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Atom interferometry using δ-kicked and finite-duration pulse sequences
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We investigate an atom interferometer in which large momentum differences between the arms are obtained
by using quantum resonances in the atom-optics δ-kicked rotor. The interferometer can potentially measure the
Talbot time (from which h/m can be deduced) and the local gravitational field or can serve as a narrow velocity
filter. We present an analytical analysis in the short pulse limit and a numerical investigation for finite pulse
durations. The sensitivity of the interferometer is improved by a moderate violation of the short pulse limit.
Remarkably simple relations predict the optimal pulse duration and the sensitivity of the interferometer.
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I. INTRODUCTION

Atom interferometers provide an exciting tool for precision
measurements [1,2]. In recent years applications range from
a new determination of the fine-structure constant α [3]
and measurements of Newton’s gravitational constant G [4]
to measurements of the local gravitational field at both
micrometer [5] and larger length scales [6].

In light-pulse atom interferometers matter waves are split
and reflected using momentum transfer between light and
atoms [1,2]. The basis for such an atom interferometer is the
coherent splitting of a cold atomic wave packet into two or
more arms, followed by phase accumulation and subsequent
recombination of the arms. In these schemes the interferometer
measures the difference in phase between the matter waves in
the different arms. The phase accumulated by an ensemble
of atoms with mass m and momentum eigenvalue p in a
time interval T is given by p2

2mh̄
T . When increasing the

momentum difference �p between arms, the sensitivity of an
atom interferometer can therefore be improved as the square
of �p.

Significant effort is expended at investigating atom inter-
ferometers where the arms are separated by a large �p [7].
Interferometers that use high-order diffraction processes [8,9]
suffer a technical limitation as the required laser power
increases sharply with �p [10]. This problem has been
overcome using Bloch oscillations to accelerate the atoms
in the arms of the interferometer [11,12]. Bloch oscillations
are an adiabatic process and this scheme therefore does not
suffer the laser power limitations of high-order diffraction
processes. However, being an adiabatic process, the interaction
time between the light and the atoms is significant, which can
lead to drifts or noise that limits the accuracy of measurements
performed [11]. To suppress this a symmetric configuration
has been demonstrated [12]. An alternative scheme is to
use a sequence of Bragg pulses where [13] reports on an
interferometer with a momentum difference between arms of
102 photon recoil momenta.

In this paper we investigate an atom interferometer that
builds on the principles of the one considered in Refs. [9,14].
However, we omit the need for a high-order diffraction pulse
by replacing it with a train of low-order pulses. In analogy
to the sequential Bragg interferometer [13], a large �p is
obtained without utilizing a high-order diffraction pulse or an
adiabatic process, but through series of low-order diffraction

pulses. The operating principle of the interferometer relies
on quantum resonances in the atom-optics δ-kicked rotor,
which are briefly described in Sec. II. In order to obtain an
in-depth understanding of the proposed interferometer Sec. III
introduces an idealized model based on diffraction pulses
in the short pulse or Raman-Nath limit. In Secs. IV and V
we analytically investigate the performance of the idealized
interferometer for measuring the Talbot time (which together
with other well known constants constitutes a measurement
of the fine-structure constant), the initial momentum of the
input matter wave, and the local gravitational field. In Sec. VI
we numerically investigate how the interferometer performs
when the Raman-Nath condition is violated. We find that
violating the Raman-Nath condition improves the sensitivity
of the interferometer, with remarkably simple relations valid
over a large range of parameters predicting the optimal pulse
duration as a function of other parameters.

II. QUANTUM RESONANCES IN THE ATOM-OPTICS
δ-KICKED ROTOR

The atom-optics δ-kicked rotor [15,16] is a kicked particle
realized using laser-cooled atoms subjected to periodic pulses
of a standing wave of laser light. The laser light is assumed to
be sufficiently far off resonance such that spontaneous photon
scattering can be ignored. Through the optical dipole force the
standing wave forms a spatially periodic potential with a period
of half the wavelength of the light used for its generation. If the
pulses of the optical potential are sufficiently short, such that
the distance an atom travels during the pulse is much smaller
than the period of the potential—the so-called Raman-Nath
regime—then the one-dimensional dynamics of the atoms
are well described by the idealized atom-optics kicked rotor
Hamiltonian given by [17]

Ĥ (t) = p̂2

2m
+ h̄φd cos(κx̂)

N−1∑
n=0

δ(t − nT ), (1)

where x̂ and p̂ are the canonical position and momentum
operators, respectively, t is the time, T is the time between
pulses, m is the mass of the atom, κ = 2kL is twice the wave
number of the light kL forming the potential, φd is the kicking
strength, and N is the number of pulses. The stroboscopic time
evolution of an initial state due to Eq. (1) may be described by
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repeated applications of the kick-to-kick evolution operator

Û = exp

(
− i

h̄

p̂2

2m
T

)
exp[−iφd cos(κx̂)]. (2)

Equation (2) factorizes as a product of a kick operator and
a free-space evolution operator due to the δ-function time
dependence in the Hamiltonian [Eq. (1)].

Quantum resonances in the δ-kicked rotor occur due to
the matter wave Talbot effect [18] for specific combinations
of initial atomic momentum and the time between pulses
T . We first consider the case where the atom is initially
in a zero-momentum eigenstate |0〉 and the first quantum
resonance, for which T = TT = 2π/(4ωr ), where TT is the
Talbot time, and ωr = h̄k2

L/2m is the atomic recoil frequency.
The resonance occurs as follows: The kick operator imprints
a spatially periodic phase on the initial wave function, thereby
imparting momentum to the atoms in integer multiples of
h̄κ by diffraction. During the free evolution between kicks
each such momentum component qh̄κ (q ∈ Z), will acquire a
phase given by 	q = q2h̄κ2

2m
TT = q22π . Since q is an integer,

all phases are integer multiples of 2π and a revival of the wave
function occurs [18]. The free-space evolution term in Eq. (2)
therefore reduces to the identity operator, hence we conclude
that the kicks add coherently and consecutive pulses serve to
increase the amplitude of the phase modulation. This leads
to ballistic transfer of momentum to the atoms and the wave
function spreads linearly in momentum space with N [19–21].

The δ-kicked rotor can be used for making sub-Fourier
measurements [9,14,19,21–24]. In Refs. [9,14] it was shown
that identifying the Talbot time by measuring the kinetic energy
or momentum imparted to the atoms around the quantum
resonance is not the most sensitive measurement. A superior
alternative is to add a high-order diffraction pulse at the end of
the sequence, that ensures interference between all populated
momentum states [9].

III. INTERFEROMETER DESCRIPTION

Our present goal is to identify an atom interferometer that
use quantum resonances in the atom-optics δ-kicked rotor
as a beam splitter to split a wave packet into momentum
components that differ largely. At the same time it should not
rely on a high-order diffraction pulse as in Refs. [9,14] because
laser power then poses a technical limit on the momentum
difference that can be obtained.

To achieve this we use two consecutive kicked rotor pulse
sequences where the optical standing wave has had a π -phase
shift between the two sequences (see Fig. 1). Such a capability
has been demonstrated experimentally [9,25,26]. We ignore
interactions between atoms, which is valid either when using a
dilute sample or a Feshbach resonance to make the scattering
length negligible [27,28]. The Hamiltonian governing the
evolution of a state exposed to the proposed antisymmetrized
kicked rotor sequence (ASKRS) is then given by

Ĥδk(t) = p̂2

2m
+ h̄φd cos(κx̂)

×
(

N−1∑
n=0

δ(t − nT ) −
2N−1∑
n=N

δ(t − nT )

)
. (3)

FIG. 1. (Color online) Antisymmetrized pulse train schematic:
Each pulse is applied for a duration δτp (which in the Raman-Nath
regime corresponds to a δ kick of strength φd ) to an initial state
|ψi,t = 0〉. The state subsequently undergoes free-space evolution
for T − δτp . A total of N pulse free-space evolutions are performed.
After the first pulse train (the end of which is denoted by the solid
vertical line) the optical potential is π -phase shifted and a secondary
train of N pulses (kicks) is applied, yielding the final (output) state
|ψf ,t = 2NT 〉.

The stroboscopic time evolution of an initial state may be
described by N repeated applications of the kick-to-kick
operator of Eq. (2), followed by N applications of its π -phase
shifted counterpart:

V̂ = exp

(
− i

h̄

p̂2

2m
T

)
exp[iφd cos(κx̂)]. (4)

For an initial state |ψi,t = 0〉 the final state after evolution in
the ASKRS of Eq. (3) |ψf ,t = 2NT 〉 will be given by

|ψf ,t = 2NT 〉 = V̂ N ÛN |ψi,t = 0〉. (5)

The output of the interferometer is a measurement of the
fraction of atoms that has had their momentum returned to their
initial momentum after the two pulse sequences. For an atom
initially in a momentum eigenstate |p0〉 the interferometer
output is therefore

I (ε,p0) = |〈p0|V̂ N ÛN |p0〉|2, (6)

where ε = T − TT . In order to measure I the momentum
spread of the initial sample must be less than the photon
recoil momentum of the light used to form the standing
wave potential. This can be achieved by using either a
Bose-Einstein condensate [9,21] or a velocity-selected thermal
sample [3,8].

Figure 2 illustrates the operation of the pulse sequence in
momentum space. It shows the probability density in color
code on the discrete set of momenta that is coupled, as
a function of kick number. During the first sequence the
evolution of an initial state is described in Sec. II. For exact
resonance (|ψi,t = 0〉 = |0〉 and T = TT ), shown in Fig. 2(a),
the wave function right after a pulse is phase modulated with
an amplitude that is linearly increasing with pulse number,
resulting in the desired splitting between the multiple arms
of the interferometer. After the first N pulses the phase of
the diffracting standing wave potential is shifted by π . As the
phase imprint will now have opposite sign, each pulse serves
to reduce the phase modulation of the wave function. Thus
at 2N the wave function will return to the initial momentum
eigenstate. Under these conditions the π -phase shift of the
standing wave potential works as an effective time reversal
and the final state is a perfect echo of the initial. The ASKRS
can be interpreted as a multipath interferometer where the
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FIG. 2. (Color online) (a) Coherently imparted momentum to an
initial state |0〉 results in a linear spread of occupied momentum
state populations, with each state being separated by an integer
multiple of h̄κ . The population of states with ever higher magnitude
of momentum (and hence energy) grows during application of the
first pulse train. Subsequently the π -shifted train is applied (dashed
vertical line) and resonant kicking allows for coherent recombination,
i.e., a perfect echo. (b) Deviation from TT by ε = 3 ns yields
relative phases that obstruct complete recombination. The parameters
are (a) λ = 780 nm, 85MRb, φd = 0.5, ε = 0, and N = 50 and
(b) ε = 3ns.

kicks couple different populated momentum states, which then
acquire phase in between pulses. The echo described above
therefore crucially relies on the phase accumulated between
pulses being an integer multiple of 2π for all populated
momentum states. For a slight deviation of ε in T from TT

(or of p0 from 0) the echo behavior is spoiled, resulting in a
reduced return probability as shown in Fig. 2(b).

IV. DEVIATION FROM RESONANCE IN T AND p0

We will now quantitatively consider the performance of
the proposed interferometer [governed by Eq. (3)] operating

in the vicinity of the quantum resonance. To this end, we
are interested in the effects of an initial state with a small
nonzero-momentum eigenvalue of p0 and nonzero ε.

Equation (6) yields the interferometer output I (ε,p0) under
the aforementioned conditions. The dependence on ε is only
introduced through the kick operators Û (ε) and V̂ (ε). Due
to the spatial periodicity of the Hamiltonian in Eq. (3),
Bloch’s theorem ensures that only a discrete set of momentum
eigenstates of the form p = qh̄κ + p0 (q ∈ Z) is coupled
by the kick operators [29]; this yields the closure relation∑

q∈Z |p0 + qh̄κ〉〈p0 + qh̄κ| = Î for each choice of p0. In
order to evaluate Eq. (6) we insert the closure relation and
perform the calculation in two parts. Explicitly, the state
generated after N applications of Û (ε) to |p0〉 may be
written as ÛN (ε)|p0〉 = ∑

q∈Z cq(ε,p0)|qh̄κ + p0〉, where the
expansion coefficients cq(ε,p0) are

cq(ε,p0) = 〈p0 + qh̄κ|ÛN (ε)|p0〉. (7)

Analogously for the second pulse train we define

d∗
q (ε,p0) = 〈p0 + qh̄κ|[V̂ †(ε)]N |p0〉∗. (8)

Equations (7) and (8) allow Eq. (6) to be rewritten in the form

I (ε,p0) =
∣∣∣∣∣∣
∑
q∈Z

d∗
q (ε,p0)cq(ε,p0)

∣∣∣∣∣∣
2

. (9)

In order to evaluate this expression, we write the expansion
coefficients in polar form as

cq(ε,p0) = Aq(ε,p0) exp[iθq(ε,p0)], (10)

d∗
q (ε,p0) = Bq(ε,p0) exp[−iχq(ε,p0)], (11)

where Aq(ε,p0), Bq(ε,p0), θq(ε,p0), and χq(ε,p0) are real-
valued functions. For parameters close to resonance a first-
order Taylor expansion in ε and p0 accurately determines the
aforementioned functions. Following Ref. [14], this leads to

cq(ε,p0) � Jq(Nφd ) exp

[
i

(
∂θq

∂ε

∣∣∣∣
ε=0, p0=0

ε

+ ∂θq

∂p0

∣∣∣∣
ε=0, p0=0

p0 − q
π

2

)]
, (12)

d∗
q (ε,p0) � Jq(Nφd ) exp

[
− i

(
∂χq

∂ε

∣∣∣∣
ε=0, p0=0

ε

+ ∂χq

∂p0

∣∣∣∣
ε=0, p0=0

p0 − q
π

2

)]
, (13)

where Jq is a Bessel function of the first kind of order
q. In particular, the functional dependence of Eqs. (12)
and (13) on the two parameters ε and p0 is only introduced to
first order through the arguments of the exponential functions
θq(ε,p0) and χq(ε,p0). In contrast, to first order, the Aq and
Bq terms are independent of ε and p0. In the absence of initial
momentum (p0 = 0), we may explicitly evaluate ∂θq/∂ε|ε=0

043604-3



BORIS DASZUTA AND MIKKEL F. ANDERSEN PHYSICAL REVIEW A 86, 043604 (2012)

and ∂χq/∂ε|ε=0 as outlined in Ref. [14]:

∂θq

∂ε

∣∣∣∣
ε=0

= κ2 h̄

2m

[
1

6

(
N − 1

N

)
q − 1

6
φd (N2 − 1)

Jq − 1(Nφd )

Jq(Nφd )

−
(

1

3
N + 1

2
+ 1

6

1

N

)
q2

]
, (14)

∂χq

∂ε

∣∣∣∣
ε=0

= κ2 h̄

2m

[
1

6

(
N − 1

N

)
q − 1

6
φd (N2 − 1)

Jq − 1(Nφd )

Jq(Nφd )

−
(

1

3
N − 1

2
+ 1

6

1

N

)
q2

]
. (15)

Equations (14) and (15) differ in the last terms (with q2

dependence). This difference arises due to there being only
one free-space evolution of duration T between the two pulse
sequences leading to Û ending with a free-space evolution,
whereas V̂ † ends with a pulse. Had the free-space evolution
between the two pulse sequences been of duration 2T then
Eqs. (14) and (15) would have been equal. Using Eqs. (9) and
(12)–(15) provides a convenient and accurate way to compute
the interferometer output for small ε.

A. Asymptotic behavior for ε �= 0

To understand the general trends of how the interferometer
output behaves as a function of relevant parameters we now
present simple expressions for their asymptotic behavior. We
obtain these by keeping only the dominant term in Eqs. (14)
and (15) in the large-N limit. For large N , q can also be
assumed large, so we keep only the term proportional to q2N ,
which permits us to write

cq(ε) � Jq(Nφd ) exp

[
i

(−κ2h̄Nq2

6m
ε − qπ

2

)]
, (16)

d∗
q (ε) � Jq(Nφd ) exp

[
i

(−κ2h̄Nq2

6m
ε + qπ

2

)]
. (17)

Inserting Eqs. (16) and (17) into Eq. (9), replacing the quantum
momentum distribution with its classical analog, and taking the
continuum limit of the sum leads to [14]

I (ε,0) � J 2
0

(
N3φd

2 h̄κ2ε

6m

)
. (18)

The oscillatory behavior of the quantum momentum
distribution observed in Fig. 2(a) for a given n is not captured
by its classical counterpart. However, the replacement is valid
inasmuch as a significant deviation of I (ε,0) from 0 requires θq

and χq to vary slowly with q and hence the oscillatory behavior
of the quantum momentum distribution may be neglected.
The full width at half maximum (FWHM) of the peak of
I (ε,0) about ε = 0 provides a measure of the sensitivity of
the interferometer for measuring TT . Equation (18) show that
this width scale as 1/N3φ2

d in the asymptotic limit. As N

defines the interrogation time, this scaling shows sub-Fourier
sensitivity of the interferometer. Recall that physically the
Fourier inequality limits the minimum width of a measured
resonance line �f to the inverse of the time duration �t of
the experiment [30]. By instead comparing a higher harmonic
of the resonance line, the limiting factor will change in inverse

proportion to the number of the harmonic being compared.
This has been experimentally demonstrated for various
systems, an example of which is multiphoton transitions [31],
where the FWHM of the qth multiphoton line is �f �t = 1/q.
The sub-Fourier narrowing in that system is due to comparison
of the qth harmonic of the external driving frequency to
the atomic frequency and not the driving frequency itself.
Early related work used a quasiperiodically δ-kicked
rotor to distinguish between frequencies with sub-Fourier
precision [22]. In the present work as well as in Refs. [9,14,24],
the sub-Fourier sensitivity occurs due to the comparison
of the frequency at which the pulses are applied (around
1/TT ) to the frequency at which momentum eigenstates
accumulate relative phase between pulses. As the atomic
state is a superposition of momentum eigenstates of the form
|qh̄κ〉, phase accumulation occurs for all involved momentum
eigenstates at high harmonics of the recoil frequency.
The typical momentum reached in the interferometer
increases linearly with N (see Fig. 2) and the rate of phase
accumulation is proportional to the square of the momentum.
For an overall time evolution of duration proportional to
N , this implies that the width of the peak around ε = 0 is
proportional to 1/N3, as we indeed observed from Eq. (18).

B. Nonzero initial momentum p0 �= 0

We may also analyze the case where the kicking is at
resonance (ε = 0) and examine the effect of deviation from
an initial zero-momentum eigenstate. In that case, the terms
∂θq/∂p0|p0=0 and ∂χq/∂p0|p0=0 in Eqs. (12) and (13) govern
the functional dependence of cq(0,p0) and d∗

q (0,p0) on p0

respectively. Following Ref. [14], we find

∂θq

∂p0

∣∣∣∣
p0=0

= −TT

κ

2m
q(N + 1), (19)

∂χq

∂p0

∣∣∣∣
p0=0

= −TT

κ

2m
q(N − 1). (20)

Using these expressions and Graf’s identity for the subsequent
evaluation of Eq. (9) allows us to write

I (0,p0) � J 2
0 (Nφd

√
2 − 2 cos(NκTT p0/m)). (21)

To obtain a simple relation for the scaling of the width we
perform a Taylor series expansion in the argument of the Bessel
function to lowest order in p0:

I (0,p0) � J 2
0

(
N2φd

κTT p0

m

)
. (22)

This shows that to leading order Eq. (21) exhibits a 1/N2φd

scaling in the width of the output peak with respect to deviation
in initial momentum. This is similar to Refs. [9,14] (differing
only by a factor of 2) and more sensitive than the 1/N scaling
associated with the quantum resonances of Refs. [19,21]. The
kick sequence can therefore be utilized as a narrow velocity
filter [25,32].

V. ACCELERATION

In this section we consider the potential sensitivity of the
proposed interferometer when used to measure an acceleration.
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A concrete example would be a measurement of the local grav-
itational acceleration, by aligning the two counterpropagating
laser beams vertically. One can then accelerate the standing
wave by chirping one of the laser beam frequencies in a manner
that seeks to match the free-falling frame.

To analyze this scenario, we consider the introduction of a
constant acceleration a to the Hamiltonian of Eq. (3):

Ĥδka = p̂2

2m
+ max̂ + h̄φd cos(κx̂)

×
(

N−1∑
n=0

δ(t − nT ) −
2N−1∑
n=N

δ(t − nT )

)
. (23)

During free fall, the time evolution is governed by

F̂ (t) = exp

(
− i

h̄

[
p̂2

2m
+ max̂

]
t

)
, (24)

which allows us to express the stroboscopic time evolution
operator Û describing a kick and subsequent evolution in the
linear potential for one period T as

Û (T ) = F̂ (T ) exp[−iφd cos(κx̂)]. (25)

The operator that describes time evolution when a π -phase
shift of the potential has been made is

V̂ (T ) = F̂ (T ) exp[iφd cos(κx̂)]. (26)

We now restrict our attention to ε = 0, p0 = 0. The ASKRS
of the proposed interferometer will evolve an initial zero-
momentum eigenstate to a final time 2NTT . When used for
measurements of an acceleration a with respect to an applied
optical potential the output will be given by the expression

I (a) = |〈0|F̂ †(2NTT )V̂ N ÛN |0〉|2. (27)

Inclusion of the linear term max̂ in Eqs. (23)–(27) breaks
spatial periodicity and renders Bloch’s theorem inapplicable.
Quasimomentum conservation may, however, be restored by
performing gauge transformations of Eq. (23) and the states
that take part in the dynamics [33,34]. In order to simplify
the expressions we now proceed by constructing and then
evaluating Eq. (27) in the gauge-transformed frame. This is
accomplished under application of the unitary operator Û(t) =
exp(− i

h̄
max̂t), which yields H̃ = Û †(t)ĤδkaÛ(t) − max̂ (see

the Appendix for details). Explicitly,

H̃ = 1

2m
(p̂ − mat)2 + h̄φd cos(κx̂)

×
(

N−1∑
n=0

δ(t − nTT ) −
2N−1∑
n=N

δ(t − nTT )

)
. (28)

To facilitate analysis of the states that take part in the
dynamics we introduce the time label |nh̄κ,t = 0〉 ≡ |nh̄κ〉.
A free fall of duration 2NTT will have a final state given
by |nh̄κ,t = 2NTT 〉 = F̂ (2NTT )|nh̄κ〉, where we retain the
initial momentum in the label.

We now view a state vector |0,t〉 as a laboratory-frame state
and introduce the transformed frame |̃0,t〉 ≡ Û †(t)|0,t〉. The

transformation Ĥδka → H̃ implies

|̃0,t〉 = U†(t)|0,t〉 (29a)

= U†(t)F̂ (t)|0〉 (29b)

= exp

(
− ima2t3

6h̄

)
exp

(
− i

h̄

[
p̂2

2m
− atp̂

2

]
t

)
|0〉
(29c)

= exp

(
− ima2t3

6h̄

)
|0〉, (29d)

where exp(−ima2t3/6h̄) is a phase term independent of
momentum. Here and in the following, exponential products
such as U†(t)F̂ (t) of Eq. (29b) will be expanded using the
Zassenhaus lemma to the Baker-Campbell-Hausdorff theorem
[35].

In the transformation Ĥδka → H̃ temporal quasiperiodicity
is broken, which implies that upon transformation of the
kick-to-kick operator Û and its π -shifted counterpart V̂ , an
explicit time dependence is introduced according to Ũn =
Û †(nTT )Û Û([n − 1]TT ). The index n is now defined to be an
integer equal to the current kick number, started at one for each
kicked rotor sequence. An evaluation of the transformation
results in

Ũn(TT ) = exp

(
− i

h̄

[
p̂2

2m
TT − a

2
p̂T 2

T (2n − 1)

])
× exp[−iφd cos(κx̂)]. (30)

Similarly, taking into account the time accrued due to appli-
cation of the N transformed operators Ũn yields the π -shifted
operators

Ṽn(TT ) = exp

(
− i

h̄

[
p̂2

2m
TT − a

2
p̂T 2

T (2(N + n) − 1)

])
× exp[iφd cos(κx̂)]. (31)

In both Eqs. (30) and (31) we omit a global phase term
dependent on the index n. Equations (29a)–(31) imply that
Eq. (27) may be rewritten in the form

I (a) = |〈0|ṼN (TT ) · · · Ṽ1(TT )ŨN (TT ) · · · Ũ1(TT )|0〉|2, (32)

where we have used the coincidence of the two frames at t = 0.
Having restored spatial periodicity in Eq. (32), which in

turn renders Bloch’s theorem applicable [29,34,36], we are
now in a position to proceed as in Sec. IV. First, write Eq. (32)
as a sum over expansion coefficients

I (a) =
∣∣∣∣∣∣
∑
q∈Z

d∗
q (a)cq(a)

∣∣∣∣∣∣
2

. (33)

In order to find cq(a) and d∗
q (a) we require the following

expressions for the identity operator:

Î =
∑
q∈Z

˜|qh̄κ,t〉 ˜〈qh̄κ,t |

=
∑
q∈Z

U†(t)F̂ (t)|qh̄κ〉〈qh̄κ|F̂ †(t)U(t) =
∑
q∈Z

|qh̄κ〉〈qh̄κ|,

(34)
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which are valid when the initial state has p0 = 0. After
inserting Eq. (34) into Eq. (32) we arrive at

cq(a) = 〈qh̄κ|ŨN (TT ) · · · Ũ1(TT )|0〉, (35)

d∗
q (a) = 〈0|ṼN (TT ) · · · Ṽ1(TT )|qh̄κ〉. (36)

Approximate expressions for small a can be found in a similar
manner to preceding sections:

cq(a) � Jq(Nφd )

× exp

[
− i

(
T 2

T

κ

12
q(N + 1)(4N − 1)a + q

π

2

)]
,

(37)

d∗
q (a) � Jq(Nφd )

× exp

[
− i

(
T 2

T

κ

12
q(N − 1)(8N − 1)a − q

π

2

)]
.

(38)

Using Eqs. (33), (37), and (38) together with Graf’s identity
allows one to show that the interferometer output to first order
in a is given by

I (a) = J 2
0

(
Nφd

√
2 − 2 cos

[
N (2N − 1)

κT 2
T a

2

])
. (39)

Expanding the argument of the Bessel function to lowest order
in a yields

I (a) = J 2
0

(
N2(2N − 1)φd

aT 2
T κ

2

)
. (40)

Equation (40) exhibits a 1/N3φd scaling for large N in the
width of the output peak when a is swept across the resonant
zero.

In order to check the veracity of the above calculation Fig. 3
compares the FWHM as predicted by Eq. (39) and a numerical
calculation based on Eq. (32). Good agreement is seen over
the range of parameters investigated.

The asymptotic behaviors (1/N3φd for measurements of
accelerations and 1/N3φ2

d for measurements of the Talbot
time) are derived under the assumption that the initial state is
|0〉. As any experiment is limited by finite size and temperature,
we numerically inspect the behavior of the system for an initial
Gaussian wave function with width σ = 100 μm. This is done
for realistic experimental parameters: The mass of the atoms
is taken to be that of 85Rb; the effective potential φd = 0.5
and the standing wave is formed by laser light of λ = 780 nm.
The results also shown in Fig. 3 agree well with Eq. (39) for
small N , but for N > 25 significant deviation from the 1/N3φd

scaling law is seen. The deviation can be understood in terms
of Eq. (22). When the momentum width of the initial state is
much smaller than the width of the output peak [of Eq. (22)],
we expect |0〉 to approximate the initial state well and the
asymptotic results to be valid. However, as N is increased the
output peak narrows. When this peak becomes comparable
to the momentum width of the initial state, we would indeed
expect to see deviations from the scaling laws. As pointed
out in Ref. [24], an extension of the regime with favorable
scaling requires narrow initial momentum distributions. In

FIG. 3. (Color online) The FWHM of the interferometer output
peak under introduction of a linear acceleration. The red line denotes
the asymptotic behavior for an initial zero-momentum eigenstate
|0〉 as predicted by Eq. (39); blue asterisks show the full quantum
calculation for an initial state |0〉 based on Eq. (28); and green
circles show the initial Gaussian wave packet with σ = 100 μm.
The parameters are λ = 780 nm, 85MRb, and φd = 0.5.

order for the interferometer to be competitive for precision
measurements new atomic sources may therefore be needed.

VI. FINITE PULSE DURATION

In preceding sections we analyzed the short pulse limit.
This is beneficial as it allows for analytical predictions that
enable a detailed understanding of the underlying principles
of the interferometer. An actual implementation requires
finite pulse durations. One reason for this is the finite laser
power available for generation of the optical standing wave.
Moreover, investigations of other related atom interferometers
have shown that violating the Raman-Nath limit can improve
the sensitivity [37]. In this section we therefore investigate the
performance of the interferometer for finite pulse durations τp.
Because significant dynamics occur during interaction with the
optical standing wave, we are required to retain the p̂2/2m term
in the Hamiltonian during the pulse. The one-period pulse to
pulse evolution operator is now given by

Û = exp

(
− i

h̄

p̂2

2m
(T − τp)

)
× exp

[
− i

h̄

(
p̂2

2m
+ V0

2
cos(κx̂)

)
τp

]
. (41)

The strength of the optical potential is now written as V0.
Equation (41) can be rewritten using the Zassenhaus lemma
[35]:

Û = exp

(
− i

h̄

p̂2

2m
T

)
exp

(
− i

h̄

V0

2
cos(κx̂)τp

)
× exp

(
− τ 2

p

2

[
− i

h̄

p̂2

2m
, − i

h̄

V0

2
cos(κx̂)

])
× exp

[
O

(
τ 3
p

)] · · · . (42)
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For any state |β = 0〉 that can be expressed as |β = 0〉 =∑
q∈Z bq |qh̄κ〉 we have exp(− i

h̄

p̂2

2m
TT )|β = 0〉 = |β = 0〉.

Hence, for T = TT ,

Û |β = 0〉 = exp

(
− i

h̄

V0

2
cos(κx̂)τp

)
× exp

(
− τ 2

p

2

[
− i

h̄

p̂2

2m
, − i

h̄

V0

2
cos(κx̂)

])
× exp

[
O

(
τ 3
p

)] · · · |β = 0〉. (43)

The first term in this expression is the interaction with the
potential that in the short pulse limit gives rise to unbounded
ballistic transfer of momentum to the atoms at quantum
resonance. For finite τp, the subsequent terms containing
commutators, which arise due to dynamics of the atoms during
the pulse, are expected to obstruct this transfer. Note that the
lowest order in which τp appears in these terms is quadratic.

Cancellation of a term linear in τp is the advantage of using
two kicked rotor pulse sequences over simply using two single
pulses as in Ref. [18]. In order to compare to a single pulse of
duration τp, we rewrite the time evolution operator

Ûsp|β = 0〉 = exp

(
− i

h̄

V0

2
cos(κx̂)τp

)
exp

(
− i

h̄

p̂2

2m
τp

)
× exp

[
O

(
τ 2
p

)]
. . . |β = 0〉, (44)

which has a term arising from the dynamics of the atoms
that is linear in τp. For a single pulse the energy that can be
transferred to an atom initially at rest is bounded by the depth
of the standing wave potential. This limitation in transferred
energy and thereby in �p may be overcome using a kicked
rotor train of pulses of finite duration as the first-order term
arising from dynamics of the atoms in the optical standing
wave cancels.

For an initial zero-momentum eigenstate the interferometer
output is still given by Eq. (6), with Û given by Eq. (41) and
V̂ defined similarly with the phase of the potential shifted
by π . In order to investigate the potential sensitivity of the
interferometer for measuring the Talbot time we set p0 = 0
and numerically compute the interferometer output for sets
of parameters N , V0, and τp while scanning T across TT .
Similarly to the short pulse case, we observe a resonant peak in
the interferometer output for T ≈ TT . The FWHM of this peak
is a measure of the potential sensitivity of the interferometer.
For each combination of N and V0 we compute this width
while increasing τp from zero until a minimum in the width is
found. We define γ = mV0/(h̄κ)2 a measure of the potential
strength in units of the energy transfer associated with a two-
photon process. Figure 4 shows the resulting minimum width
Wmin multiplied by γ as a function of N plotted on a double-
logarithmic scale. We observe a remarkably simple relation
as all points from computations taking the initial state as |0〉
approximately fall on a straight line with slope −2. A simple
relation shown as a straight line in Fig. 4 therefore predicts the
Wmin over a large range of parameters:

Wmin ≈ 33 μs

γN2
, (45)

where the 33 μs is found by fitting.

FIG. 4. (Color online) Minimum FWHM under a deviation ε,
Wmin (scaled by γ ), numerically computed as described in the text.
Results for an initial state |0〉 are shown for potential strengths γ = 1
(�), γ = 10 (©), and γ = 100 (∗). Results for an initial Gaussian
state |G〉 with σ = 100 μm are shown for potential strengths γ = 1
(�) and γ = 10 (�). Equation (45) is shown as the black line. The
parameters are λ = 780 nm and 85MRb.

We denote the pulse duration that yields Wmin for given N

and V0 by τmin. In Fig. 5 we plot
√

γ τmin as a function of N

and again observe that all points from an initial state of |0〉
follow the simple relation that is shown as a line:

τmin ≈ 22 μs√
γN

. (46)

Using a typical momentum of an atom after the first
kicked rotor pulse sequence we find that atoms move on

FIG. 5. (Color online) Pulse duration (scaled by
√

γ ) required
to minimize the FWHM as a function of N . Results for an initial
state |0〉 are shown for potential strengths γ = 1 (�), γ = 10 (©),
and γ = 100 (∗). Results for an initial Gaussian state |G〉 with σ =
100 μm are shown for potential strengths γ = 1 (�) and γ = 10
(�). Equation (46) is shown as the black line. The parameters are
λ = 780 nm and 85MRb.
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the order the period of the optical standing wave during a
pulse duration τmin, independent of N and γ . We therefore
observe that the optimal pulse duration τmin is not within
the Raman-Nath regime but occurs upon moderate violation
thereof. These scaling relations are verified for a wide range
of γ and N . When the initial state is taken to be |0〉, then
for values of γN much larger than unity, the behavior of the
system is well captured by the simple relations of Eqs. (45)
and (46) (see Figs. 4 and 5). For γN < 1 the system does
not display the behavior outlined above. This is due to
the reduction to an effective three-level system consisting
of |0〉 and |±h̄κ〉 where qualitatively different dynamics
occur.

Equation (45) shows that the width of the peak close to
T = TT only decreases as 1/N2, whereas it was 1/N3 in the
Raman-Nath regime. This is due to the fact that the optimal
pulse duration is decreased with N [see Eq. (46)], thereby
effectively reducing the kick strength as N is increased. It
should be noted that given V0 and N choosing τ according to
Eq. (46) will give a much narrower peak and a more sensitive
interferometer than choosing a smaller τ that would fulfill the
Raman-Nath condition for all pulses.

Upon extending our numerical calculation to an initial
Gaussian wave packet |G〉 (using the Fourier split-step
operator method [38]) we find good agreement for low N

(see Figs. 4 and 5); however, significant deviation occurs as N

is further increased. We ascribe this to the nonzero-momentum
spread in the Gaussian wave packet.

We also note one other feature observed: The output profile
generated when modeling the effect of an introduction of
ε was not centered exactly on the T = TT but displayed a
slight shift δε. For accurate measurements this shift could
introduce unwanted errors when measuring TT . However, up
to the numerical accuracy of our calculations δε remained
unchanged when considering the peaks centered close to T

being integer multiples of TT . Systematic effects due to the
shift δε can therefore be reduced by measuring the difference
between the position of the peak close to T = TT and one at a
higher multiple of the Talbot time [37].

VII. CONCLUSION

We have investigated a scheme for an atom interferometer
that generates high momentum differences between its arms

through consecutive low-order diffraction processes. The
interferometer can potentially measure the Talbot time, an
initial momentum of the atoms, or accelerations. It builds
on quantum resonances in the atom-optics δ-kicked rotor
and we presented approximate analytical expressions for the
sensitivity of operation in the vicinity of quantum resonance.
These gave simple scaling relations for the width of the
interferometer output peak in the large-N limit, with 2N being
the total interrogation time.

We numerically explored the finite-pulse-duration regime,
finding relations that predict the optimal pulse duration
(not in the Raman-Nath regime) and the sensitivity of the
interferometer. The interferometer may be of interest for
measurements of the local gravitational acceleration or the
fine-structure constant α.
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APPENDIX

A Hamiltonian that describes a particular system may
be transformed to a convenient frame in order to simplify
calculations [34,39]. In this section we outline the gauge-
transformation procedure, making explicit the connection
between the gauge-transformed Hamiltonian denoted as H̃ and
its laboratory-frame counterpart Ĥ . Given a system described
by the Hamiltonian Ĥ , then the time evolution of an initial
state |ψ〉 can be represented in the Schrödinger picture as

ih̄
∂|ψ〉
∂t

= Ĥ |ψ〉. (A1)

We now consider the effect of using the operator Û =
exp(−imax̂t/h̄) to construct the gauge-transformed wave
function |̃ψ〉 = Û †|ψ〉. Taking the time derivative of |̃ψ〉 and
using Eq. (A1) yields

ih̄
∂

∂t
[Û †|ψ〉] = ih̄Û † ∂

∂t
|ψ〉 + ih̄

∂Û †

∂t
|ψ〉

= (Û †Ĥ Û − max̂)Û †|ψ〉. (A2)

This implies that the time evolution of the gauge-transformed
state |̃ψ〉 is governed by the Hamiltonian H̃ = Û †Ĥ Û − max̂.
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