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Classical description of strong-field double ionization by elliptical laser pulses

Yueming Zhou,1 Qingbin Zhang,1,* Cheng Huang,1 and Peixiang Lu1,2,*

1School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
2Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, China

(Received 19 August 2012; published 24 October 2012)

Sequential double ionization of argon induced by elliptically polarized laser pulses at the over-the-barrier
ionization regime is investigated with a fully classical model. We provide futher detail beyond that found in
our previous paper [Phys. Rev. Lett. 109, 053004 (2012)] and show that all of the experimental observations,
including the evolution of the ion momentum spectra as a function of laser intensity, the intensity-dependent
ratio for the parallel and antiparallel electron emissions, and the release times of both electrons for various laser
pulses, are excellently reproduced by our classical model. Our results indicate that the classical treatment is very
valid and accurate in describing strong-field ionization, providing a simple and intuitive way to investigate the
complex electron correlations in strong-field double and multiple ionizations.

DOI: 10.1103/PhysRevA.86.043427 PACS number(s): 32.80.Rm, 31.90.+s, 32.80.Fb

I. INTRODUCTION

Strong-field double ionization (DI) has been extensively
investigated during the past decades, both theoretically and
experimentally. It has been found that two different types of
physical mechanisms underlie this phenomenon: nonsequen-
tial double ionization (NSDI) and sequential double ionization
(SDI). At the linearly polarized and moderate intensity laser
field, DI is dominated by the nonsequential process, where
the second electron is ionized by the recollision of the first
electron [1]. Because of the recollision, the two electrons
from NSDI exhibit a highly correlated behavior, which has
attracted particular interest during the past years [2–20].
When the laser intensity is high enough, the second electron
can be ionized by the laser field without the recollision of
the first tunneled electron, and SDI becomes the dominant
process [21–23]. The SDI process also dominates in the case
of the circularly polarized field, where recollision is essentially
forbidden [24,25]. In SDI, it is usually accepted that there is
no correlation between the two involved electrons and the two
ionization steps can be treated independently by the tunneling
theory. Consequently, most of the previous studies are focused
on NSDI, and there is a lack of studies on SDI. However,
investigation into SDI can provide some information that has
been covered in NSDI due to the recollision. For example, by
measuring the electron momentum from SDI in the elliptically
polarized pulses, one can obtain the release times of the
electrons [26,27]. Recently, Pfeiffer et al. performed such an
experiment to time the release of electrons in SDI [28]. It is
found that the release time of the first electron agrees well
with the prediction of standard independent-tunneling theory.
However, the release time of the second electron is much earlier
than prediction of independent-tunneling theory [28]. It is also
presented that the ratio of the parallel to antiparallel emissions
of the SDI events shows an oscillating behavior as a function
of the laser intensity, which is in conflict with predictions of
the standard independent-tunneling theory [29]. In Ref. [30],
it has been shown that there is a clear angular correlation
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between the two electrons from SDI, which also implies that
the successive ionization steps of SDI are not independent.
These results imply that our understanding of SDI is far from
being complete and that the electron correlations should be
treated more delicately.

On the theoretical side, accurate description of SDI needs
full quantum theory. However, it requires enormous computa-
tional demand to solve the fully dimensional time-dependent
Schrödinger equation (TDSE) of the two-electron system.
Currently, it has only been performed for NSDI by the linearly
polarized laser fields [15]. It is a task of great challenge to
extend this method to SDI, which occurs at much higher
intensities or a circularly polarized laser field. Instead, in
the past decades numerous approximative methods have been
widely employed to investigate the multielectron processes
in strong laser fields, e.g., numerical solution of the TDSE
within the reduced dimensionality [17] and many-body
S-matrix theory based on strong-field approximation [16].
Especially, classical models have been well established and
have provided an intuitive insight into the electron dynamics
within the recollision scenario [18–20]. However, the classical
models are standing at the qualitative level in explaining the
strong-field ionizations [18–20,31–33]. Can a classical method
describe the strong-field ionization processes quantitatively?
In our previous Letter, we demonstrated that a fully classical
model is able to complete this mission [34]. There, as an
example, we showed that the release times of the two electrons
in SDI, which cannot be predicted by the standard independent-
tunneling theory, are quantitatively reproduced by our classical
model [34].

Following our previous Letter [34], in this paper we present
more detail on our classical model and extend our calculations
to demonstrate that all of the experimental observations
are excellently reproduced by our classical calculations. For
instance, our numerical results show that the momentum
distribution of the doubly charged ion in the direction of the
minor axis of laser polarization depends on the laser intensity;
it exhibits a bifurcation structure from a three-peak structure at
the relatively low laser intensities to a four-peak structure at the
relatively high laser intensities, which is in excellent agreement
with the experimental results. The corresponding processes
for this bifurcation are presented intuitively by tracing the
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SDI trajectory. We show that the experimentally measured
ionization times of the two electrons for various pulse durations
are well reproduced by our classical calculations. These results
indicate that the classical method is valid and very accurate
in describing the strong-field SDI. Consequently, our work
provides a simple and reliable way to investigate multielectron
dynamics in SDI.

This paper is organized as follows. In Sec. II we describe our
classical model. Then we display our results and discussions
in Sec. III. Finally, we summarize our paper in Sec. IV.

II. THE HEISENBERG-CORE POTENTIAL
CLASSICAL MODEL

In a classical model of the two-electron system, one electron
often drops deeply into the Coulomb potential well, leading
to autoionization of the other electron. Thus, the problem in
the classical model of the two-electron system that has to
be solved is to avoid autoionization. This problem can be
solved by employing the soft-core potential instead of the
Coulomb potential for the ion-electron interaction. In the past
decade, the soft-core potential classical model (SPCM) has
achieved great success in exploring the correlated electron
dynamics in NSDI [19,20,31]. The disadvantage of the SPCM
is that it cannot match the first and the second ionization
potentials of the model atom with the realistic atom. In fact,
the first electron often ionizes, leaving the second electron at
a state with an energy much lower than the second ionization
potential of the investigated target [35]. This disadvantage
is not a serious problem in NSDI because the crucial step
for NSDI is recollision, which is insensitive to the second
ionization potential. However, for SDI, both the first and the
second electrons are ionized through tunneling or over the
barrier. Thus the ionization rate of both electrons depends
exponentially on the ionization potential. Consequently, in
order to describe SDI accurately, it is necessary to make
ionization potentials of the first and the second electrons
match with the realistic target. In our previous Letter [34],
we employed the Heisenberg-core potential instead of the
soft-core potential in the classical two-electron model to
study SDI, and a surprisingly high accuracy was achieved.
The Heisenberg-core potential was originally introduced by
Kirschbaum and Wilets [36] and it was later developed and
widely used in atomic and molecular collisions [37,38] and
strong-field ionization [39]. In these studies, the Heisenberg-
core potential was introduced to account for the Heisenberg
uncertainty principle, which makes the multielectron system
stable. It has been shown that the Heisenberg-core potential
not only prevents autoionization but also gives the energy-
configuration of the multielectron systems [34,36–38].

The Heisenberg-core potential is written as

VH (ri,pi) = ξ 2

4αr2
i

exp

{
α

[
1 −

(
ripi

ξ

)4]}
, (1)

where the parameter α indicates the rigidity of the Heisenberg
core. For a given α, the parameter ξ is chosen to match
the second ionization potential of the target. ri and pi are
the position and canonical momentum of the ith electron,
respectively. The Hamiltonian of the two-electron atom in the
Heisenberg-core potential classical model is (atomic units are

used throughout this paper unless stated otherwise)

H1 = 1

|r1 − r2| +
∑
i=1,2

[
− 2

ri

+ p2
i

2
+ VH (ri,pi)

]
. (2)

In our calculations, the rigidity parameter α is set to be 2.
When α is set, the parameter ξ is chosen to make the minimum
of the one-electron Hamiltonian equal to the second ionization
potential of the investigated target [34]. For Ar, we obtain
ξ = 1.259. The ground-state energy of the two-electron model
atom is set by summing the first and the second ionization
potentials of Ar (−1.59 a.u.). Regretfully, for the values of
parameters α = 2 and ξ = 1.259, we could not place the two
electrons in the classically allowed phase space with the energy
of −1.59 a.u. Thus, we chose α = 2 and ξ = 1.225. For these
values, the corresponding second ionization potential of the
model atom is −1.065 a.u., deviating a little from the realistic
target (−1.02 a.u.). This small deviation does not influence our
results. In this paper, we choose α = 2 and ξ = 1.225 unless
we discuss the parameter dependence. It should be mentioned
that in our classical model, the potential of the ion-electron
interaction is different from the Coulombic potential because
of the Heisenberg potential. But the Heisenberg-core potential
vanishes quickly as the distance increases. For tunneling and
over-the-barrier ionization the exit point is often several atomic
units away from the core where the Heisenberg-core potential
almost disappears and thus the ion-electron potential is almost
recovered to the Columbic potential.

The initial state of the classical ensemble is obtained as
follows: First, the electrons were located at the opposite sides
of the nucleus, and the available kinetic energy was distributed
between the two electrons randomly in phase space. Then,
the system was allowed to evolve at the absence of the laser
field. After a sufficient long time, the ensemble reached a
stable distribution in phase space, which is shown in Fig. 1.
As shown in Figs. 1(a) and 1(b), the electrons are prevented
from visiting the vicinity of the nucleus, which results from
the Heisenberg-core potential. The characteristic makes the
two-electron model atom free from autoionization. Though
this distribution is somewhat different from that of the realistic
atom, it still works because the part of electric distribution for
ionization is from the outer regime.

When the initial state is obtained, the evolution of the
system is determined by the equations

dri

dt
= ∂H

∂pi

,
dpi

dt
= −∂H

∂ri

, (3)

where H is the Hamiltonian of the two-electron system in
the presence of the laser field, i.e., H = H0 + (r1 + r2) · E(t).
E(t) is the electric field of the laser pulses. In our calculations
it is set to be the same as that in the experiment, i.e., it is
written as E(t) = f (t)[ ε√

ε2+1
cos(ωt + ϕ)x̂ + 1√

ε2+1
sin(ωt +

ϕ)ŷ], where f (t) = E0exp[− 1
2 ( 2

√
In2t
τ

)2] is the field envelope;
ω, ε, and ϕ are the laser frequency, the ellipticity, and the
carrier-envelope phase (CEP), respectively; and τ denotes the
pulse duration (FWHM). In our calculations, we employed
two pulses, one with a duration of 7 fs and the other with a
duration of 33 fs. The wavelength and ellipticity for the 7-fs
(33-fs) pulse are, respectively, 740 nm (788 nm) and 0.78
(0.77), same as those in the experiment [28].
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FIG. 1. (Color online) The initial distributions of the electrons
in phase space. The energy of the two-electron system is set to be
−1.59 a.u., i.e., the sum of the first and the second ionization potentials
of Ar. Here (xi , yi , zi) and (Pxi , Pyi , Pzi) represent the coordinates
and the momenta of the ith electron in the directions of the x̂, ŷ, and
ẑ axes, respectively.

In order to compare our numerical results with experiment,
the volume effect has been considered in our calculations. For a
peak intensity I0, the signal S(I0) is obtained by integrating the
intensity-dependent signal over a three-dimensional Gaussian
beam:

S(I0) =
∫ I0

0
S(I )

[
−∂V (I0,I )

∂I

]
dI. (4)

Here S(I ) is the signal at intensity I , [− ∂V (I0,I )
∂I

]dI is the
volume inside the isointensity shell dI at I , and V (I0,I )
is the volume between the intensity I and I0. For the
three-dimensional Gaussian beam, V (I0,I ) is given by [40]
V (I0,I ) = πω2

0zR[ 4
3β1/2 + 2

9β3/2 − 4
3 arctanβ1/2], where β =

[(I0/I ) − 1], ω0 is the beam radius at the focus, and zR is the
Rayleigh range. In practice, the integration of Eq. (4) is running
from 0.5 PW/cm2 to I0 because the SDI yield at intensities
below 0.5 PW/cm2 is very low.

We remark that in our classical model, we only considered
two active electrons while we ignored the inner shell of the
atom. Our model is a simple model for SDI. The multielectron
effect from the inner electrons is not contained, and the effect
on DI is not clear at present. Almost all of the previous studies
on strong-field DI are based on this treatment, and the feats
of the two-active-electron models are remarkable [15–20].
In our classical model, there is no tunneling ionization and
all of the electrons are ionized by over-the-barrier escape. In
this paper, the main calculations are performed at intensities
higher than 1.0 PW/cm2, where the tunneling ionization is
negligible. Thus the classical treatment is valid. Because of
the high laser intensity, the contribution from the quantum
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FIG. 2. (Color online) The DI yield as a function of laser intensity.
The pulse duration is 33 fs and the ellipticity is 0.77.

excited state can also neglected because an electron in the
excited state can be quickly ionized by the laser field.

III. RESULTS AND DISCUSSIONS

First of all, in Fig. 2 we show the DI yield as a function
of the laser intensity calculated by our classical model. It is
clearly seen that at intensities below 1.0 PW/cm2, the DI yield
increases rapidly as the laser intensity increases. When the
laser intensity further increases, the DI yield rises slowly and
approaches the saturation gradually. In the present paper, we
focus our calculations in the intensity regime near and at the
saturate intensity.

Figure 3 displays the electron [(a) and (b)] and the ion
[(c) and (d)] momentum distributions in the laser polarization
plane. The laser duration is 7 fs and the laser intensities are
2.0 PW/cm2 (left column) and 4.0 PW/cm2 (right column),
respectively. Here the volume effect was not considered. In
Figs. 3(a) and 3(b) we show the momentum distributions of
one electron, without distinguishing whether it is the first or
the second electron. It is clearly shown that the population is
more likely to be clustered around the x axis. This is due
to the fact that the extremes of the electric field in the y
direction are stronger than those in the x direction, and thus
the electrons prefer emission along the y axis. The electron
that emits along the y axis at the times of y maximum of
the electric field achieves a final momentum with a large x
component [32]. It is shown in Figs. 3(a) and 3(b) that the
distributions exhibit two maxima at the relatively low laser
intensity and four maxima at the relatively high laser intensity.
This phenomenon can be explained as follows: At the high
laser intensity, the first electron is depleted before the peak
of the pulse. Thus, the release time of the first electron is
much earlier than that of the second electron. Consequently,
the amplitude of the final momentum of the second electron is
larger than that of the first electron. The two inner maxima
in Fig. 3(b) correspond to the first electron and the two
outer maxima correspond to the second electron [28]. At
the relatively low laser intensity, both electrons are ionized
around the peak of the laser pulse. Thus, the amplitudes of
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FIG. 3. (Color online) (a) and (b) Momentum distributions for
one of the two electrons from SDI in the laser polarization plane.
(c) and (d) Momentum distributions of the doubly charged ion in
the laser polarization plane. The pulse duration is 7 fs. The laser
intensities are (a) and (c) 2.0 PW/cm2, and (b) and (d) 4.0 PW/cm2.
The CEP is randomly chosen for each trajectory.

the final momenta for the first and the second electrons are
almost the same. Consequently, the two left maxima (the two
with negative momenta) and the two right maxima (the two
with positive momenta) are, respectively, evolving into one
maximum [28], as shown in Fig. 3(a). The above analysis also
explains the ion momentum distributions shown in Figs. 3(c)
and 3(d). At the relatively high laser intensity, the distribution
exhibits a four-band structure. The outer and the inner two
bands correspond to the events where the two electrons emit
into the same and opposite hemispheres, respectively. At the
relatively low laser intensity, the antiparallel emissions result
in the nearly zero momentum of the ion. Thus the two inner
bands join together, locating at zero momentum.

To address the processes stated above intuitively, in Fig. 4
we display three illustrative trajectories. The left column shows
the coordinates of trajectories of electron pairs in the polar-
ization plane. The right column displays the corresponding
time evolution of the electron momenta in the direction of the
minor elliptical axis. For the trajectory shown in Fig. 4(a),
the two electrons emit into the opposite hemispheres. Because
both electrons emit near the peak of the laser pulse, the
final momenta of the two electrons have similar amplitudes
but opposite directions, as shown in Fig. 4(d). This kind of
trajectory results in the middle band shown in Fig. 3(c). For
the trajectory shown in Fig. 4(b), the two electrons also emit
into the opposite hemispheres. However, the first electron (the
green [light] curve) escapes much earlier than the second
electron (the red [dark] curve). Thus the final momenta of
the two electrons have opposite directions and very different
amplitudes [see Fig. 4(e)]. This kind of trajectory is responsible
for the inner two bands in the ion momentum distribution
of Fig. 3(d). For the trajectory shown in Fig. 4(c), the two
electrons emit into the same hemisphere and they achieve final
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FIG. 4. (Color online) (a)–(c) Three illustrative trajectories in the
laser polarization plane. (d)–(f) Time evolution of electron momenta
in the direction of the minor axis for the trajectories shown in (a)–(c),
respectively.

momenta with the same direction, as displayed in Fig. 4(f).
This trajectory accounts for the two outer bands of the ion
momentum spectra shown in Figs. 3(c) and 3(d).

In the following, we give more detailed comparison of our
numerical results with the experimental data [28]. First, we
show the ratio of the parallel and antiparallel emissions along
the minor elliptical axis in Fig. 5. In the experiment, it has
been shown that in SDI the ratio of the parallel and antiparallel
emissions exhibits an oscillating behavior as a function of laser
intensity [28]. This oscillating behavior has been explained as
a result of the multielectron effect [33]. In our calculations,
this oscillation is nicely reproduced, as shown in Fig. 5. In
the experiment, it is also found that the oscillating curve is
a bit below 1. Without theoretical investigation, this behavior
might be ascribed to the different detection efficiencies for
the parallel and antiparallel events. In our numerical results,

1 1.5 2 2.5 3

0.8

1

1.2

Intensity (PW/cm2)

R
at

io

FIG. 5. (Color online) The ratio of the SDI counts of parallel and
antiparallel emissions along the minor elliptical axis, as a function of
the laser intensity. The pulse duration is 7 fs. The CEP is randomly
chosen for each trajectory.
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FIG. 6. (Color online) (a) Ion momentum distribution along the
direction of the minor elliptical axis, as a function of laser intensity.
(b) Ion momentum distribution in the laser polarization plane. The
laser intensity is 3.5 PW/cm2. (c) The same as (b) but the laser
intensity is 1.5 PW/cm2. The pulse duration for (a)–(c) is 7 fs. The
CEP is randomly chosen for each trajectory. (d)–(f) The same as
(a)–(c) but for the 33-fs pulses. In these calculations the volume
effect has been considered.

the oscillating curve is also below 1. Thus, it convincingly
confirms that this behavior is not due to the different detection
efficiencies. The two electrons are indeed more likely to emit
into the opposite hemispheres.

In Ref. [28] it has been shown that the ion momen-
tum distribution along the minor elliptical axis exhibits a
characteristic dependence on laser intensity: For the 33-fs
pulses, there is a bifurcation from a three-peak structure
to a four-peak structure as the laser intensity increases. In
Fig. 6, we present our numerical results. The left and the
right columns show the ion momentum distribution for the
7-fs and 33-fs pulses, respectively. Here, the volume effect has
been taken into account. It is clearly shown that for the 33-fs
pulses the distribution exhibits a three-peak structure at the
low laser intensities and gradually evolves into a four-peak
structure as the laser intensity increases. The bifurcation
appears at an intensity of about 2.5 PW/cm2, consistent with
experimental results [28]. In Figs. 6(e) and 6(f) we display
the ion momentum distribution in the polarization plane at
intensities of 3.5 and 1.5 PW/cm2, respectively. The four-peak
structure at the high laser intensity and the three-peak structure
at the low laser intensity are more clearly seen. For the 7-fs
pulses, it has been shown in previous experimental papers
[26,29] that the ion distribution exhibits a three-peak structure
even at the high laser intensity region. Figure 6(a) shows our
numerical results for the 7-fs pulses. The distribution exhibits
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FIG. 7. (Color online) Sketch of the time-reading proce-
dure. (a) The grey (lower) curve shows the vector poten-
tial A(t), where A(t) = √

Ax(t)2 + Ay(t)2. The magenta (upper)
curve denotes the scaled vector potential A′(t), where A′(t) =√

[(ε2 + 1)/ε2]Ax(t)2 + (ε2 + 1)Ay(t)2. (b) The electron correlation
spectrum for the scaled radial momentum p′

r . (c) We display the
scaled radial momentum spectra of the first and the second electrons
separately.

a three-peak structure even in the very high laser intensity
region, also consistent with experimental results.

It has been demonstrated that the elliptical laser pulses
could act as a clock to measure the electron release time in
strong-field ionization [26]. In Ref. [28], the release times of
the two electrons in SDI were measured. It is found that the
release time of the first electrons can be well predicted by
the standard independent-tunneling theory. However, it is a
great surprise that the second electron is ionized much earlier
than the prediction of the independent-tunneling theory. Here
we show the release times of the two electrons calculated by
our classical model and compare them with the experimental
data. First, in Fig. 7 we show the procedure of determining
the release times in the experiment and our calculations. In
general, the electron momentum of the elliptical laser field
is not an injective function of time, but a new scaled radial
momentum p′

r is an injective function with the condition that
the electron is ionized before the peak of the pulses [28]. The
scaled radial momentum p′

r is obtained as

p′
1r =

√
[(ε2 + 1)/ε2]p2

1x + (ε2 + 1)p2
1y, (5)

p′
2r =

√
[(ε2 + 1)/ε2]p2

2x + (ε2 + 1)p2
2y. (6)

Figure 7(b) displays the correlated spectrum of p′
1r and p′

2r .
This spectrum is symmetric with respect to the diagonal
because we do not distinguish which one is the first and
which one is the second electron. The repulsion behavior along
the diagonal means the different final momentum of the two
electrons and thus indicates their different release times. In
Fig. 7(c) we distinguish the two electrons with the assumption
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FIG. 8. (Color online) The release times of the first and the second
electrons in SDI by the 7-fs pulses. The experimental data from
Ref. [28] are also shown for comparison. The volume effect has been
considered.

that the first electron carries a smaller radial momentum. Then
the release time of the electron is determined by projecting the
peak position of the corresponding spectrum of Fig. 7(c) to the
scaled vector potential, as sketched in Fig. 7(a).

In Fig. 8 we show the release times of the two electrons in
the 7-fs pulses. For comparison, the experimental data from
Ref. [28] is also shown. Note that for our numerical results the
laser intensity in Fig. 8 has been scaled with a constant factor
of 0.8, which is well within the experimental uncertainty. It
is a great surprise that the numerical results from a simple
classical model agree so well with the experimental results.
The results for the 33-fs pulses are shown in Fig. 9. Obviously,
the numerical results also agree with the experimental data
quantitatively. Hereto, we have shown that our fully classical
model excellently reproduced all of the experimental observa-
tions. During the past decades classical models have achieved
great success in exploring the strong-field ionization process.
But all of them were standing at the qualitative level. Our
work has demonstrated that a classical treatment is capable of
describing the strong-field processes at the quantitative level.

In Ref. [28], the authors neglected the initial velocity at
ionization and the Coulomb interaction between the ion and
the escaping electron when calculating the ionization times
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FIG. 9. (Color online) The release times of the first and the second
electrons in SDI by the 33-fs pulses. The experimental data from
Ref. [28] are also shown for comparison. We also show the release
times of two electrons obtained by tracing the classical trajectories
(see text for details). The volume effect has been considered.

with the tunneling theory. A question remains: Does the
deviation of the second ionization time between the experiment
and prediction of the tunneling theory result from these
approximations? Our classical method enables us to answer
this question by tracing the classical trajectories. In order
to do this, first we extract the release times of the electrons
at each intensity of focal volume by tracing the classical
trajectories. Next we obtain the final momenta with the formula∫ +∞
ti

−E(t)dt , where ti is the traced release time and E is the
electric field. In this formula, we neglect the initial momentum
and the Coulomb interaction between the ion and the escaping
electron, same as that in the tunneling theory of Ref. [28]. Then,
we obtain the final momentum distribution by averaging the
momentum over the focal volume of the pulses (see Sec. II).
Finally, the release times are determined with the procedure
sketched in Fig. 7. The result is shown in Fig. 9. Clearly,
it also agrees excellently with experimental data. Thus, it
indicates that the deviation of the release time of the second
electron between the experimental data and the prediction of
the tunneling theory is not from the above approximations of
the tunneling theory. The second electron really escapes earlier
than the prediction of the independent-tunneling theory.

In our model the Heisenberg-core potential was introduced
to reproduce the first and the second ionization potentials
of the target, which is an essential condition for accurate
description of SDI. We would like to state that our results
are structurally stable and do not depend on the choice of
parameter α. When α is changed, the value of ξ should
be changed correspondingly to keep the second ionization
potential of the model atom stable. Otherwise, if one changes
the value of α while keeping ξ unchanged, the ionization
potentials of the model atom shift significantly, as shown
in Figs. 10(a) and 10(b). It can be predictable that the shift
of ionization potentials of the model atom will influence the
ionization times of both electrons significantly. This does not
mean that our model is not stable. As addressed in Sec. II, the
necessary condition for a model to accurately describe SDI
is that the model should reproduce the ionization potentials
of the investigated target and keep the ionization potentials
stable when changing the corresponding parameters. Thus, in
the Heisenberg-core potential classical model, the value of
ξ should be changed correspondingly as α changes to keep
the ionization potential unchanged. In Fig. 10(c) we show the
corresponding value of ξ for different values of α, which keeps
the second ionization potential (−1.065 a.u.) of the model
atom unchanged. Under this condition, we calculated the time
delay between the two ionization steps in SDI with the HPCM.
The results are shown in Fig. 10(d). Definitely, these results
are stable upon α. Note that the computational time increases
significantly as α increases because of the increasing stiffness
of the Heisenberg-core potential.

We remark that the success of the classical treatment is
not a result of this particular potential. Recently, Wang et al.
[41] have shown that the experimental results can also be
quantitatively reproduced by a soft-core potential classical
model when the first and the second ionization potentials
are artificially adjusted to the investigated target at each
ionization step. This makes it easy to accept that our results
are stable and do not depend on the parameters α and ξ of the
Heisenberg-core potential.
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FIG. 10. (Color online) (a) and (b) The first and the second
ionization potentials of the model atom as a function of α for
ξ = 1.225. (c) The value of ξ that keeps the second ionization
potential (−1.065 a.u.) unchanged for changing α. (d) The mean
value of the time delay between the two ionization steps in SDI for
different values of α, where the corresponding value of ξ is from (c).
The laser intensity is 4.0 PW/cm2 and the pulse duration is 33 fs.
Here the volume effect is not taken into account.

In the work of Wang et al., the electron correlation is not
taken into account. The excellent agreement between their
calculations and the experimental data leads us to suspect that
the deviation between the prediction of the tunneling theory
and the experimental data is attributed to the inaccuracy of the
empirical formula for the ionization rate [42]. In the ionization
rate formula [42], the ionization rate does not depend on the

sign of the magnetic quantum number. However, recently Barth
et al. theoretically predicted the dependence of the ionization
rate on the sign of the magnetic quantum number [43]. This
prediction was experimentally confirmed by Herath et al. [44].
These facts give us sufficient reasons to reexamine the accuracy
of the tunneling formula.

IV. SUMMARY

In conclusion, we have numerically investigated SDI of
Ar by the elliptical pulses. It would be expected that only a
fully quantum model could quantitatively reproduce the SDI
experimental results. In this work, we demonstrated that a
simple classical model reproduced all of the experimental
observations at the quantitative level. Thus, it provides a simple
way to investigate the complex multielectron dynamics in
strong-field processes where the fully quantum approach is a
great challenge. Recently, with this correlated classical model,
we examined the multielectron effect in strong-field SDI and
predicted that electron correlations in SDI left imprints on the
angular distribution of the first electron [45]. Undoubtedly, our
work will inspire further investigations on the multielectron
dynamics in strong-field double and multiple ionizations.
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