

2ξ (p)
exp[−|x|/ξ (p)], (2)

where ρ0 denotes the momentum density of the wave packet
at the initial time t = 0. The key ingredient for the evaluation
of Eq. (2) is the localization length ξ (p) that can be calculated
as ξ (p) = 2lB(p), with lB being the Boltzmann mean free
path [21–23]. For the Gaussian correlated random potential
under consideration, we obtain

ξ (p) = 1√
2π

h̄2p2

m2U 2σ
exp[2(pσ/h̄)2]. (3)

In the regime of short correlation lengths σ � h̄/p, we can
approximate exp[2(pσ/h̄)2] � 1 and the localization length
depends only on the effective strength U 2σ of the disorder.
Using

ρ0(p) = a0√
πh̄

exp[−(a0p/h̄)2] (4)

and introducing the characteristic localization length scale of
the wave packet as ξ0 ≡ ξ (h̄/a0), we then obtain the prediction

ρloc(x) = 1

2
√

ξ0|x| exp(−2
√

|x|/ξ0) (5)
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for the localized density. As shown in Fig. 2, this approximate
expression is, apart from a global prefactor, in good agreement
with the numerically computed mean density at the final time
t = 800/ω.

In the above numerical simulations, we effectively assumed
that the atomic cloud is prepared in a clean harmonic trap in
the absence of any disorder. At t = 0 the trapping potential is
suddenly switched off and the disorder is ramped on at the same
time. The initial state is then a perfect Gaussian wave function
[see Eq. (4)] which expands within the disordered potential.
In general, this procedure is not precisely in accordance
with expansion experiments on Anderson localization such as
Ref. [1], in which the disordered potential is already present
during the formation of the Bose-Einstein condensate in the
harmonic trap. The initial state of the atomic wave function in
that case is given by the ground state of an effective trapping
potential that consists of a harmonic confinement modulated by
the disorder. A numerical comparison of these two expansion
scenarios, however, displays no significant difference in the
asymptotic density profile for the case of weak disordered
potentials with U � 0.1 h̄ω and σ = 0.2 a0.

A convenient numerical observable for measuring localiza-
tion is the participation ratio [24] which for a wave packet with
the density ρ(x,t) is defined by

RP (t) =
( ∫ ∞

−∞
dx[ρ(x,t)]2

)−1

. (6)

In practice, RP (t) represents a measure for the spatial extent
of the wave packet, yielding large values for rather extended
distributions ρ(x,t) and going to zero for strongly peaked
wave functions. It therefore exhibits a similar behavior to the
spatial root mean square (rms) width �x =

√
〈x2〉 − 〈x〉2 of

the wave packet. However, this latter quantity is rather sensitive
to the evolution of the (experimentally inaccessible) wings of
the wave packet. This is shown in Fig. 3, where we display
the time dependence of the disorder-averaged rms width and
participation ratio. While the rms width continuously increases
with time, due to the long-time dynamics in the wings of the
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FIG. 3. (Color online) Root mean square (rms) width �x =√
〈x2〉 − 〈x〉2 (red line) and participation ratio RP (t) (black line) as a

function of the evolution time t , showing the disorder average of the
expansion and localization of a wave packet for the disorder strength
U = 0.15 h̄ω and the correlation length σ = 0.2 a0. The dashed lines
show, for comparison, the rms width and the participation ratio of a
free wave packet that expands in the absence of disorder.
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FIG. 4. (Color online) Left panel: disorder-averaged participation
ratio as a function of time for different initial kinetic energies E,
with E0 = 0.25 h̄ω. The disordered potential is characterized by the
parameters U = 0.15 h̄ω and σ = 0.2 a0. The right panel shows the
temporal average of this participation ratio within 400 < ωt < 1000
as a function of the energy E. This average defines the asymptotic
localization length Lwp of the wave packet. Lwp is found to increase
approximately linearly with the initial kinetic energy.

averaged density distribution (see Fig. 2), the participation
ratio, which is much less sensitive to the behavior of the wings,
saturates at a finite length scale. This length scale can be used
in order to define an effective localization length Lwp of the
wave packet.

Figure 4 shows the time evolution of the disorder-averaged
participation ratio for different initial kinetic energies E,
resulting from different confinement frequencies of the initial
trapping potential. A linear increase of the participation ratio
with E, corresponding to a linear increase of the effective
localization length Lwp of the wave packet, is found for
E0 < E < 2E0.

III. MASTER EQUATION DYNAMICS

To account for spontaneous emissions of photons into
the cavities, we model the dynamics of the atom via a
one-dimensional master equation for its density matrix ρ̂(t),
including coherent interactions with a disordered potential and
the incoherent scattering of light [18]. This master equation is
given by

d

dt
ρ(t) = − i

h̄
[Ĥ ,ρ̂(t)] + γeff

∫ k

−k

dq

2k
[Ĉq ρ̂(t)Ĉ†

q − ρ̂(t)].

(7)

Here, Ĥ = p̂2

2m
+ V (x̂) describes the Hamiltonian for a particle

that propagates in the disordered potential. Ĉq = e−iqx̂ is the
decay or jump operator representing one spontaneous emission
event, which exerts a recoil on the atom with longitudinal
momentum h̄q, which is assumed to be equidistributed
between −h̄k and +h̄k. This model considers off-resonant
inelastic scattering, in which a laser couples the electronic
ground state to an excited state from which spontaneous
emission back to the ground state can occur. It assumes a low
spontaneous decay rate γ as compared to the detuning δ of the
laser with respect to the intra-atomic transition frequency and
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a low Rabi frequency ν for laser-induced transitions between
the ground state and the excited state as compared to the
spontaneous decay rate γ ; that is, we assume ν � γ � δ.
We then obtain γeff = γ ν2/(γ 2 + 4δ2) as the effective decay
rate that enters the master equation (7) [25,26].

To solve the time evolution generated by the master
equation, we employ the Monte Carlo wave function method
[16,17]. Here, the evolution of the density matrix is decom-
posed into the nonunitary evolution of a large number N = 100
of wave functions. A single trajectory |ψ〉i , i = 1, . . . ,N

evolves according to ih̄∂t |ψ〉i = Ĥeff|ψ〉i with Ĥeff ≡ Ĥ −
iγeff/2, until the exponentially decaying norm ||ψ〉i |2 = e−γeff t

equals a random number chosen between 0 and 1. At this point,
a jump operator Ĉq acts on the Monte Carlo wave function:
|ψ(t + δt)〉i = Ĉq |ψ(t)〉i . This jump operator is, for the sake
of simplicity of the analysis, determined by randomly choosing
q from the interval between −k and k.

To relate this light-scattering process to the position
measurement under consideration, we note that the Lindblad
master equation is invariant under unitary transformations on
the set of decay operators. Indeed, it was shown in Ref. [27]
that the Fourier transformation

∫ 1
−1 du exp(iukνλ/2) Ĉu with

integers ν ∈ Z allows one to switch to decay operators

Ĉν =
√

2
sin

(
kx̂ − ν

2

)
kx̂ − ν

2

. (8)

In this picture, the application of the decay operator induces a
localization of the wave function within a spatial region whose
extent is of the order of k−1. Within the framework of the
weak measurement configuration outlined in the introduction,
we assume that these decay operators exactly correspond to
the longitudinal structure of the cavity modes into which the
atom may emit the photon. The spatial period of the array of
cavities is then given by λ = 2π/k.

In Fig. 5, we show the time evolutions of the expectation
value of the position 〈x〉 and its rms width �x =

√
〈x2〉 − 〈x〉2

for a single quantum trajectory in free space, V (x) = 0. In this
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FIG. 5. Center-of-mass position 〈x〉 (solid line) for a single
trajectory of an atom that is subject to light scattering with k =
0.07/a0. The dashed lines indicate the root mean square (rms) width
�x =

√
〈x2〉 − 〈x〉2; that is, they correspond to the lines 〈x〉 ± �x.

Photon emissions occur at ωt = 60, 79, 113, and 148.

particular trajectory, the first spontaneous emission took place
in one of the two wings of the wave packet, which is mainly
constituted by plane-wave components with high momenta.
The subsequent localization process projects the wave function
on those high-momentum components, which gives rise to a
permanent drift. The rms width, however, remains small during
this evolution, which is due to the fact that the atom emits
photons at a rate that is faster than the inverse dispersion time
of the wave packet. The rms width would freeze for sufficiently
high emission rates, which is reminiscent of the quantum Zeno
effect.

It is of great advantage to work in a regime where k is small
compared to fluctuations of the density matrix in momentum
space ρ(p,p′,t). To study the momentum density distribution,
we can then approximate the integrand of Eq. (7) by its Taylor
expansion to first order, as was done in Ref. [28]. Taking the
integral over k leads to the diffusion equation

∂tρ(p,t) = 1
6γeffk

2∂2
pρ(p,t) (9)

for the diagonal elements of the density matrix, with the
effective diffusion coefficient D = γeffk

2/6. Hence, the wave
packet will undergo diffusive spreading in momentum space.
Noting that the variance of the momentum distribution is
nothing but the kinetic energy, we obtain

〈T̂ 〉 = Tr

{
p̂2

2m
ρ̂(t)

}
= E0 + h̄2k2

6m
γeff t (10)

for the growth of the mean kinetic energy of the wave packet.

IV. DISSIPATIVE EXPANSION IN DISORDER

Having introduced the necessary tools, we now study wave
packet expansion in the presence of disorder and dissipation.
In Fig. 6 we plot the disorder average of the participation ratio
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FIG. 6. (Color online) Master equation dynamics of the disorder-
averaged participation ratio for different effective emission rates γeff .
The longitudinal momentum of the emitted photon is k = 0.07/a0 in
the left panel and k = 0.035/a0 in the right panel. The linear growth
of the participation ratio for ωt � 100 reflects the growth of the mean
kinetic energy due to photon scatttering events, which is found to
increase from E = 0.25 h̄ω at t = 0 to E � 0.5 h̄ω at ωt = 1000 for
k = 0.07/a0 and γeff = 0.05ω (blue [top] curve in the left panel). The
disordered potential is characterized by the strength U = 0.15 h̄ω and
the correlation length σ = 0.2 a0.
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as a function of time for different effective emission rates γeff .
In accordance with the sketch shown in Fig. 1, we have chosen
the photon wavelength to be very long compared to the initial
extension a0 of the wave packet. The amount of kinetic energy
given to the wave packet at each emission event is thereby
reduced.

The most important observation is a delocalization of the
wave packet at any emission rate. Instead of saturating to a
stationary value, the participation ratio linearly increases with
time after the typical time scale that is needed for developing
an Anderson-localized density profile in the absence of
spontaneous emission. Quantitatively, this linear growth is
very different from a ballistic expansion in free space, which
takes place with much faster expansion velocities (see the
dashed lines in Fig. 3). It is also different from simple
diffusion which one would naively expect to prevail for a
quantum particle that propagates within a disordered potential
in the presence of a decoherence mechanism. We attribute
this difference to the fact that the spontaneous emission of a
photon gives rise to a recoil of the atom and thereby increases
its energy. Hence, the effective diffusion constant should also
gradually increase with time.

In this context, it is interesting to note that the expansion
velocity dRP /dt depends only on the product of the effective
rate of emission γeff and the recoil energy h̄2k2/(2m). This
can be seen by comparing the two blue lines in Fig. 6 (top
line in the left panel and second from top in the right panel),
showing expanding participation rates for k = 0.07/a0 and
γeff = 0.05ω (left panel) as well as for k = 0.035/a0 and γeff =
0.2ω. There appears to be no change in the behavior when we
tune the rate of emissions across the scale 1/Tloc, with Tloc the
time at which the unperturbed evolution shows localization.

It is tempting to relate the linear increase of the participation
ratio with time to the combination of a linear growth of the
kinetic energy due to spontaneous emission with the approxi-
mately linear scaling of the wave packet’s localization length
with its mean kinetic energy in the absence of spontaneous
emission, as shown in Fig. 4. This reasoning essentially
assumes that in between two subsequent spontaneous emission
events the wave packet has enough time to approach its
asymptotic stationary profile within the disordered potential
(see also Ref. [29] for a similar discussion in a two-dimensional
disordered potential). Extracting from Fig. 4 the approximate
scaling RP /a0 ∼ 100E/E0 and using dE/dt = h̄2k2γeff/(6m)
for the growth rate of the energy according to Eq. (10), we
obtain the prediction

dRP

dt
� 100

a0

E0

dE

dt
� 400

γeffh̄
2k2

6m

a0

h̄ω
(11)

for the expansion velocity dRP /dt of the average participation
ratio, using E0 = 0.25h̄ω.

Figure 7 shows, however, that this expansion velocity
increases more strongly with the rate of increase of the
kinetic energy than predicted by Eq. (11). As a matter of
fact, dRP /dt is found to scale as a square root of dE/dt

in the parameter regime in which we carried out our numerical
investigations. One may attribute this behavior to the fact
that the above reasoning applies to an individual quantum
trajectory in the spirit of Fig. 5. The energy of the wave
packet corresponding to each individual trajectory increases
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FIG. 7. (Color online) Expansion velocity dRP /dt of the
disorder-averaged participation ratio as a function of the energy
growth rate dE/dt = γeffh̄

2k2/(6m). The data are extracted from
Fig. 6, as well as from other calculations using different parameters
for γeff and k, through linear regression of the participation ratio
within 100 < ωt < 1000. As confirmed in the log-log plot shown
in the inset, dRP /dt scales as the square root of dE/dt : we
have dRP /dt � α(dE/dt)1/2a0/h̄

1/2 with the fitted proportionality
constant α � 15.5, as indicated by the dashed line. The dash-dotted
straight line in the main panel represents the prediction of Eq. (11).

linearly and its participation ratio increases on average as
described by Eq. (11). However, while different trajectories
describe similar narrow wave packets, each wave packet will
be centered around a different point in space. Thus the full
(incoherent) density will be spreading faster over a larger
region than a single wave packet (as is obvious from Fig. 5 for
the case of disorder-free propagation). This effect is obviously
not accounted for in the considerations leading to Eq. (11).
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FIG. 8. (Color online) Master equation dynamics of the rms width
�x at strong recoil k = 0.35/a0 for different effective emission
rates γeff and different realizations of the disordered potential which
is characterized by the parameters U = 0.15 h̄ω and σ = 0.2 a0.
We note that the growth of �x for γeff = 0.05 ω (green [middle]
curve) coincides with the one of a free ballistic expansion, while
superballistic expansion is encountered for larger emission rates.
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Let us finally investigate the regime of strong dissipation for
which it is expected that the expansion becomes independent
of the disordered potential. In Fig. 8 the momentum recoil is
set to k = 0.35/a0, leading to a regime in which the rms width
turns out to serve as an accurate measure of expansion. In this
case, the recoil induced by the emitted photons may drive the
system beyond the free ballistic growth into a superballistic
regime, which is the valid limit of a driven expansion in free
space [28]. As can be seen in Fig. 8, this superballistic regime
sets in beyond γeff = 0.05 ω for k = 0.35/a0.

V. CONCLUSION

In summary, we have shown that even a very weak rate
of photon scattering gives rise to a breakdown of Anderson
localization of an atom that propagates in a one-dimensional
disordered potential. This observation is consistent with
similar findings obtained for a one-dimensional lattice model,
in which one of the lattice sites is considered to be coupled
to a measurement device [30]. The breakdown of Anderson
localization is most conveniently quantified in terms of the
disorder-averaged participation ratio of the atomic density,
which represents a measure for the spatial width of the atomic
wave packet. While this participation ratio saturates, within
a characteristic time scale, to a finite value in the case of a
perfectly coherent expansion process within the disordered

potential, it is found to linearly grow with time beyond that
time scale in the presence of spontaneous photon scattering.

This growth behavior imposes strong limits for the observ-
ability of Anderson localization in the presence of a weak
position measurement of the atom. However, an experimental
realization of a “Heisenberg microscope” for cold atoms
according to the scheme displayed in Fig. 1 might nevertheless
be of interest as it allows one to study in more detail the
interplay of disorder and measurement-induced delocalization
phenomena not only for a single atom but also (and this more
naturally) for a Bose-Einstein condensate in which the atoms
interact with each other. For this purpose, an integrated setup
on atom chips appears as the most convenient realization of
such a Heisenberg microscope for atomic gases.

Finally, we expect similar findings in the presence of other
mechanisms that can behave as a position measurement of
the propagating atom. Such mechanisms include noise on the
lattice beams as well as collisions with background gas atoms,
to mention two examples. Undesired effects of this type are
therefore also expected to induce a delocalization of the atom
in the disorder potential.
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M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and
P. Bouyer, Nat. Phys. 8, 398 (2012).
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