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Strongly driven resonant Auger effect treated by an open-quantum-system approach
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We present theoretical studies of a two-step resonant Auger process at high x-ray intensity. Tuning a short x-ray
pulse to the initially closed resonant channel of the 1s-2p transition in singly ionized neon, the initially neutral
neon target is valence ionized. Subsequently, the strong resonant x-ray field transfers an inner-shell electron to the
created outer valence vacancy, thereby creating a core-excited state. The strong resonant coupling, giving rise to
Rabi oscillations involving a core transition, results in a modification of the resonant Auger-electron spectral line
profile. If the valence photoelectron remains unobserved, the system of the residual ion undergoing the resonant
Auger decay can be treated by an open quantum system approach. The resonant Auger-electron spectral line
shape is shown to be determined by an analog of the reduced density matrix that depends on two time arguments.
The equations of motion of this reduced density matrix are derived and numerical results are presented, in support
of the recent experimental verification [E. Kanter et al., Phys. Rev. Lett. 107, 233001 (2011)] of this nonlinear
x-ray optical effect.
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I. INTRODUCTION

The recent start up of x-ray free electron laser (XFEL)
sources [1–3] opened the opportunity to study fundamental
interactions of femtosecond, high-intensity radiation with
atoms in the x-ray regime [4–7]. A prominent example of
nonlinear interaction is the strong, resonant coupling of a
two-level system, inducing a coherent, oscillatory population
transfer (Rabi oscillations) between the two energy levels. In
the high-intensity x-ray regime, the excitation of an inner-shell
electron to a valence vacancy creates a core-excited state of
short lifetime. In addition to stimulated emission, the core
hole can undergo an Auger decay, resulting in damped Rabi
oscillations. (Spontaneous emission is not important in the
problem considered here.) The spectral line shape of the
resonant Auger electron is modified in the strong-field limit
[8–11], i.e., when the Rabi oscillation period is comparable to
the Auger lifetime of the core hole. Another effect resulting in
a change of the spectral line shape in the regular Auger process
is the Autler-Townes Stark splitting of the final state, induced
by strong resonant excitation of the final state by an x-ray
field [12]. Similar effects due to strong resonant coupling are
known in the optical regime, such as the modification of the
photoelectron spectrum due to a strongly driven autoionizing
resonance [13] or resonance fluorescence [14]. In a recent
experiment, the broadening of the resonant Auger spectral
line profile was demonstrated by resonant coupling of an
initially inaccessible resonance in neon [6]. Here, we present
the underlying theoretical model in detail, which was the basis
of the interpretation of the experimental findings of Ref. [6].

In the studied system, the incident XFEL pulse, assumed
to be linearly polarized along the z direction, is tuned to
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the 1s-2p resonance of Ne1+ at 849 eV photon energy
(transition between configuration states |2p〉 := 1s22s22p5 to
|1s〉 := 1s12s22p6). The XFEL beam is focused into a target
of neon atoms, initially in their neutral ground state |�0〉. Since
the XFEL photon energy is below the K edge (≈ 870 eV) and
the first core-excited state (≈ 867 eV) of the neutral neon atom,
the pulse can initially only ionize the 2s and 2p shells (see
schematics presented in Fig. 1). Once a valence hole in the 2pz

orbital is created, the XFEL then resonantly couples the 1s-2p

transition in Ne1+, giving rise to the resonant Auger electrons
originating from core-excited Ne1+, which are observed in the
experiment. The process, hence, involves a double-continuum
of electronic states. The continuum electrons, however, are
separated in energy, with the first continuum corresponding
to the valence photoelectrons and the second continuum
corresponding to that of the Auger electrons. The Auger
process considered here is a real nonlinear process, even in
the absence of strong Rabi oscillations, since the core-excited
state is prepared by interaction with two photons. If the valence
photoelectron remains unobserved, the residual singly-charged
ion, undergoing stimulated absorption, emission, and Auger
decay, can be treated as an open quantum system. The
open system is described by a reduced ionic density matrix.
Due to the loss of information by the unobserved valence
photoelectron, this reduced density matrix generally does not
describe a pure state. The loss of coherence is reflected in the
spectral line shape of the observed Auger electron. We show
that the Auger-electron line shape is governed by dynamic
interference effects and is determined by an analog of the
reduced density matrix (of the singly charged ion) that depends
on two time arguments. The equations of motion of this object,
describing temporal correlations of the ionic configuration and
hence containing memory effects, will be derived. We present
numerical results of the temporal evolution of the reduced
density matrix and the Auger-electron line profile. Different
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FIG. 1. (Color online) XFEL source is tuned to the 1s-2p

resonance of singly ionized neon, at 849 eV. Initially, only valence
shell ionization is possible, resulting in a hole either in the 2s or 2p

shell. In case that a hole in the 2pz orbital is created, the XFEL then
strongly couples the 1s and 2p shells, transferring population to the
upper state. Once the core hole is created, Auger decay and stimulated
emission compete.

assumptions for the driving x-ray field will be compared,
i.e., transform limited femtosecond pulses and pulses from
a self-amplified spontaneous emission (SASE) XFEL source.

II. THEORETICAL APPROACH

In this section we introduce our method to calculate the
resonant Auger-electron spectral line shape. We start out with
the full quantum mechanical system and derive the expansion
coefficients of the many-body wave function, expanded in
configuration states of the atomic ground state, singly ionized
neon plus continuum electron, and doubly charged neon plus
electronic double-continuum. We then derive the expression
for the Auger-electron line shape as a function of expansion
coefficients of the states involving the double continuum. It
turns out that the Auger spectrum can be calculated by an
object, which is an analog of the reduced density matrix of
the singly charged ion depending on two time arguments.
Hence, for determining the Auger line shape, the system can
be reduced to that of the singly charged ion. Subsequently, the
equations of motion for this generalized reduced ionic density
matrix are derived.

The Hamiltonian of our system is given by

Ĥ = Ĥ0 + ẑE(t), (1)

where Ĥ0 is the atomic part of the Hamiltonian in a mean-field
approximation. The second term describes the interaction of
the atom with the x-ray field in dipole approximation. The
electric field of the x-ray radiation is written in terms of a
slowly varying envelope ε0(t) and a phase φ(t) as

E(t) = ε0(t)

2
[ei[ω0t−φ(t)] + e−i[ω0t−φ(t)]] , (2)

where we assumed linear polarization of the field in z direction.
The carrier frequency ω0 = 849 eV is supposed to be tuned to
the 1s-2p resonance of singly ionized neon.

A. Expansion of the wave function

In the second quantization, the ground state |�0〉 of a closed
shell atom is then formally constructed by the action of single-
particle creation operators on the vacuum state by

|�0〉 =
N/2∏
i=1

b̂
†
i↑b̂

†
i↓|0〉, (3)

where b̂
†
i↑ (b̂†i↓) are the fermionic creation operators, creating

an electron in state i = (ni,li ,mi) with spin up (down).
The active Hilbert space in our model is restricted to the
ground-state configuration and a set of spin-singlet excited
states of one- and two-particle excitations. The one-particle
excited spin-singlet states are constructed by

|�a
i 〉 := 1√

2
(b̂†a↑b̂i↑ + b̂

†
a↓b̂i↓)|�0〉. (4)

In the following a, c, and d denote virtual orbitals, i.e., orbitals
which are not occupied in the ground-state configuration,
whereas i, j , and k denote initially occupied orbitals. Doubly
excited states are constructed along this line, by operation of
another symmetric pair of creation and annihilation operators.
The time-dependent atomic wave function is approximated by
a superposition of the |�0〉, singly excited states |�a

i 〉, and
doubly excited states |�cd

jk〉:

|�,t〉 = α0(t)e−iE0t |�0〉 +
∑
i,a

αa
i (t)e−iEa

i t
∣∣�a

i

〉
+

∑
j,k,c,d

αcd
jk (t)e−iEcd

jk t
∣∣�cd

jk

〉
. (5)

In the interaction picture the wave function |�,t〉I :=
eiH0t |�,t〉 is then given by

|�,t〉I = α0(t)|�0〉 +
∑
i,a

αa
i (t)

∣∣�a
i

〉 + ∑
j,k,c,d

αcd
jk (t)

∣∣�cd
jk

〉
.

(6)

The Schrödinger equation in the interaction picture then
determines the time evolution of the expansion coefficients.
Neglecting field induced transitions between virtual orbitals
one gets

iα̇0 =
∑
i,a

αa
i e

i(εi−εa )tE(t)
√

2zi,a, (7)

iα̇a
i = α0(t)ei(εa−εi )tE(t)

√
2za,i

−
∑

j

ei(εj −εi )tαa
j E(t)zj,i − i

	i

2
αa

i , (8)

iα̇cd
jk =

∑
a

αa
1se

i(Ecd
jk −Ea

1s )t 〈�cd
jk

∣∣V̂C

∣∣�a
1s

〉
. (9)

where zi,a is the dipole matrix element of the single-particle
transition between orbitals i and a, and εi denotes the
one-particle orbital energy. To account for the decay of the
inner-shell hole through the Auger process, we introduced a
phenomenological decay term with decay width 	i , where
	1s = 0.27 eV [15] denotes the decay width of the 1s hole
in neon; all other 	i = 0. This effective decay term can be
derived by the Wigner-Weisskopf method [16]. In Eq. (9) we
assumed that the double continuum states |�cd

jk〉 are populated
only by Auger decay, mediated by the Coulomb interaction
V̂C , i.e., we neglected the occupation of that channel by direct
double ionization of the valence shell.

B. Calculation of resonant Auger-electron spectral line shape

The Auger-electron spectral line shape is determined by
the asymptotic occupations of the doubly valence-excited
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states αcd
jk (t), which evolve according to Eq. (9). We assume

that the photoelectrons are energetically distinguishable from
the Auger electrons. The index d in Eq. (9) refers to the
Auger electron, whereas a and c refer to the photoelectrons.
We disregard any interaction of the photoelectron with the
Auger electron; hence c = a in Eq. (9). This is justified, since
the photoelectron, resulting from valence ionization, has a
high energy and a coupling (postcollision interaction) of the
photoelectron and Auger electron can be neglected. In the
following we only consider the strongest resonant Auger decay
channel (1D), involving both participating electrons from the
2p shell. Coupling of the different decay channels by the field
is neglected. With these assumptions we arrive at

iα̇ad
jk = ei(Ead

jk −Ea
1s )t

√
	jk

2π
αa

1s = ei(εd−εj −εk+ε1s )t

√
	jk

2π
αa

1s ,

(10)

where we introduced the partial Auger width 	jk =
2π |〈�ad

jk |V̂C |�a
1s〉|2, and the Auger channel is specified by

the quantum numbers j,k. The index d refers to the energy-
normalized continuum wave function and satisfies energy
conservation in the Auger decay, i.e., the Auger electron
carries the energy shift between the 1s-hole state and the
final dicationic state j,k. Strictly, the energy of the state d

in Eq. (9) is not constant, but we neglect the dependence of
the matrix element 〈�cd

jk|V̂C |�a
1s〉 on the state d. These two

assumptions then allow us to introduce the decay width 	jk of
the core-excited state. The total decay width of the 1s-hole state
is given by 	1s = ∑

j,k 	j,k . The Auger-electron line shape
is then determined by the asymptotic limit of the expansion
coefficients, which after formal integration of the differential
equations results in

Pj,k(ε) =
∑

a

∣∣αad
jk (t → ∞)

∣∣2

= 	jk

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′ei(ε−εj −εk+ε1s )(t−t ′)

×
∑

a

αa
1s(t)α

a
1s

∗(t ′). (11)

The partial Auger width 	jk enters only as a normalization
factor in Eq. (11). The quantity

ρ1s,1s(t,t
′) :=

∑
a

αa
1s(t)α

a
1s

∗(t ′) (12)

appearing in Eq. (11) can be interpreted as an analog
of the reduced density matrix of the subsystem of the
singly charged ion and depends on two time arguments.
Equation (11) highlights the fact that the Auger-electron
spectral line shape can be determined by eliminating both
continua related to the photoelectron and the Auger electron,
at the expense of introducing an object related to the reduced
ionic density matrix which treats memory effects and depends
on two time arguments.

We want to stress that there are several strategies to calculate
the resonant Auger-electron line shape. One approach would
be to deduce the wave-function expansion coefficients of the
closed system by solving Eqs. (7) through (9). Then one
would calculate the photo and Auger-electron coincidence

spectrum, from which the Auger-electron spectrum can be
determined. This traditional strategy was, for example, applied
in Ref. [17]. Another possibility is to solve for the expansion
coefficients determined by Eqs. (7) and (8). Subsequently, one
calculates the Auger-electron spectrum, given by Eq. (11),
an expression in which the Auger-electron continuum has
been already eliminated. This approach involves the explicit
treatment of the photoelectron continuum. Alternatively, one
can treat the system as an open quantum system of the
residual ion, eliminating both the photo and the Auger-electron
continuum. We decided to adopt this approach. Equation (11)
shows that the Auger-electron line shape can be determined
by eliminating the unobserved continuum associated with
the photoelectron, at the cost that the time evolution of the
two-time analog of the reduced density matrix, defined by
Eq. (12), has to be determined. Note that the usual reduced
density matrix

ρ1s,1s(t) :=
∑

a

αa
1s(t)α

a
1s

∗(t) (13)

does not carry sufficient information of the ionic subsystem, in
order to determine the Auger line shape. The object ρ1s,1s(t,t ′)
can be interpreted in terms of a second-order correlation
function (or the expectation value of the propagator in the
ionic subsystem), related to the probability that the ionic
subsystem has a hole in the 1s shell at time t ′ under the
condition that it had a hole in the 1s shell at time t . More than
that, the object ρ1s,1s(t,t ′) is complex valued [unlike ρ1s,1s(t)]
and hence carries a phase. The Auger-electron line shape is
therefore determined by a dynamic interference process. In
other words, whenever the neon ion is in the core-excited
state, it can decay by an Auger process. The Auger-electron
spectrum is given by a coherent sum of spectra emitted at times
for which the ionic system is inverted. We opt for the open
quantum system approach, since it highlights the analogy to the
resonantly driven two-level system. In the following, we derive
the equations of motion for the generalized reduced density
matrix, which determines the Auger-spectral line profile.

C. Equations of motion

In principle, the Auger line shape Eq. (11) can be deter-
mined by solving the equations of motion for the expansion
coefficients Eqs. (7) and (8) by treating the photoelectron
continuum explicitly. We opt for an alternative description
and treat the problem by an open quantum system approach.
As shown in the previous section, the residual ion undergoing
Auger decay can be characterized by a two-time analog of the
reduced density matrix defined in Eq. (12). This highlights
the parallels with optically driven few level systems treated by
the usual density-matrix approach. The problem can hence be
reduced to that of an open quantum system, solely determined
by the evolution of the reduced ionic two-time density matrix

ρi,j (t,t ′) =
∑

a

αa
i (t)αa

j
∗(t ′), i,j = 1s,2pz. (14)

Making use of the expression in Eq. (14) and the time evolution
of the coefficients Eqs. (7) and (8) we can derive the equations
determining the temporal evolution of the reduced ionic
density matrix. Applying the rotating wave approximation,
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after some lengthy but straightforward calculations sketched
in the Appendix one arrives at

∂

∂t
ρ2pz,2pz

= σ2pz

2
J (t)p0(t) + ie−iδt R

∗(t)

2
ρ1s,2pz

,

∂

∂t ′
ρ2pz,2pz

= σ2pz

2
J (t ′)p0(t ′) − ieiδt ′ R(t ′)

2
ρ2pz,1s ,

∂

∂t
ρ1s,1s = −	1s

2
ρ1s,1s + ieiδt R(t)

2
ρ2pz,1s ,

∂

∂t ′
ρ1s,1s = −	1s

2
ρ1s,1s − ie−iδt ′ R

∗(t ′)
2

ρ1s,2pz
, (15)

∂

∂t
ρ2pz,1s = ie−iδt R

∗(t)

2
ρ1s,1s ,

∂

∂t ′
ρ2pz,1s = −	1s

2
ρ2pz,1s − ie−iδt ′ R

∗(t ′)
2

ρ2pz,2pz
,

∂

∂t
ρ1s,2pz

= −	1s

2
ρ1s,2pz

+ ieiδt R(t)

2
ρ2pz,2pz

,

∂

∂t ′
ρ1s,2pz

= −ieiδt ′ R(t ′)
2

ρ1s,1s ,

where we omitted the time dependence of the density matrix
elements. We introduced the detuning δ = ε2pz

− ε1s − ω0

and the photoionization cross section σ2pz
= 4.2 × 10−21 cm2

[18,19] for ionization of the 2pz orbital and the complex Rabi
frequency

R(t) = z1s,2pz
ε0(t)eiφ(t), (16)

with z1s,2pz
= 0.0554 a.u. [18,19]. The cycle averaged flux is

given by

J (t) = c

4πω0
〈E2(t)〉 = c

8πω0
ε2

0 (t). (17)

The ground-state occupation p0(t) is determined by

ṗ0(t) = −σtotJ (t)p0(t), (18)

where σtot = 2.5 × 10−20 cm2 [18,19] denotes the total valence
photoionization cross section of neon at frequency ω0. The
occupation probabilities of the holes 1s and 2pz are given by
the diagonal density matrix elements of the reduced density
matrix at equal time arguments

ρi,j (t) := ρi,j (t,t), i,j = 1s,2pz. (19)

Describing an open quantum system, the norm N (t) =∑
i ρi,i(t,t) of the reduced density matrix is not conserved.

Initially, the population sits in the ground state p0(0) = 1
and N (0) = 0. As ionization of the 2pz orbital proceeds,
the ionic density matrix gets populated. Resonant coupling
of the 1s and 2pz orbitals by the electric field then results
in occupation of the 1s-hole states and the buildup of the
coherence terms ρ1s,2pz

. Part of the ionization of the ground
state results from the 2s, 2px , and 2py channels, which are
not of interest to the considered processes and are loss terms.
Equations (15) and (18) are solved numerically. Due to the
symmetry relation ρi,j (t,t ′) = ρ∗

j,i(t
′,t), the two-dimensional

time integration of Eqs. (15) and (18) can be restricted to the
symplex t ∈ [0,tmax],t ′ ∈ [t,tmax].

III. NUMERICAL RESULTS AND DISCUSSION

A. Gaussian temporal profile

As a first example, we study the effect of a coherent,
transform limited pulse on the resonant Auger line shape.
The intensity envelope is supposed to be Gaussian, with a
pulse duration of 3 fs full width at half maximum (FHWM).
Figure 2 shows the evolution of the density matrix elements
and the ground-state occupation as a function of time for a
fluence of 350 a.u., corresponding to 1.25 × 1011 photons per
μm2. At this intensity, depletion of the ground state is not
saturated; roughly 30% of the ground state get depopulated.
The occupation probabilities of the 2pz- and 1s-hole states are
plotted in Fig. 2(b). The resonant coupling of 1s to 2p is strong
and the occupation probabilities of the two hole states follow
each other closely. The Auger decay and the resonant coupling
happen fast compared to the valence ionization time, so that
oscillations (Rabi oscillations) in the occupation probabilities
are not visible on the scale of the occupations. Plotting the
population inversion ρ1s,1s(t) − ρ2pz,2pz

(t) or the coherence
ρ1s,2pz

(t), the damped Rabi oscillations are more visible

(a)

(fs)

(a
.u

.)
(e

V
)

(fs)

(fs)

(b)

(c)

FIG. 2. (Color online) (a) Ground-state occupation and flux as a
function of time. (b) Time evolution of the occupation probability
of the 1s and 2pz holes [ρ1s,1s(t) and ρ2pz,2pz

(t), respectively] and
the degree of coherence. (c) Temporal evolution of the occupation
inversion ρ1s,1s(t) − ρ2pz,2pz

(t), the imaginary part of the coherence
ρ1s,2pz

(t), and the Rabi frequency. The input pulse is a Gaussian pulse
of 3 fs FHWM, assuming a fluence of 350 a.u.
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ts
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FIG. 3. (Color online) Auger-electron spectral line shape for a
Gaussian pulse of 3 fs FWHM and a fluence of 350 a.u. (red solid
curve) and 0.5 a.u. (blue dashed curve). The spectra were rescaled,
so that the peak strengths are comparable.

[see Fig. 2(c)]. In the considered case, the system undergoes
nearly five Rabi cycles. Hence Auger decay and stimulated
emission are competing, which has an imprint on the Auger-
electron line shape, shown in Fig. 3. The line profile develops
side lobes and is considerably broader than the spectrum at
low intensity, which has a FHWM of 0.27 eV, in accordance
with the unaltered Auger width in the perturbative limit. The
regular structure with side peaks can be interpreted in terms
of dynamic interference. Due to the oscillatory dependence of
the upper state occupation, Auger emission temporally peaks at
the occupation maxima, corresponding to a temporal grating.
Since the Rabi frequency changes as a function of time, due to
the intensity variation of the pulse, the temporal maxima are
not equidistant in time, giving rise to a complex interference
pattern. For a flat-top pulse, the pattern results in a center
symmetric triple-peak structure, with an energy spacing of the
peaks given by the Rabi frequency defined by the constant
field.

During the evolution, the ionic system maintains only a
limited degree of coherence, defined by

C(t) := |ρ1s,2pz
(t)|√

ρ1s,1s(t)ρ2pz,2pz
(t)

. (20)

The degree of coherence defined in Eq. (20), or degree
of purity, measures the deviation of the two-level system
from a pure state [20]. If the system is in a completely
coherent superposition of the hole states |1s〉 and |2pz〉, then
one can use a Schrödinger ket c1s(t)|1s〉 + c2pz

(t)|2pz〉 to
describe the state. The corresponding density matrix has off-
diagonal elements c1s(t)c∗

2pz
(t) and c2pz

(t)c∗
1s(t). Therefore, the

coherence as defined in Eq. (20) would be one. On the other
hand, if the system is in a completely incoherent superposition
of |1s〉 and |2pz〉, a Schrödinger ket cannot be used at all to
describe the state of the system, and the off-diagonal elements
of the density matrix vanish. Hence the degree of coherence is
zero.

The initial degree of coherence, as can be seen in Fig. 2(b),
is close but not equal to one and evolves as a function of
time. It is determined by the specific pulse shape of the system
and is determined by a 0/0 limit, since both the off-diagonal
and diagonal matrix element of the density matrix evolve
from zero. For a constant electric field envelope the initial
value of coherence is

√
3

2 , the value reached in our numerical
calculation. In the considered case, the singly charged ion

is produced by valence ionization of the neutral on a time
scale that is slow compared to the Rabi cycling time of the
system and the pulse duration (the valence photoionization
cross section is small compared to the resonant inner-shell
coupling strength). Once the 2pz-hole states are created by
photoionization, they undergo fast Rabi oscillations. Hole
states created at later times are not necessarily in phase with
the wave packet created at earlier times. This loss of coherence
of the quantum state is characterized by the limited degree of
coherence of the system and is also reflected in the line shape
of the emitted Auger electron. Along similar lines, we recently
studied the degree of coherence of a valence spin-orbit wave
packet created during the course of strong-field ionization
with an optical laser pulse [21]. The degree of coherence
of the electronic wave packet was recently measured in an
experiment on krypton ions created by a few-cycle pulse [20].
The two distinct time scales governing dephasing of the density
matrix in that example were given by the spin-orbit period and
the pulse duration of the optical laser field.

Figure 4(a) shows the total Auger-electron yield as a
function of fluence, in comparison to the total photoelectron
yield and the 2pz photoelectron yield. Since the production
of an Auger electron requires two photons in the low
fluence limit, where perturbation theory is applicable, the total
Auger-electron yield shows a quadratic dependence on the

(a)

(b)

(a.u.)

(a.u.)

FIG. 4. (Color online) (a) Total photoelectron, 2pz photoelectron,
and Auger-electron yield as a function of fluence for a Gaussian pulse
of 3 fs duration. In the perturbative limit, i.e., when the resonant 1s-2p

transition is not saturated, the Auger-electron yield shows a nearly
quadratic dependence on the fluence. (b) Ratio of the Auger-electron
yield to the total 2pz photoelectron yield as a function of fluence.

043434-5



NINA ROHRINGER AND ROBIN SANTRA PHYSICAL REVIEW A 86, 043434 (2012)

fluence. In the region of strong resonant coupling, this is
no longer the case and the yield grows nearly linearly with
increasing fluence. The small deviations from the linear
behavior are better visible in the relative Auger-electron yield.
Figure 4(b) shows the ratio of the total Auger-electron yield
and the total 2pz photoelectron yield as a function of fluence.
At low fluence, the relative Auger-electron yield is small, since
the production of the 1s hole by resonant excitation into the 2p

shell is not saturated, reflecting the quadratic dependence of the
Auger-electron yield. In analogy to direct resonant coupling
of the 1s-3p resonance [8], the relative Auger-electron yield
features oscillations at higher fluence. The minima of these
oscillations lie at fluences corresponding to multiples of 2π

pulses, i.e., pulses which drive a given number of complete
Rabi cycles (population transfer to the 1s hole state and back
to the 2pz hole state).

B. SASE pulses of limited temporal coherence

Presently, x-ray FELs are based on self-amplification of
spontaneous emission (SASE) and their spectral and temporal
intensity distribution is very noisy [22,23]. The pulses have
finite temporal coherence. In the case of the LCLS, the
temporal coherence was recently inferred from measurements
in the hard x-ray regime [24] at around 8 keV photon energy.
Unfortunately, no measurements are available in the low x-ray
energy regime around 850 eV. According to the experimentally
measured photoelectron spectrum [6], we assume a bandwidth
of 6 eV at 850 eV, which would result in a coherence time
of 0.2 fs, assuming FEL operation in the nonsaturated gain
region [22,23]. To study the influence of these pulses of
limited temporal coherence on the resonant Auger spectrum,
we simulate a stochastic ensemble of SASE pulses assuming
noise with a Gaussian spectral function with a width equal
to the SASE gain bandwidth (for details, see [8,25,26]). We
assume a Gaussian intensity envelope of 8.5 fs FWHM for the
ensemble average of the SASE pulses. Figure 5 shows the
temporal evolution of the occupancies of the relevant states
for a typical representative of the SASE ensemble. Shown are
results for a fluence of 350 a.u., corresponding to the conditions
at the focus maximum of the experiment [6]. The ground-state
occupation, shown in Fig. 5(a), follows the intensity spikes
of the SASE pulse. Also the occupation probabilities of the
1s and 2pz hole states and the degree of coherence, shown
in Fig. 5(b), feature a noisy structure. The resulting Auger
spectral line shape for a single representative of the SASE
ensemble is shown in Fig. 6(a) for high and low fluence. The
single-pulse profiles have several spikes and are substantially
broadened at high fluence, i.e., where Rabi flopping is present.
This becomes more apparent in the average over the SASE
ensemble, shown in Fig. 6(b). At low intensity, the line shape is
Lorentzian with the width given by the Auger width of 0.27 eV.
The averaged line shape at high x-ray intensity is considerably
broader. There are no regular sidebands visible, in contrast to
the case for a transform limited pulse. The spectral profile is
characterized by broad tails, which also have been predicted
for resonance fluorescence with stochastic light of Gaussian
statistics [27]. To compare with experiments, integration over
the spatial beam intensity profile is necessary, which typically
flattens the broad tails of the high-intensity contributions to the

(a)

(b)

(fs)

(fs)

(a
.u

.)

FIG. 5. (Color online) (a) Ground-state occupation and flux as a
function of time. (b) Time evolution of the occupation probability of
the 1s and 2pz hole [ρ1s,1s(t) and ρ2pz,2pz

(t), respectively] and the
degree of coherence.

spectrum. Nevertheless, a broadening of the Auger line was
observed (see Ref. [6] for comparison to experimental data).
Similar changes of emission spectra due to stochastic fields
have been studied in resonance fluorescence with intensity
and phase fluctuating optical laser pulses [28–32], or in the ac
Stark effect in resonantly driven three-level systems [33]. A
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FIG. 6. (Color online) (a) Auger-electron spectral line profile for
low (green dashed line) and high (red solid line) fluence for a single
SASE pulse. (b) Spectra for an ensemble of 500 SASE pulses. The
spectra are normalized to have the same integral. The SASE pulses
are constructed in such a way that the ensemble averaged pulse is a
Gaussian of pulse duration of 8.5 fs.
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good collection of references on systems resonantly driven by
stochastic fields can be found in [34].

C. CONCLUSIONS

We discussed the resonant Auger effect of a strongly driven,
open quantum system. Neon is subjected to a strong x-ray
pulse, tuned on resonance of the 1s-2p transition of singly
ionized neon. In a first step, the neon atom is valence-ionized
by the x-ray pulse. If the valence hole is created in the
2pz orbital, the x-ray pulse subsequently drives a population
transfer from the 1s to the 2p shell, which is followed by
an Auger decay of the 1s hole state. The photoelectron
remains unobserved. Therefore, the system can be treated as an
open quantum system, describing the residual ion undergoing
stimulated absorption, emission, and Auger decay. We showed
that the Auger-electron spectral line shape is determined by a
two-time analog of the reduced ionic density matrix. Equations
of motion for this reduced density matrix have been presented.
The strong resonant coupling and the induced Rabi oscillations
are manifested in a pronounced change of the Auger-electron
line shape. For a transform-limited Gaussian-shaped temporal
pulse, the Auger spectral line shape at high x-ray fluence devel-
ops sidebands, which can be interpreted in terms of dynamic in-
terference. For a stochastic radiation field, which describes the
case of an ensemble of SASE x-ray free-electron laser pulses,
a considerable broadening of the Auger spectral line shape is
predicted, which was observed in a recent experiment [6].
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APPENDIX: DERIVATION OF THE EQUATIONS
OF MOTION

This appendix gives details on how the equations of motion
(15) and (18) for the reduced two-time density matrix and
the ground-state occupation are derived. The evolution of
the ground state occupation p0(t) = |α0(t)|2 in terms of the
expansion coefficient α0 is determined by

ṗ0(t) = 2 Re[α̇0(t)α∗
0 (t)], (A1)

which, by inserting the evolution of the ground-state expansion
coefficient of Eq. (7), gives

ṗ0(t) = 2 Re

{
−iα∗

0 (t)
∑
i,a

αa
i (t)ei(εi−εa )tE(t)

√
2zi,a

}
. (A2)

The next step is to insert the formal integration of Eq. (8) for
αa

i (t), which yields

ṗ0(t) = −2 Re

{
α∗

0 (t)
∑
i,a

ei(εi−εa )tE(t)
√

2zi,a

∫ t

−∞
dt ′e− 	i

2 (t−t ′)

×E(t ′)

[
α0(t ′)ei(εa−εi )t ′

√
2za,i

−
∑

j

ei(εj −εi )t ′αa
j (t ′)zj,i

]}
. (A3)

In general, after integration over the continuum (
∑

a) the
second term of the integrand will give rise as a function of t to
a rapidly oscillating contribution to the photoabsorption rate.
This second term will therefore be neglected in the following.
We therefore get

ṗ0(t) = −4 Re

{
α∗

0 (t)E(t)
∑
i,a

|za,i |2

×
∫ t

−∞
dt ′ei(εi−εa )(t−t ′)e− 	i

2 (t−t ′)E(t ′)α0(t ′)
}

. (A4)

Using the slowly varying envelope expansion of the electric
field [Eq. (2)] and applying the rotating wave approximation,
we get

ṗ0(t) = −2 Re

{
α∗

0 (t)E(t)
∑
i,a

|za,i |2e−iω0t

×
∫ t

−∞
dt ′ei(εi−εa+ω0)(t−t ′)e− 	i

2 (t−t ′)ε0(t ′)eiφ(t ′)α0(t ′)

}
.

(A5)

The bandwidth of the FEL will give rise to a photoelectron
spectral linewidth of the order of several eV. This range
is narrow enough so that the matrix elements za,i are
practically constant at high ω0. Thus, when integrating over
the continuum (

∑
a), the factor e−iεa (t−t ′) in the integrand of

Eq. (A5) gives rise to an effective delta function with respect
to (t − t ′). The terms ε0(t ′)eiφ(t ′)α0(t ′) can hence be evaluated
at t = t ′ and drawn out of the integral. Equation (A5) then
becomes

ṗ0(t) = −2 Re

{
|α0(t)|2E(t)ε0(t)eiφ(t)e−iω0t

×
∑
i,a

|za,i |2 1

i
(
εa − εi − ω0 − i 	i

2

)
}

. (A6)

After averaging over an x-ray optical cycle we find

〈E(t)ε0(t)eiφ(t)e−iω0t 〉 = 1
2ε0(t)2. (A7)

With the expression of the cycle-averaged flux J (t) given by
Eq. (17) we therefore get

ṗ0(t) = −p0(t)J (t) 8π2αω0

×
∑
i,a

|za,i |2 1

π

	i

2

(εa − εi − ω0)2 + 	2
i

4

. (A8)

The expression in the second line of Eq. (A8) is equal to
the total photoabsorption cross section σtot and we recover
Eq. (18).

Along similar lines we derive the equations of motion for
the reduced two-time density matrix [Eq. (15)]. The partial
derivative with respect to the first time argument of the reduced
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density matrix defined in Eq. (14) is given by

∂

∂t
ρi,j (t,t ′) =

∑
a

α̇a
i (t)αa

j
∗(t ′). (A9)

Inserting the equations determining the evolution of the
wavefunction expansion coefficient αa

i [Eq. (8)] into Eq. (A9)
leads to

∂

∂t
ρi,j (t,t ′) = −	i

2
ρi,j (t,t ′) + i

∑
k

ei(εk−εi )t ρk,j (t,t ′)zk,iE(t)

− i
√

2E(t)α0(t)
∑

a

ei(εa−εi )t za,iα
a∗
j (t ′).

(A10)

The first term in Eq. (A10) describes the Auger decay
of the core-excited states (in case that i = 1s; otherwise,
	i = 0), the second term the hole-coupling through the
resonant field, and the last term reflects the population
of the ionic states by ionization of the ground state. The
expansion coefficient αa∗

j (t ′) in the last term of Eq. (A10)
can be approximated in first order of the electric-field
interaction by formal integration of the complex conjugate
of Eq. (8):

αa∗
j (t ′) ≈ i

∫ t ′

−∞
dt ′′e− 	j

2 (t ′−t ′′)α∗
0 (t ′′)e−i(εa−εj )t ′′E(t ′′)

√
2z∗

a,j .

(A11)

Applying the rotating wave approximation in Eq. (A10) and
noticing similar to the case of the derivation of the ground-state
evolution that the integral over continuum states and the fast
oscillating exponential eiεa (t−t ′′) will act as a delta function
with respect to t − t ′′, we get

∂

∂t
ρi,j (t,t ′) = −	i

2
ρi,j (t,t ′) + i

∑
k

ei(εk−εi )t ρk,j (t,t ′)zk,iE(t)

+|α0(t)|2E(t)ε0(t)e−iφ(t)
∑

a

za,iz
∗
a,j

× ei(εa−εi )t e−i(εa−εj −ω0)t ′

−i
(
εa + i

	j

2 − εj − ω0
) . (A12)

We now consider the case i = j = 2pz:

∂

∂t
ρ2pz,2pz

(t,t ′) = iei(ε1s−ε2pz )t ρ1s,2pz
(t,t ′)z1s,2pz

E(t)

+ i|α0(t)|2E(t)ε0(t)e−iφ(t)eiω0t

× lim
	→0+

∑
a

|za,2pz
|2 ei(εa−ε2pz −ω0)(t−t ′)(

εa − ε2pz
− ω0 + i 	

2

) .

(A13)

In the following we consider the first term in Eq. (A13).
Applying the rotating wave approximation, introducing the
detuning from the resonance

δ := ε2pz
− ε1s − ω0, (A14)

and the complex Rabi frequency

R(t) = z1s,2pz
ε0(t)eiφ(t), (A15)

the first term in Eq. (A13) can be rewritten as

ie−iδt R
∗(t)

2
ρ1s,2pz

(t,t ′). (A16)

The second term in Eq. (A13) can be reduced by using

lim
ε→0+

1

x + iε
= PV 1

x
− iπδ(x). (A17)

Assuming that |za,2p)z|2 varies slowly over the photoelectron
energy range of interest, the principal value integral vanishes
and the second term of Eq. (A13) becomes

i|α0(t)|2E(t)ε0(t)e−iφ(t)eiω0t

×
∑

a

|za,2pz
|2(−iπ )δ(εa − ε2pz

− ω0). (A18)

Averaging over an optical cycle and realizing that the pho-
toionization cross section of orbital 2pz is given by

σ2pz
= 8π

c

2

ω0

∑
a

|za,2pz
|2δ(εa − ε2pz

− ω0), (A19)

Eq. (A13) finally reduces to

∂

∂t
ρ2pz,2pz

= σ2pz

2
J (t)p0(t) + ie−iδt R

∗(t)

2
ρ1s,2pz

. (A20)

The other equations for the reduced density matrix Eqs. (15)
are derived in a similar way.
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