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Femtosecond-pulse-train ionization of Rydberg wave packets
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We calculate, based on first-order perturbation theory, the total and differential ionization probabilities from
a dynamic periodic Rydberg wave packet of a given n-shell exposed to a train of femtosecond laser pulses. The
total probability is shown to depend crucially on the laser repetition rate: For certain frequencies the ionization
probability vanishes, while for others it becomes very large. The origin of this effect is the strong dependence
of the ionization probability on the Stark quantum number. Correspondingly, the angular electronic distribution
also changes significantly with the increasing number of pulses for certain repetition rates.
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I. INTRODUCTION

Exposure of atoms to short attosecond pulse trains phase-
locked onto femtosecond pulses has recently given direct
insight into electronic ground-state dynamics as the atom
is perturbed by the femtosecond laser field [1,2]. The key
ingredient which allows mapping between spectra of electron
momenta and initial state dynamics is the very short and
phase-locked attosecond burst as compared to the much slower
original femtosecond laser pulse. A related experiment can be
suggested based on highly excited atoms and on a much slower
time scale: a train of femtosecond laser pulses firing on top
of a microwave field which drives a Rydberg wave packet.
The ionizing femtosecond pulse could in this case serve as a
sensitive camera which could reconstruct the image of exotic
electronic states on the border between classical physics and
quantum dynamics.

The ionization of Rydberg atoms by femtosecond laser
fields has been studied both experimentally and theoretically.
For example, on the experimental side electron dynamics
following two controlled time-delayed pulses has shown
distinct electron emission characteristics [3,4]. On the theory
side strong effects of counterpropagating pulses on Rydberg
atom ionization probability have been predicted [5]. Recently,
the ionization of low-lying circular Rydberg states exposed
to circularly polarized laser fields was investigated both by
solving the Schrödinger equation and by using the classical
trajectory Monte Carlo (CTMC) method [6]. CTMC calcula-
tions have also been used extensively in exploring Rydberg
atoms with very high principal quantum numbers, lately in the
study of localized Bohr-like wave packets [7–9].

Several studies have investigated the dynamics of inter-n
Rydberg wave packets in static electric fields through their
ionization by half-cycle electric field pulses that ionize the
wave packet during its motion [10,11]. More recently, the
response of dynamic Rydberg wave packets created by a
picosecond laser pulse from the Li(3d) state in the presence of
an inter-n mixing microwave field has been reported [12]. A
strong modification of the selective field ionization (SFI) signal
depending on the wave packet creation time with respect to the
phase of the microwave field was detected.
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Previous experimental works have considered wave packet
dynamics and ionization where the Rydberg atom is exposed
to strong n-mixing fields [10]. Here we consider theoretically
the ionization signature of a related but different wave packet
which can be created within a single n level when the atom is
exposed to much weaker electric fields, below the Inglis-Teller
limit, 1/3n5 (a.u.) [13]. The intra n-shell (angular) wave
packet of hydrogen is driven by a microwave time-dependent
electric field and exposed to a train of ionizing femtosecond
laser pulses. The microwave field in our setup drives a wave
packet of a given n-shell periodically between a maximum
polarized (linear) Stark state and a circular state [14,15]. The
ionization probability and electron emission characteristics
are calculated as function of the number of laser pulses
and the time separation between the pulses. The single-pulse
ionization probability is found to be orders of magnitude larger
for high Stark quantum numbers compared to the lower ones,
and the angular emission spectra are shown to be detailed
functions of the number of times the Rydberg wave packet is
hit in highly polarized vs unpolarized states. Once the highly
polarized states are hit they dominate the angular emission
spectra completely.

In the following section we outline the theory and in the
subsequent section results are discussed. Atomic units, where
me, h̄, and e are scaled to unity, are used throughout unless
stated otherwise.

II. THEORY

Our starting point is a Rydberg wave packet driven in a
Stark setup [16–18] by a resonant rotating microwave field,

Eμ(t) = ε0 cos ωμtx̂ − ε0 sin ωμtŷ − εzẑ, (1)

repeatedly between the circular (|km〉 = |0 mmax〉) and the
linear (|km〉 = |kmax 0〉) state in the Stark manifold, as shown in
color in Fig. 2. k denotes the Stark quantum number. The field
strength of the oscillating xy components is ε0 = 10−8a.u.,
whereas the constant z component εz = 10−7a.u. induces a
Stark energy splitting �Ez = 3/2nεz = ωμ = 2.4 × 10−6a.u.

When calculating matrix elements of the dipole operator within
a principal n-shell the operator replacement r̂ → 3n/2â [19]
may be performed, where â is the operator for the Runge-
Lenz vector. Since this operator behaves identically to a spin
operator with each Stark state being eigenstates of â2 and âz,
the selection rule |�k| = 1 follows directly, as a parallel to
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the well-known selection rule |�m| = 1 in the spherical basis.
Due to the clockwise rotation of the resonant microwave field,
one-photon absorption and emission solely allow transitions
satisfying the selection rules �m = ±1 and �k = ∓1. The
wave packet will make one round trip along the Stark ladder
in about ten revolutions of the microwave field.

We consider the situation where the wave packet slowly
evolving in the microwave field is hit by a series of short
femtosecond laser pulses. We assume that only a small fraction
of the wave packet is launched to the continuum at each pulse;
thus from first-order time-dependent perturbation theory the
transition amplitude from the j th pulse in the pulse train reads

a
(j )
qlm = −i

∫ tj +T

tj

〈ψqlm|V (t)|�b(tj )〉ei(Eq−Eb)t dt, (2)

where q is the momentum of the ionized electron and T is
the pulse duration of each pulse. The present Stark shift �Ez

is of the order of 10−6a.u., which is negligible compared to
the binding energy of the n = 16 level without the Stark shift
(Ip ≈ 0.002 a.u.) when probing with an 800-nm pulse.

The bound electron wave function �b(t) in Eq. (2) can be
described as

|�b(t)〉 =
∑
k,m

ckm(t)|ψnkm〉, (3)

where |ψnkm〉 denotes the Stark states. These can in turn be
expanded in the spherical basis states |ψnlm〉 [20],

|ψnkm〉 =
∑

l

(−1)l
〈
n − 1

2
,
m − k

2
,
n − 1

2
,
m + k

2

∣∣∣∣lm
〉

|ψnlm〉.

(4)

The amplitudes are Clebsch-Gordan coefficients, and we refer
to them as bklm. This gives the following expression for the
bound state at time t :

|�b(t)〉 =
∑
k,m

∑
l

ckm(t) bklm |ψnlm〉. (5)

The coupling V (t) = E(t) · r in Eq. (2) is the laser-matter
interaction within the dipole approximation when represented
in the length gauge. Due to the short duration of the pulse
(∼102 a.u.) compared to the time of evolution of the bound
wave packet in the microwave field (∼106 a.u.), we neglect
the effect of the microwave field during the action of the
femtosecond probe pulse. In addition, due to the finite spectral
width of the short ionizing pulse, excited (bound) states are
populated throughout the interaction with the laser field, but
the population in these states is nevertheless so small that it
does not influence the subsequent ionization dynamics.

After interaction with a pulse train of N pulses separated
by a time �t , the continuum part of the total wave function of
the system can be written as

|�c〉 =
∑
q,l,m

N∑
j=1

a
(j )
qlm|ψqlm〉e−iEq (N−j )�t , (6)

giving the following amplitudes for the final continuum states,

αqlm =
N∑

j=1

a
(j )
qlme−iEq (N−j )�t . (7)

Moreover, the continuum wave function is expanded in
Coulomb partial waves |ψqlm〉, which conform to incoming
boundary conditions,

〈r|ψqlm〉 = ile−iσl Ylm(r̂)Y ∗
lm(q̂)Rql(r), (8)

where σl = arg 	(l + 1 − i/q) is the Coulomb phase shift of
the lth partial wave. The radial part, when normalized in
momentum space, reads [21]

Rql(r) =
√

2

π

eπ/2q |	(l + 1 − i/q)|
(2l + 1)!

(2r)lql+1e−iqr

× 1F1(l + 1 + i/q,2l + 2,2iqr). (9)

In the computations we have utilized the Coulomb wave
implementation provided by the GNU Scientific Library
(GSL) [22]. It should also be noted that the corresponding
energy-normalized wave function is conveniently obtained
through the scaling relation REql(r) = q−1/2Rql(r).

To model the laser pulse we use a plane wave in the
z direction modulated by a sine-square carrier envelope.
The time-dependent electric field is derived from the vector
potential

A(t) = A0 sin2

[
π (t − tj )

T

]
sin[ω(t − tj )]ẑ, (10)

through the relation E(t) = −∂tA(t), where the central fre-
quency ω of the plane wave corresponds to λ = 800 nm.
The electric field strength is E0 = 2.0 × 10−5 a.u. (Ipeak =
1.4 × 107 W cm−2), and the duration of the pulse is given by
T = 2πNoc/ω. In our calculations we have set the number of
optical cycles Noc = 4, which corresponds to a pulse duration
of T = 441a.u. = 11fs.

With the amplitudes of the continuum wave packet at hand
the differential probability is readlily obtained:

dP

dqd
=

∣∣∣∣∣
∑
l,m

αqlm

∣∣∣∣∣
2

. (11)

Integrating out the momentum gives the angular resolved
ionization probability,

dP

d
(θ,φ) =

∫ ∣∣∣∣∣
∑
l,m

αqlm

∣∣∣∣∣
2

q2dq, (12)

and alternatively, by performing the angular integral we obtain
the energy spectrum,

dP

dEq

=
∑
l,m

|αqlm|2, (13)

with Eq = q2/2. For the sake of consistency, notice that in
the latter formula the amplitudes αqlm are energy normalized.
Finally, the ionization probability is given by

P =
∫ ∑

l,m

|αqlm|2q2dq. (14)

In order to check the validity of the adopted first-order
time-dependent perturbation theory approach, we compare in
Fig. 1 the ionization probability so obtained with the exact
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FIG. 1. (Color online) Ionization probability for a single pulse
calculated using perturbation theory (red, dotted lines) and exact
solution (blue, full lines) as a function of electric field strength E0.
A four-cycle laser pulse of the form given in Eq. (10) was used in
the calculations. The initial states are |nlm〉 = |16 0 0〉 (upper panel)
and |nlm〉 = |16 15 15〉 (lower panel). Also shown are the partial
contributions of the l = 1 channel and the l = 16 channel (black,
dashed lines) in the upper and lower panels, respectively. In the lower
panel the three lines coincide.

one. The figure depicts the ionization probability for a single
four-cycle pulse as a function of the electric field strength
E0 of the applied laser field. The upper and lower panels
show the results for the initial states |nlm〉 = |16 0 0〉 and
|nlm〉 = |16 15 15〉, respectively. Figure 1 also shows the
partial contribution of the l = 1 channel (upper panel) and the
l = 16 channel (lower panel) to the total ionization yield (red,
dashed line), as obtained from the full calculation. The full
calculations are performed using a spectral method where the
eigenstates are expanded in either a Fourier series (in the case
of the circular initial state) or a B-spline basis set (in the case
of the 16s initial state), imposing a zero boundary condition
at the edge of the radial box of some finite size Rmax. In the
calculations Rmax is varied in the interval 2400–5000 a.u. and
the velocity gauge is assumed. Furthermore, angular momenta
up to l = 19 are included in the basis set. As such, the results
are checked for convergence with respect to both the number
of angular momenta included and the size of the radial box.
Figure 1 clearly indicates that the first-order time-dependent
perturbation theory approach is valid up to electric field
strengths of the order of 0.001 a.u., ensuring that the laser
field applied in the present work (E0 = 2.0 × 10−5a.u.) is well
within the perturbative regime.

The ionization probabilities of Rydberg states are extremely
small, and it is therefore important that the continuum is
well represented, especially when calculating the angular-
resolved ionization probability. Thus, we have conducted test
calculations using different densities of states in the continuum
discretization to make sure all quantities are converged.

Note finally that the widely used alternative perturbation
theory based on Volkov waves completely fails in general
when considering initial Rydberg states: Orders of magnitude
discrepancies with exact calculations are obtained when
replacing our final states with Volkov waves. The origin of
the failure can be traced to the sensitivity of the initial state to
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FIG. 2. (Color online) Upper left panel: Stark states |km〉 of the
n = 16 level due to the constant electric field εz. Only the states with
m � 0 are shown. The states populated by the rotating microwave
field in the xy plane are shown in color and with arrows. Upper right
panel: The population of the (colored) Stark states as a function of
time for one round trip in the Stark setup, corresponding to time
τ = 2.61 × 107 a.u. The initial state is the circular Stark state. After
half the cycle τ the most polarized state is fully populated while the
circular state is depleted. At the end of the round trip the circular
state is totally revived. Lower panel: The ionization probability of the
relevant Stark |km〉 states when fully populated. Field parameters are
given in the text.

electric fields. Other methods, like the sudden perturbation
approximation [5,23], have been used on Rydberg atoms
exposed to ultrashort laser pulses, but are not invoked here
due to the good agreement between first-order perturbation
theory and exact calculations.

III. RESULTS

Before discussing the main findings it may be instructive to
have a closer look at Fig. 2. The upper right panel shows the
population probability for the states involved in one round trip
in the Stark manifold (depicted in the left panel of the same
figure). The period of this round trip is τ = 2.61 × 107 a.u.
(0.63 ns), which again corresponds to about 10 times the period
of the rotating microwave field in the xy plane. The wave
function of the bound electron undergoes intrashell transitions,
according to the selection rules �m = ±1 and �k = ∓1,
implying that only the “outermost” Stark states, i.e., the states
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FIG. 3. (Color online) Ionization probability [cf. Eq. (14)] as a
function of N succeeding pulses and time delay �t . The initial state
is the circular Stark state, |nkm〉 = |16 0 15〉, and the maximum time
separation τ = 2.61 × 107 a.u. corresponds to the revival time of the
initial state in the microwave field. The lower panel shows the front
view of the landscape plotted above. The minimum occurs at �t = 0
and τ , but at time steps corresponding to τ/3 and 2τ/3, there is
only a small increase in the probability. The maximum is reached
when pulses are separated by τ/2, causing every second pulse to
hit the most polarized Stark state. The thick red curves indicate the
pulse sequences with �t = 9 × 105 a.u. and �t = 2.52 × 105 a.u.
especially mentioned in Sec. III. Field parameters are given in the
text.

with m = n − k − 1, are populated (cf. the upper left panel in
Fig. 2).

The ionization probability of the Stark states in question,
when fully populated, greatly varies in magnitude with
increasing k, as the lower panel in Fig. 2 displays. The
difference in ionization probability for the circular and linear
states is of eight orders of magnitude, and this is related to the
electron’s ability to interact with the nucleus. The linear-most
states are the states containing components of low angular
momentum, which means that they are more likely to come
close to the nucleus and hence are more likely to be slung out of
the atom. The leap in the ionization probability is important for
the understanding of what happens when the Stark manifold is
hit by the pulse train and is referred to later in the discussion.
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FIG. 4. (Color online) Energy distribution of the continuum wave
packet for a series of pulses, N = 3 (lower, blue line), 4 (middle,
green line), and 5 (upper, red line). The time separation between
the pulses is �t = 3 × 106 a.u. Succeeding pulses hitting states with
ionization probability differing only a few orders in magnitude cause
interference in the continuum wave packet as observed between the
fourth and the fifth pulse (upper line). The inset shows a closeup of
the distributions on the interval (0.05,0.05 + 10−5) a.u. The period
of the oscillations clearly matches the time delay between the pulses,
i.e., �E = 2π/�t 	 2.1 × 10−6a.u. Field parameters are given in
the text.

Figure 3 shows the total ionization probability [cf.
Eq. (14)] of the Rydberg atom as a function of the number
of femtosecond laser pulse shots N and the time delay �t

between the pulses. In each specific pulse train the pulses are
equally separated in time. The initial state prior to the pulse
train is the circular state |nkm〉 = |16 0 15〉. In between the
pulses in the pulse train the wave function of the bound electron
undergoes intrashell transitions according to the scheme in
Fig. 2, changing the state subject to ionization at each laser
shot. The different pulse rates seem to yield approximately the
same total ionization probability after the train of 20 pulses
has passed, with the exception of six time separations �t , for
which the ionization probability is either strongly increased
or totally suppressed. For �t 	 0 and �t = τ the pulse train
hits the circular state at every impact, and thus the ionization
probability remains at an absolute minimum at all times.
The maximum is reached when �t = τ/2, causing every
second pulse to hit the linear state, hence giving maximum
contribution to the probability. A closer examination of
the two valleys at �t = 8.7 × 106a.u. = τ/3 and �t =
1.74 × 107a.u. = 2τ/3 reveals that the ionization probability
has a very small increase with N . This suggests, in light of the
previous discussion, that for time separations corresponding
to τ/3 and 2τ/3 the laser pulses hit the wave packet only in
states nearby, but not sufficiently close to, the linear state.
It is interesting to notice that these are the only pulse rates,
except for �t = 0 and �t = τ , that seem to give such a
behavior.

In addition, the total ionization probability depends on how
many succeeding pulses are hitting the atom. As seen in the
upper panel of Fig. 3 some time separations, like �t = 9 ×
105 a.u. and �t = 2.52 × 107 a.u., yield a very slow increase

043423-4



FEMTOSECOND-PULSE-TRAIN IONIZATION OF RYDBERG . . . PHYSICAL REVIEW A 86, 043423 (2012)

FIG. 5. (Color online) To the left in both panels are plotted the angular-resolved ionization probability dP/d [c.f. Eq. (12)] for a series of
N succeeding pulses with time separation �t = 9 × 105 a.u. To guide the eye we have included an auxiliary set of axes indicating the position
of the origin. We observe that the distribution in the continuum rotates clockwise about the z axis with a period that is comparable to the period
of the rotating microwave field. The right figures show cuts in the xy plane for the corresponding electron density distribution of the bound
wave function from which the ionization happens. The initial state for the pulse train is the circular Stark state. Field parameters are given in
the text.

in the ionization probability for the first 10 pulses, but a strong
increase from 10 to 20 pulses. These two pulse sequences are
shown as red (thick) curves in Fig. 3.

The energy spectrum, obtained by Eq. (13), of the total
continuum wave packet after three, four, and five pulses are
shown in Fig. 4, when the pulses are separated by �t = 3 ×
106 a.u. As expected the distribution is dominated by the large
one-photon resonance centered around the laser frequency
ω = 0.057 a.u. (800 nm). The side peaks in the spectrum can be
attributed to the side bands of the sine-squared pulse envelope.
More interestingly, one makes out some small oscillations
superimposed on the energy spectrum of the fifth pulse, as can
be seen in the inset of Fig. 4, where the energy distribution is
plotted on a finer grid to obtain better resolution. These oscil-
lations are caused by the interference between the wave packet
launched to the continuum by the fifth pulse and the wave

packet that is already there. We see that the period of the
oscillations in question indeed corresponds to the time delay
between the pulses, i.e., �E = 2π/�t 	 2.1 × 10−6 a.u. The
interference effect is most pronounced when two succeeding
wave packets are of comparable amplitudes, which is the case
for the fourth and the fifth pulse (cf. upper panel of Fig. 3).
One also notices that the relative height of the slow-electron
peak close to the origin as compared to the one-photon
resonance peak changes with number of pulses. These two
peaks are the results of two different ionization processes. The
first is the response to the electron cloud being pulled away
from the nucleus, resulting in low-energy electrons being
released from the core potential. The latter, dominating as
the bound state gradually approaches the linear state, comes
from the electron being “kicked out” when interacting with
the nucleus, creating ionized electrons of higher energy.
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FIG. 6. (Color online) The figure shows the angular-resolved
ionization probability dP/d [cf. Eq. (12)] for five succeeding
pulses. Starting in the circular Stark state the left column and the
right column show the distribution when the time between the pulses
is �t = 8.7 × 106 a.u and �t = 1.305 × 107a.u., respectively. To
guide the eye we have included an auxiliary set of axes indicating the
position of the origin. Field parameters are given in the text.

In Figs. 5 and 6 we consider the angular distribution of
the ionized electron. In these figures we have plotted the
angular-resolved ionization probability [cf. Eq. (12)] for a
series of pulses of three different �t . The first plot in all the

three series corresponds to the initial state being the circular
state. We see that the continuum wave packet for this state is
symmetric about the z axis, as expected. To the left in both
columns of Fig. 5 the evolution of the continuum from eight
succeeding pulses with �t = 9 × 105 a.u. is shown. This is the
time step causing the first peak in the plot of the total ionization
probability (lower panel of Fig 3). The pulse repetition rate
is so high that the bound wave packets do not have time to
climb more than half the Stark ladder, and consequently the
total ionization probability remains relatively low for the first
eight pulses. It is interesting to observe that the main lobe of
the angular distribution in this case seems to rotate clockwise
about the z axis, and by careful examination of its period
of rotation, it can be identified to match the period of the
microwave field. This shows that femtosecond pulses firing
on top of time-dependent radio frequency or microwave fields
will, together with angular-resolved detection methods, serve
as a direct camera of wave packet dynamics. To the right in the
figure we have plotted a cut of the electron density distribution
in the xy plane of the bound wave packet from which the
ionization happens for each pulse N . The electron density
rotates clockwise with the period of the rotating field, causing
the rotation in the continuum distribution. Interestingly, it
seems that the main lobe of the continuum distribution is turned
a bit to the left from the least dense part of the bound wave
packet for all pulses.

Starting with the right column of Fig. 6, we have plotted the
angular distributions pertaining to the main ridge in Fig. 3. This
is the special case in which the pulse train is tuned to strike
the bound wave packet at times where it alternates between
being at its most polarized and unpolarized, i.e., �t = τ/2. We
observe that from the second pulse the distribution remains,
for all practical means, unchanged throughout the pulse train.
Taking into account that the first pulse hits the circular state,
the next one hitting the linear state will completely overshadow
the ionization from the first strike. The reason is evident when
looking at Fig. 2, the linear Stark state, as compared to the
circular Stark state, is by far more prone to be ionized.

Finally, we turn our attention to the left column of Fig. 6.
The angular distributions in these plots correspond to the time
step �t = τ/3 (cf. the first valley in Fig. 3). The difference in
the repetition rate, as compared to the one in the right column,
entails the femtosecond pulse hitting several states close to
the linear one, and hence it introduces an asymmetry in the
distributions. Comparing the two columns we see that though
the distribution remains mostly along the negative z direction
with increasing N for both cases, the ionization probability
for �t = τ/2 is about an order of magnitude larger than that
for �t = τ/3. It should also be mentioned that for increasing
numbers of pulses, the ionization probability for �t = τ/3
will remain of the same order of magnitude as seen in Fig. 6,
while for �t = τ/2 it will roughly be doubled for every other
pulse.

IV. CONCLUSION

In this work we have studied features of single-electron
ionization of a dynamic intra n-shell wave packet as compared
to ionization from stationary states. Since the ionization
probabilities of the stationary states vary largely with the
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degree of polarization (Stark quantum number), a strong
sensitivity of the ionization probability to the repetition rate
of the ionizing laser pulses occurs. In the most extreme
cases the total ionization probability after a number of N

pulses varies from almost zero to N/2 times the ionization
probability of the maximum polarized Stark state. Moreover,
the angular differential ionization probabilities are shown to
be intimately related to the number of times the pulse train
strikes the bound wave packet. The near-circular wave packets
exhibit rotation in the xy plane due to the rotating microwave
field, which is reflected in the continuum distribution. On
the other hand, when the near-linear states are probed, the

rotation in the continuum is completely overshadowed by the
symmetric distribution of the highly polarized states in the
z direction. Nevertheless, these findings suggest that more
complex periodic dynamics of a Rydberg atom, for example,
oscillations from classical to nonclassical states, may be
monitored by weak ionizing femtosecond pulse trains.
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