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Adiabatic theory of ionization by intense laser pulses: Finite-range potentials
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The adiabatic theory of ionization of an electron, initially bound in a three-dimensional potential well, by an
intense low-frequency laser pulse is developed. The general case of arbitrary time dependence and polarization
of the laser field and arbitrary potential which can model an atom or a molecule in the single-active-electron
approximation is treated, with the only restriction that the potential should not have a Coulomb tail. The
asymptotics of the solution to the time-dependent Schrödinger equation and photoelectron momentum distribution
in the adiabatic regime are obtained. Both the adiabatic and the rescattering parts of the wave function and
ionization amplitude are considered. These asymptotics are expressed in terms of the Siegert state originating
from the initial bound state in the presence of a static electric field and scattering states in the unperturbed
potential. They are uniform in terms of the amplitude of the laser field and apply to weak underbarrier as well as
strong overbarrier fields, provided the condition defining the region of validity of the adiabatic approximation is
fulfilled. The theory is illustrated by calculations which confirm that the adiabatic results converge to the exact
ones as the adiabatic parameter tends to zero.
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I. INTRODUCTION

An atom or molecule interacting with the field of an intense
low-frequency laser pulse can be ionized. Driven by the field,
the ionized electron returns and collides with the parent ion. As
a result, it can be elastically rescattered, which generates high-
energy photoelectrons [1], can radiatively recombine, which
generates high-order harmonics [2], or can experience some
other type of inelastic collision. These processes are currently
being intensively studied experimentally [3–8]. The interest
is fed by the wish to develop a technique for extracting the
target structure information, hopefully even in a time-resolved
way, which possibility has been predicted by calculations
[9,10].

The main theoretical approach currently in use in this field
has grown from an early paper by Keldysh [11]. A review of
the initial period of the development of the Keldysh theory is
given in Ref. [12]. The original Keldysh theory neglects the
interaction of an active electron with the laser field, in the
initial state, and with the target potential, in the final state.
It was reformulated in terms of time-dependent perturbation
theory by Faisal [13] and Reiss [14], which enabled one to
account for the latter interaction perturbatively, and became
known as the strong-field approximation. A review of this
theory and its recent developments can be found in Ref. [15].
The Keldysh theory and its modifications certainly grasp one
essential aspect of the problem: The motion of an ionized
electron driven by the field can be described classically, which
explains the success of the “simple-man theory” [16–18].
A classical trajectory is introduced into the theory through
the action associated with a Volkov state. At the same time,
the Keldysh theory suffers from an important drawback: It
never becomes exact in the space of the target and laser
parameters. In addition, it is restricted to weak underbarrier
fields, much smaller than the atomic one, when ionization in
the low-frequency regime occurs by tunneling.

Another approach to the problem was initiated in [19]
and is currently being actively pursued [20,21]. It is based
on the zero-range potential (ZRP) model, which allows a

detailed analytical and numerical analysis [22–25], from which
it develops as an effective range theory. A close relation to
the ZRP model explains substantial analytical grounds of this
theory, but also raises doubts on whether it can be extended to
realistic atomic potentials with nontrivial scattering properties,
let alone molecules.

Meanwhile, for low-frequency pulses of interest for appli-
cations, the problem contains a small parameter ε given by
the ratio of the atomic and laser time scales. For example,
for a typical wavelength of 800 nm (ω ≈ 0.057 a.u.) and
neutral atoms in the ground state (|E0| ∼ 0.5 a.u.) one obtains
ε ∼ 0.1. Thus, constructing the asymptotic solution of the
problem for ε → 0 seems to be a sensible approach. This
is the adiabatic theory. The development of this theory was
initiated in Ref. [26] (to be referred to hereafter as “I”),
where the simplest one-dimensional (1D) ZRP model was
considered. In this paper we present a thorough development
of the adiabatic theory in the three-dimensional (3D) case. Our
treatment is restricted to potentials having no Coulomb tail in
the asymptotic region. The extension of the theory to potentials
with a Coulomb tail is possible, but the formulation from the
very beginning is different, as is different the formulation of
scattering theory for such potentials. Otherwise, we consider
the most general case of arbitrary time dependence and
polarization of the laser field and arbitrary target potential
which can model an atom or a molecule in the single-active-
electron approximation. We derive the asymptotics of the
solution to the time-dependent Schrödinger equation (TDSE)
and photoelectron momentum distribution (PEMD) for ε → 0.
Although many steps in the derivation are based on ideas and
techniques developed in I, the generalization of the theory to
the 3D case is neither trivial nor straightforward. We feel that
some interested readers may be unfamiliar with asymptotic
methods [27,28], so we try to make our presentation self-
contained. We omit unnecessary details, but some details are
needed to make the results reproducible.

To implement the adiabatic theory one naturally needs
to know some properties of the target. These properties are
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represented by the Siegert state (SS) originating from the
initial bound state in the presence of an external static electric
field and scattering states in the unperturbed target potential.
Whereas scattering states need no explanation, the SS is a less
known object. In the general context of quantum mechanics,
SSs are the regular solutions to the stationary Schrödinger
equation satisfying the outgoing-wave boundary conditions.
Such solutions were introduced by Gamow in his famous
theory of α decay [29]. However, Siegert [30] was the first
who formulated the corresponding eigenvalue problem and
recognized the virtue of the complete set of its solutions as
a basis for an alternative formulation of scattering theory.
Therefore, such solutions now bear his name. So far, the
theory of SSs is developed only for spherically symmetric
finite-range potentials [30–40]. This theory was essentially
advanced and made implementable in practical calculations
by reformulating it in terms of Siegert pseudostates [41–44].
The properties of SSs in the presence of an electric field are
much less studied. The approaches used in Refs. [30–44] do not
apply in this case because of the difference in the asymptotic
boundary conditions, and no more suitable approach is found
yet. In particular, as far as we know, no results on the
orthogonality and completeness properties of SSs in an electric
field are available. Recently, we have developed the method
of adiabatic expansion in parabolic coordinates to analyze and
calculate individual SSs in an electric field, first for axially
symmetric potentials (atoms and linear molecules aligned
along the field) [45] and then for potentials without any
symmetry (arbitrarily oriented molecules) [46]. This method
is implemented in computer programs which enable one to
calculate SSs for atoms [45] and molecules [47] in a wide
range of the field strength. It is suitable also for constructing
the analytical solution of the Siegert eigenvalue problem in the
weak-field limit [46]. Without these preliminary developments
the numerical implementation of the adiabatic theory would
not be possible.

The paper is organized as follows. In Sec. II we formulate
the problem, define the adiabatic regime where the present
theory applies, and summarize basic equations on classical
and quantum dynamics in a time-dependent electric field. In
Sec. III we recall the definition of SSs in a static electric
field. To illustrate the theory, we consider a model potential
obtained by multiplying the Coulomb potential by a screening
Gaussian factor. The ground 1s state in this potential is used as
the initial state in the illustrative calculations. The properties of
the corresponding SS required for implementing the adiabatic
theory are discussed. The scattering states in this potential
are discussed in Sec. IV. After these introductory sections,
we turn to developing the theory. In Sec. V, the asymptotic
solution of the TDSE for ε → 0 is constructed. In Sec. VI,
this solution is used to obtain the asymptotics of the PEMD.
These two sections present our main results. The quantitative
performance of the theory is illustrated by calculations in
Sec. VII. Section VIII summarizes the results and points out
directions for further developments and applications of the
theory. An alternative formal derivation of the asymptotic
series for the adiabatic part of the wave function in operator
form is given in Appendix A. In Appendix B, we show how
the Keldysh approximation emerges in the weak-field limit of
the adiabatic theory.

II. BASIC EQUATIONS

A. Formulation of the problem

We consider an electron interacting with an atomic potential
and a laser field. The electron is assumed to be nonrelativistic,
so the magnetic part of the Lorentz force is neglected, and
its interaction with the electric field is treated in the dipole
approximation. The TDSE in the length gauge reads (atomic
units are used throughout)

i
∂ψ(r,t)

∂t
=

[
−1

2
� + V (r) + F(t)r

]
ψ(r,t). (1)

We discuss atoms, but the potential V (r) should not necessarily
be spherically symmetric, so our treatment applies also to
molecules in the single-active-electron approximation. For
simplicity, we assume that V (r) has a finite range,

V (r)|r>a = 0. (2)

However, our analysis remains valid also for potentials
with sufficiently rapidly vanishing tail, whose effect on the
dynamics can be neglected; potentials with the Coulomb tail
are excluded by Eq. (2). We indicate points in the derivation
where this assumption is essential. The electric field F(t) is
taken in the most general form,

F(t) = Fx(t)ex + Fy(t)ey + Fz(t)ez, (3)

which enables us to consider the interaction simultaneously
with several laser beams of arbitrary polarization. We dis-
tinguish three polarization cases: general polarization (GP),
when all three Cartesian components of F(t) are independent
functions; plane polarization (PP), which is the case for one
or several generally polarized laser beams propagating in the
same direction along the y axis, when Fy(t) = 0; and linear
polarization (LP), which is the case for one or several laser
beams linearly polarized along the z axis, when Fx(t) =
Fy(t) = 0. The characteristic time scale and magnitude of F(t)
are denoted by T0 and F0. Let us introduce notation:

F (t) = [
F 2

x (t) + F 2
y (t) + F 2

z (t)
]1/2

, e(t) = F(t)

F (t)
. (4)

It is assumed that F (t) is an analytic function of t ; this
requirement is essential since we need to consider F (t) for
generally complex values of t . For any vector a and a given
moment t , the ‖ and ⊥ components of a with respect to e(t)
are defined by

a = a‖e(t) + a⊥, a‖ = e(t)a. (5)

The electric field is assumed to vanish in the remote past and
future,

F(t → ±∞) = 0. (6)

The initial condition for Eq. (1) is

ψ(r,t → −∞) = φ0(r)e−iE0t , (7)

where E0 < 0 and φ0(r) are the energy and normalized wave
function of a bound state of the unperturbed atom,[

−1

2
� + V (r) − E0

]
φ0(r) = 0,

∫
φ2

0(r) dr = 1. (8)
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The problem consists in finding observables defined by the
coefficients in the expansion of the solution to Eqs. (1) and (7)
in terms of the complete set of atomic states for t → ∞.

B. Adiabatic regime

It is convenient to introduce κ defined by

κ =
√

2|E0|. (9)

The reciprocal quantity 1/κ gives the size of the initial bound
state; for the outer shells of neutral atoms in the ground state
κ ∼ 1. There are three characteristic energies in the problem:
(1) the energy spacing between atomic levels Ea , which we
assume to be of the order of the ionization potential |E0|, (2)
the energy associated with the laser field Ef = 2π/T0, which
for monochromatic pulses is equal to the photon energy ω, and
(3) the energy of interaction of the bound electron with the laser
field Eaf = F0/κ. The following ratios of these energies give
two independent dimensionless parameters characterizing the
problem,

ε = Ef

Ea

= 4π

κ
2T0

, ξ = Eaf

Ea

= 2F0

κ
3

. (10)

The third ratio coincides with the well-known Keldysh
parameter [11],

γ = Ef

Eaf

= ε

ξ
=

√
|E0|
2Up

, Up = F 2
0

4ω2
. (11)

In the present theory ε and ξ are primary parameters, while
γ does not play any role. We note that the photon ω and
ponderomotive Up energies are well-defined quantities only
for many-cycle almost monochromatic pulses; for few-cycle
pulses of interest here it is more sensible to use the notion of
the characteristic time T0.

The adiabatic parameter ε gives the ratio of the atomic and
laser time scales. It plays a key role in the following discussion.
To uncover this parameter in Eq. (1), we assume that

dnF(t)

dtn
= O(εn). (12)

The validity of the adiabatic approximation requires ε � 1.
It is essential to realize the order of the various quantities in
terms of ε as ε → 0. For example, the atomic properties do not
depend on ε, so a = O(ε0) and κ = O(ε0). The same holds for
the amplitude of the laser field, F0 = O(ε0), but T0 = O(ε−1).
The parameter ξ characterizes the strength of the laser field.
The adiabatic theory developed in this paper is the asymptotics
defined by ε → 0 and ξ = O(ε0). The latter condition means
that this asymptotics is uniform in terms of ξ . In other words,
the present theory applies to weak underbarrier, ξ � 1, as
well as strong overbarrier, ξ � 1, fields, provided that ε is
sufficiently small. More specifically, it is shown below that the
region of validity of the adiabatic approximation is defined by

ε � min(ξ 2,1). (13)

One can notice that the adiabatic regime ε → 0 corresponds
to the tunneling regime γ → 0 in terms of the Keldysh theory
[11], since γ = O(ε1). However, the Keldysh theory applies
only to weak fields satisfying ξ � 1 [12], so the condition
of applicability of this theory in the tunneling regime is ε �

0 1
0

1

����Ξ�c �

Ξ
� 2

Ε

Ξ

FIG. 1. The hatched area shows the region of applicability of
the nonrelativistic version of the adiabatic theory. For comparison,
the condition of applicability of the Keldysh theory in the tunneling
regime is ε � ξ � 1.

ξ � 1, which differs from Eq. (13). Thus, the two theories
are quite different. The results of the Keldysh theory will be
duly recovered within the present theory in the region ε � ξ 2,
ξ � 1, where both theories apply.

As a reply to Ref. [48], it is worthwhile to discuss
the limitations of the adiabatic theory stemming from the
nonrelativistic and dipole approximations. The validity of the
nonrelativistic approximation requires

F0T0 � c → ε 	 ξκ

c
, (14)

where c ≈ 137 is the velocity of light. This condition must
be compatible with Eq. (13). For ξ ∼ 1, there always exists
an interval κ/c � ε � 1 where conditions (13) and (14)
are fulfilled. However, in the weak-field case, ξ � 1, the
nonrelativistic version of the present theory does not have a
region of applicability if ξ � κ/c. Although this limitation
does not seem to be important for applications of current
interest, it should be emphasized that it is not intrinsic to the
adiabatic approximation and can be eliminated by generalizing
the following two sections to the relativistic case. The validity
of the dipole approximation requires

1/κ � T0c, F0T
2

0 � T0c. (15)

The first of these conditions amounts to ε � c/κ and, taking
into account Eq. (13), is not restrictive. The second one is
equivalent to Eq. (14). Summarizing, the region of applicabil-
ity of the present theory in the plane of the parameters ε and ξ

is illustrated in Fig. 1.

C. Classical dynamics in a time-dependent electric field

It is well known that quantum dynamics in a homogeneous
electric field can be described in purely classical terms [49].
Here we summarize formulas needed for the following. We
consider an electron interacting only with an electric field
F(t). Let us introduce a reference classical trajectory with the
velocity v(t) and coordinate r(t) defined by

v̇(t) = −F(t), ṙ(t) = v(t), (16a)

v(t → −∞) = r(t → −∞) = 0. (16b)
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Here and throughout, overdots denote differentiation with
respect to time. We have

v(t → ∞) = v∞, r(t → ∞) = r∞ + v∞t, (17a)

where

v∞ = −
∫ ∞

−∞
F(t) dt, (17b)

r∞ =
∫ 0

−∞
v(t) dt +

∫ ∞

0
[v(t) − v∞] dt. (17c)

It was argued [50] that a true laser pulse must satisfy v∞ =
r∞ = 0. Even if so, these restrictions are not intrinsic to the
present problem, so we do not impose them here; our theory
applies to arbitrary values of v∞ and r∞. The velocity u(t) and
coordinate q(t) for an arbitrary classical trajectory satisfy the
same equations with different initial conditions,

u̇(t) = −F(t), q̇(t) = u(t), (18a)

u(ti) = ui , q(ti) = qi . (18b)

It is a property of the motion in a homogeneous electric field
that any trajectory can be expressed in terms of the reference
one,

u(t) = [ui − v(ti)] + v(t), (19a)

q(t) = [qi − r(ti)] + [ui − v(ti)](t − ti) + r(t). (19b)

Hence, all classical quantities of interest can be expressed in
terms of the functions v(t) and r(t).

Consider the trajectory (19) in a finite interval of time ti �
t � tf . Let u(tf ) = uf and q(tf ) = qf . One can use qf , tf ,
qi , and ti as independent variables identifying the trajectory.
In terms of these variables, the initial ui and final uf velocities
are given by

ui(tf ,ti ,�q) = ui(tf ,ti) + �q
tf − ti

, (20a)

uf (tf ,ti ,�q) = uf (tf ,ti) + �q
tf − ti

, (20b)

where �q = qf − qi and

ui(tf ,ti) = v(ti) − r(tf ) − r(ti)

tf − ti
, (21a)

uf (tf ,ti) = v(tf ) − r(tf ) − r(ti)

tf − ti
. (21b)

The latter functions are the initial and final velocities for a
closed trajectory which begins and ends at the same point;
because of the homogeneity of the electric field, they depend
only on the initial ti and final tf moments and do not depend
on the point. We have

∂ui(tf ,ti ,�q)

∂tf
= −uf (tf ,ti ,�q)

tf − ti
, (22a)

∂ui(tf ,ti ,�q)

∂ti
= −F(ti) + ui(tf ,ti ,�q)

tf − ti
, (22b)

∂uf (tf ,ti ,�q)

∂tf
= −F(tf ) − uf (tf ,ti ,�q)

tf − ti
, (22c)

∂uf (tf ,ti ,�q)

∂ti
= ui(tf ,ti ,�q)

tf − ti
. (22d)

The action accumulated along this trajectory between ti and tf
is

S(qf ,tf ; qi ,ti) =
∫ tf

ti

[
1

2
u2(t) − F(t)q(t)

]
dt

= v(tf )qf − v(ti)qi + [r(tf ) − r(ti) − �q]2

2(tf − ti)

− 1

2

∫ tf

ti

v2(t) dt. (23)

We have

∂S(qf ,tf ; qi ,ti)

∂ti
= 1

2
u2

i (tf ,ti ,�q) + F(ti)qi , (24a)

∂S(qf ,tf ; qi ,ti)

∂tf
= −1

2
u2

f (tf ,ti ,�q) − F(tf )qf . (24b)

The same trajectory can be identified by different sets of
independent variables. One can use ui instead of qi . Then
the final velocity uf depends only on tf , ti , and ui and is given
by

uf (tf ,ti ,ui) = ui − v(ti) + v(tf ). (25)

Alternatively, one can use qf , tf , and the asymptotic velocity
u∞ = u(t → ∞). Then ui depends only on u∞ and ti and is
given by

ui(ti ,u∞) = u∞ − v∞ + v(ti). (26)

The action as a function of qf and tf satisfies the Hamilton-
Jacobi equation

∂S(qf ,tf )

∂tf
+ 1

2

(
∂S(qf ,tf )

∂qf

)2

+ F(tf )qf = 0. (27)

The particular solutions to this equation are defined by
appropriate initial conditions through which they become de-
pendent on some additional variables identifying the trajectory.
Equation (23) gives one of the solutions. We need two other
solutions defined by

S(qf ,tf ; ui ,ti) = uf (tf ,ti ,ui)qf − S(tf ,ti ,ui), (28a)

S(tf ,ti ,ui) = 1

2

∫ tf

ti

u2
f (t,ti ,ui) dt, (28b)

S(qf ,tf ; ui ,ti)|tf =ti = uiqf , (28c)

and

S(qf ,tf ; u∞) = ui(tf ,u∞)qf − S(tf ,u∞), (29a)

S(tf ,u∞) = 1

2
u2

∞tf − 1

2

∫ ∞

tf

[
u2

i (t,u∞) − u2
∞

]
dt, (29b)

S(qf ,tf ; u∞)|tf →∞ = u∞qf − 1

2
u2

∞tf . (29c)

The different actions are related by

S(qf ,tf ; qi ,ti) = S(qf ,tf ; ui ,ti) − uiqi (30a)

= S(qf ,tf ; u∞) − S(qi ,ti ; u∞), (30b)

where all the variables correspond to the same trajectory.
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D. Quantum dynamics in a time-dependent electric field

Now we can introduce main objects describing quantum
dynamics in a homogeneous electric field. The retarded
Green’s function is defined by[

i
∂

∂t
+ 1

2
� − F(t)r

]
G(r,t ; r′,t ′) = δ(t − t ′)δ(r − r′),

(31a)

G(r,t ; r′,t ′)|t<t ′ = 0. (31b)

It can be expressed in terms of the action (23) [49],

G(r,t ; r′,t ′) = e3iπ/4θ (t − t ′)
[2π (t − t ′)]3/2

eiS(r,t ;r′,t ′). (32)

The Volkov states satisfy

i
∂�(r,t)

∂t
=

[
−1

2
� + F(t)r

]
�(r,t). (33)

The particular solutions to this equation are given by �(r,t) =
exp[iS(r,t)], where S(r,t) is a solution to Eq. (27). We need
two such solutions associated with the actions (28) and (29)
and defined by

�(r,t ; ui ,ti) = eiS(r,t ;ui ,ti ), (34a)

�(r,t ; ui ,ti)|t=ti
= eiuir, (34b)

and

�(r,t ; k) = eiS(r,t ;k), (35a)

�(r,t ; k)|t→∞ = exp

[
ikr − i

2
k2t

]
. (35b)

The first of them describes an electron with a given initial
velocity ui at the moment ti ; the second describes an electron
with a given velocity k after the pulse is over.

E. Integral form of the time-dependent Schrödinger equation

Using Eq. (32), we rewrite Eq. (1) in the integral form

ψ(r,t) = e3iπ/4

(2π )3/2

∫
dr′

∫ t

−∞
eiS(r,t ;r′,t ′)V (r′)ψ(r′,t ′)

dt ′

(t − t ′)3/2
.

(36)

One could add any linear combination of the Volkov states to
the rhs (throughout the paper, lhs and rhs stand for the left-
and right-hand side, respectively) of this equation, the lhs will
still satisfy Eq. (1). This means that all the solutions to the
homogeneous integral equation (36) satisfy Eq. (1), but not
vice versa. So it is worthwhile to make sure that the solution
to Eq. (1) we seek, the one satisfying the initial condition
(7), is among the solutions to Eq. (36). To this end, let us
consider Eq. (36) for t → −∞. From Eqs. (6) and (23) one
can see that the rhs of Eq. (32) for t → −∞ coincides with the
retarded Green’s function for a free particle. The homogeneous
equation (36) in this case has nontrivial solutions of the form
φn(r)e−iEnt , where En and φn(r) are the energy and wave
function corresponding to a bound state of the unperturbed
atom, as in Eq. (7). Thus, the solution to Eqs. (1) and (7)
is among the solutions to Eq. (36). To treat the solution to

Eq. (1) with a scattering state in the initial condition (7), one
would have to consider an inhomogeneous integral equation
obtained by adding the corresponding Volkov state to the rhs
of Eq. (36). We note that the step from Eq. (1) to Eq. (36) relies
on the assumption (2). For potentials with the Coulomb tail,
Eq. (36) requires a modification accounting for the logarithmic
Coulomb phase.

Equation (36) is the starting point for developing the
adiabatic theory. This equation was also used in theories
treating the ZRP model [22–24]. However, there are two
essential differences between these early works and the present
theory. First, in Refs. [22–24], as well as in more recent
studies [19–21], the authors focus on obtaining virtually
exact analytical results for a very specific model, which is
possible due to the simplicity of the model, while the adiabatic
theory yields asymptotic results for ε → 0 applicable to any
potential satisfying Eq. (2). Second, the approaches developed
in Refs. [22–24] are restricted to monochromatic fields and,
as a consequence, are formulated in terms of quasienergy or
Floquet states, while the adiabatic theory applies to fields with
arbitrary dependence on time, including few-cycle pulses, and
is formulated in terms of SSs. We expect that the SSs should
emerge in the low-frequency limit from the Floquet states, but
this issue has not been investigated yet.

III. SIEGERT STATES IN A STATIC ELECTRIC FIELD

In the following sections, the solution to Eq. (36) and
observables are expressed in the adiabatic approximation in
terms of an SS, the one which coincides with the initial bound
state in the absence of the field, in a static electric field equal to
the momentary value of F(t) at an appropriate saddle point. It
can be said that the SS is the main brick in the building of the
adiabatic theory. Therefore, before developing the theory it is
worthwhile to recall the definition and discuss main properties
of the SS.

The SSs in a static electric field F = F e, F > 0, are the
solutions to( − 1

2 � + V (r) + Fr − E(F)
)
φ(r; F) = 0, (37)

satisfying the regularity and outgoing-wave boundary con-
ditions. For potentials satisfying Eq. (2), the outgoing-wave
boundary condition can be formulated in the form [45,46]

φ(r; F)|r‖<−a =
∫

A(k⊥; F)eik⊥r⊥g(r‖,k⊥; F)
dk⊥

(2π )2
, (38)

where the ‖ and ⊥ components of r and k are defined with
respect to e,

g(r‖,k⊥; F) = e−iπ/122π1/2(2F )−1/6 Ai(ζ ), (39a)

ζ = 2e−iπ/3

(2F )2/3

[
E(F) − Fr‖ − 1

2
k2
⊥

]
, (39b)

and Ai(z) is the Airy function [51]. The solution φ(r; F)
decays as r → ∞ in all directions except that opposite to
e. Equation (38) means that it contains only outgoing flux
in the asymptotic region r‖ → −∞, with A(k⊥; F) being the
amplitude of the transverse momentum distribution (TMD) in
the flux [45,46]. The regular solutions to Eqs. (37) and (38)
exist only for a discrete set of generally complex values of
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E(F), so this is an eigenvalue problem. This problem can be
reformulated as a homogeneous integral equation,

φ(r; F) =
∫

G(r,r′; E(F),F)V (r′)φ(r′; F) dr′, (40)

where G(r,r′; E,F) is the outgoing-wave solution to(
E + 1

2 � − Fr
)
G(r,r′; E,F) = δ(r − r′), (41)

given by

G(r,r′; E,F) = e3iπ/4

(2π )3/2

∫ ∞

0
exp

[
iEt + i(r − r′)2

2t

− i

2
F(r + r′)t − i

24
F2t3

]
dt

t3/2
. (42)

The solutions to Eq. (37) depend on F as a parameter. The SS
that coincides with the initial bound state of the unperturbed
atom for F = 0 is indicated by a subscript 0. We have

E0(F)|F→0 → E0, φ0(r; F)|F→0 → φ0(r). (43)

Its complex eigenvalue presented in the form

E0(F) = E0(F) − i

2
�0(F) (44)

defines the energy E0(F) and ionization rate �0(F) of the state.
Its eigenfunction is normalized by∫

φ2
0(r; F) dr = 1, (45)

which coincides with the second of Eqs. (8) for F = 0. Note
that the integral in Eq. (45) should be properly regularized,
since the eigenfunction exponentially diverges as r‖ → −∞
[45,46]. Also note that there is no complex conjugation in
Eq. (45), which is a general property of the theory of SSs
[35–37,42–44]. Let us introduce a projection of the SS onto
the initial bound state,

�0(F) =
∫

φ0(r)φ0(r; F) dr. (46)

The functions E0(F), A0(k⊥; F), and �0(F) are the main
characteristics of the SS needed for the adiabatic theory. To
implement the theory, one must be able to calculate these
functions for a wide range of generally complex values of F .
Recently, we have developed an efficient and accurate method
to calculate SSs for axially symmetric potentials (atoms and
linear molecules aligned along the field) [45] and potentials
without any symmetry (arbitrarily oriented molecules) [46,47].
This method does not rely on Eq. (2) and works also for
potentials with the Coulomb tail.

In this paper, we illustrate the theory by calculations for a
model potential

V (r) = −exp[−(r/10)2]

r
. (47)

On the one hand, one can safely cut off the asymptotic tail
of this potential at r ∼ 30−40 in order to satisfy Eq. (2),
without disturbing the dynamics. On the other hand, the width
of the Gaussian screening factor in Eq. (47) is large enough
so the energy of the ground 1s state E1s = −0.485 483 364
is not too far from that in the purely Coulomb potential. This
potential supports three s and two p bound states. The lowest

-0.60

-0.55

-0.50

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5
-0.1

0.0

0.1

PT 

(b)

(a)

 present model
 hydrogen atom

�
1s

(F
) 

(a
.u

.)

AS

Γ 1s
(F

) 
(a

.u
.)

Im �
1s

(F)

Re �
1s

(F) − 1

(c)

�
1s

(F
) −

 1
F (a.u.)

FIG. 2. (Color online) Energy (a), ionization rate (b), and projec-
tion (46) (c) for the SS that coincides with the ground 1s state for
F = 0. Solid lines, the present model potential (47); dashed lines,
the Coulomb potential, V (r) = −1/r . The perturbation theory (PT)
and weak-field asymptotic theory (AS) results are obtained from
Eqs. (48a) and (48b), respectively.

d state appears as a narrow shape resonance (the partial-
wave potential still has a well) whose energy calculated by
the SS method [44] is Ed ≈ 0.140 × 10−2 − i 0.366 × 10−4.
In addition, there is a broad f resonance (a well in the
partial-wave potential has just disappeared) with energy Ef ≈
0.262 × 10−1 − i 0.179 × 10−1. Keeping in mind to use the 1s

state as the initial state in the following numerical illustrations,
we show in Figs. 2 and 3 the functions E1s(F ), �1s(F ), and
A1s(k⊥; F ) characterizing the corresponding SS for real F in
the interval 0 � F � 0.5. Because of the spherical symmetry
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FIG. 3. (Color online) Transverse momentum distribution
|A1s(k⊥; F )|2 for the same SS as in Fig. 2 for the present model
potential (47). The results for the Coulomb potential look very similar.
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of the potential (47) and 1s state, these functions do not
depend on the orientations of the electric field F and transverse
momentum k⊥. For comparison, in Fig. 2 we also show similar
results for the Coulomb potential. One can see that, apart from
a shift of the energy of the state that is almost uniform in F ,
the Gaussian factor in Eq. (47) does not disturb very much
the properties of this SS. The critical value of F indicating a
boundary between the underbarrier and overbarrier regimes
of ionization, estimated by requiring that the two turning
points in parabolic coordinates coalescence [45,52], for the
present model is Fc ≈ 0.12. Indeed, one can see that the
ionization rate �1s(F ) acquires appreciable values for F > Fc.
For weak fields, F � Fc, the energy of the SS can be found
using perturbation theory [52], while the ionization rate and
TMD amplitude can be evaluated using weak-field asymptotic
theory [46,53]. One thus obtains

E1s(F )|F→0 = E1s − 1
2 αstF

2, (48a)

�1s(F )|F→0 =
∫

|A1s(k⊥; F )|2 dk⊥
(2π )2

= πC2Fκ
−2 exp

(
−2κ

3

3F

)
, (48b)

A1s(k⊥; F )|F→0 = eiπ/42πCκ
−1/2 exp

(
− κ

3

3F
− κk2

⊥
2F

)
,

(48c)

where αst ≈ 4.136 is the static dipole polarizability in the
1s state, C = reκrφ1s(r)|r→∞ ≈ 3.832 is the asymptotic
coefficient in the unperturbed wave function, and κ is related
to E1s by Eq. (9). However, it should be emphasized that
these approximations are not intrinsic to the adiabatic theory.
They work well only for very small F ; for example, the error
of Eq. (48b) reaches 10% already at F = 0.01. Therefore,
Eqs. (48) are not suitable for a quantitatively predictive
implementation of the theory even for moderate, let alone
overbarrier values of the field. To treat strong fields, one must
resort to exact numerical methods of calculating SSs like the
one developed in [45–47].

Without going into further detail, we mention that the differ-
ent SSs are, in fact, different branches of the same solution to
Eq. (37) whose eigenvalue E(F) and eigenfunction φ(r; F) are
multivalued analytic functions of F . These functions have an
essential singular point at F = 0. Their Riemann surface has
a complicated structure near this point, because of an infinite
series of branch points converging to F = 0 [54]. Equations
(48) hold only in a narrow sector near the positive real axis
of F , which reveals another deficiency of these weak-field
approximations.

IV. SCATTERING STATES

To describe rescattering of the ionized electrons, we need
scattering states in the potential V (r). They are defined by
[52,55]( − 1

2 � + V (r) − E
)
ϕ(r; k) = 0, E = k2/2, (49a)

ϕ(r; k)|r→∞ = eik·r + f (k,n)
eikr

r
, (49b)
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FIG. 4. (Color online) The absolute value of the scattering
amplitude, |f (k,θ )|, for the present model potential (47). The narrow
d and broad f resonances are located at k ≈ 0.0529 and 0.241,
respectively.

where f (k,n) is the scattering amplitude and n = r/r . For
potentials satisfying Eq. (2), the scattering problem can be
cast into the form of an integral equation,

ϕ(r; k) = eik·r +
∫

G(r − r′; E)V (r′)ϕ(r′; k) dr′, (50)

where G(r; E) is the outgoing-wave Green’s function for a
free electron,

G(r; E) = e3iπ/4

(2π )3/2

∫ ∞

0
exp

(
iEt + ir2

2t

)
dt

t3/2
= − eikr

2πr
.

(51)

This function can be obtained from Eq. (42) by substituting
F = 0.

For spherically symmetric potentials, the scattering ampli-
tude depends only on k = |k| and the angle θ between k and n
and is denoted by f (k,θ ). Figure 4 shows the absolute value of
f (k,θ ) for the potential (47). The scattering properties of the
present model considerably differ from that of the Coulomb
potential. In the latter case |f (k,θ )| = [2k2 sin2(θ/2)]−1, so
the scattering amplitude diverges at k = 0 and θ = 0. On the
contrary, for finite-range potentials f (k,θ ) remains finite for
all values of its arguments. The scattering length for the present
model is −f (0,θ ) = 32.270 451. Another difference from the
Coulomb case stems from the existence of two resonances
mentioned in Sec. III. The narrow d resonance is clearly visible
in Fig. 4, and the broad f resonance still can be recognized.
Apart from the regions near k = 0 and θ = 0 and resonances,
the behavior of |f (k,θ )| for the present model resembles
that for the Coulomb potential. In particular, for k � 0.5 the
scattering amplitude has a sharp peak in the forward direction.

V. ASYMPTOTIC SOLUTION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

In this section we construct the asymptotic solution to
Eq. (36) for ε → 0. Let us introduce some definitions.
Functions f (t) satisfying

dnf (t)

dtn
= O(εν+n) (52)
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are called “slow” functions of order ν; we write f (t) = O(εν).
For example, the electric field F(t) is a slow function of order
0 [see Eq. (12)]. From Eqs. (16) and (23) we have

v(t) = O(ε−1), r(t) = O(ε−2), (53)

and

S(r,t ; r′,t ′) = O(ε−3). (54)

The solution to Eq. (36) is expressed in terms of “fast”
functions having the form

g(t) = A(t)eiS(t), A(t) = O(εν), S(t) = O(εμ), (55)

where the amplitude A(t) and action S(t) are slow functions
of orders ν � 0 and μ < 0. We deal with quantum actions of
order −1 and classical actions of order −3; the examples are
given by the exponents in Eqs. (7) and (36), respectively. The
fact that g(t) has the form (55) is denoted by g(t) ∼ (ν,μ).

Equations (53) and (54) provide the foundation for devel-
oping the adiabatic approximation. In the adiabatic regime,
the integrand on the rhs of Eq. (36) is a rapidly oscillating
function, so the main technique of the derivation is the steepest
descent method [28]. The integral evaluated using this method
is given by a sum of contributions from saddle points (SPs).
Thus, our strategy is to analyze the different SPs, calculate
their contributions, and collect together terms having the same
action. For brevity, we use notation∫ t

−∞
A(t ′)eiS(t ′) dt ′

∣∣∣∣
t ′∈Z

, (56)

which means that the integral is to be evaluated using the
steepest descent method and only the contributions from SPs
located in zone Z are to be taken into account.

A. Quasistationary zone

One can expect that in the adiabatic regime a bound electron
adjusts its state to the momentary value of the electric field
F(t) and adiabatically follows its variation in time. We show
that this is indeed the case. However, there is some retardation
because of finiteness of the electron’s velocity, so the adiabatic
approximation should break down at sufficiently large distance
from the atom. An ionized electron moving in a static electric
field equal to the value of F(t) at the moment of ionization
recedes from the atom during the time �t by a distance
∼F (t)�t2. The field can be treated as static for �t � T0.
Therefore, the electron can recede from the atom before the
field changes appreciably at most by a distance

R(t) ∼ F (t)T 2
0 = O(ε−2). (57)

The momentary quasistationary (QS) zone is defined by

QS zone : r � R(t). (58)

Inside this zone, retardation can be neglected and the electronic
state evolves adiabatically. The concept of the QS zone is
familiar from classical electrodynamics [56,57], where it
is also known as the near-field zone. However, there is a
difference: The size of the QS zone in the present problem
depends on time and turns to zero at the moments when
F (t) = 0. Thus, the adiabatic approximation breaks down
outside the QS zone in space, and, in addition, near the zeros

of F (t) in time. An important consequence of Eq. (36) is that
for potentials satisfying Eq. (2) the wave function ψ(r,t) in
the whole space is determined by its values in a finite region
occupied by the potential. Thus, to find the observables it is
sufficient to construct the solution to Eq. (36) in the region
r < a. For this region to lie inside the QS zone for the most of
time during the pulse, we require

a � R0 → ε2 � ξ

κa
, (59)

where R0 = F0T
2

0 = O(ε−2) is the characteristic value of
R(t). Taking into account Eq. (13), this condition is not
restrictive, unless the range of the potential a becomes infinite.

In this section we consider Eq. (36) only in the QS zone (58).
This is sufficient for finding the observables, provided that
condition (59) is fulfilled. Following I, the solution to Eq. (36)
is sought in the form of a sum of adiabatic and rescattering
parts,

ψ(r,t) = ψa(r,t) + ψr (r,t), (60)

where the two terms are identified by

ψa(r,t) ∼ (0, − 1), (61a)

ψr (r,t) ∼ (3/2, − 3), (61b)

and

ψa(r,t → −∞) = φ0(r)e−iE0t , (62a)

ψr (r,t → −∞) = 0. (62b)

Such representation of the solution is confirmed by the result.
We reiterate that the adiabatic approximation and Eq. (60) hold
only inside the QS zone.

B. Adiabatic part of the wave function

The adiabatic part ψa(r,t) of the solution to Eq. (36) is
sought in the form

ψa(r,t) = φ0(r; t)e−is0(t), (63)

where

s0(t) = E0t +
∫ t

−∞
[E0(t ′) − E0] dt ′. (64)

Here E0(t) and φ0(r; t) are slow functions of order 0, so s0(t) =
O(ε−1), in accordance with Eq. (61a). To satisfy the initial
condition (62a), we require

E0(t → −∞) = E0, φ0(r; t → −∞) = φ0(r). (65)

Substituting ψa(r,t) for ψ(r,t) into Eq. (36) and evaluating
the time integral on the rhs, one should retain only SPs whose
contributions have actions of order −1. Such SPs are located
in the adiabatic zone A in the complex t ′ plane defined by

zone A : |t ′ − t | � T0. (66)

Note that that there may exist other SPs located outside zone
A which produce terms with actions of order −3 contributing
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to ψr (r,t) (see Sec. V D). Thus, we arrive at the equation

φ0(r; t) = e3iπ/4

(2π )3/2

∫
dr′

∫ t

−∞
eiSa (r,t ;r′,t ′)V (r′)φ0(r′; t ′)

× dt ′

(t − t ′)3/2

∣∣∣∣
t ′∈A

, (67)

where

Sa(r,t ; r′,t ′) = S(r,t ; r′,t ′) +
∫ t

t ′
E0(t ′′) dt ′′. (68)

This equation defines the functions E0(t) and φ0(r; t) intro-
duced in Eqs. (63) and (64).

A simple way to proceed is to find all SPs located in zone A

and calculate their individual contributions to the time integral
in Eq. (67). The SPs for the action (68) are defined by

∂Sa

∂t ′
= 1

2
u2

i (t,t ′,�r) + F(t ′)r′ − E0(t ′) = 0, (69)

where ui(t,t ′,�r) is given by Eq. (20a) and �r = r − r′.
This equation has a transparent physical meaning. In the
adiabatic regime, a transition can efficiently occur only when
the energies of the initial and final states coincide; transitions
associated with a change of the energy of the system are
suppressed. In the initial state (63), the electron is bound by the
potential and its energy is E0(t). In the final state, the electron
is ionized and moves under the influence of the field. For the
ionized electron emerging at the moment t ′ at the point r′ to
arrive at the moment t at the point r its initial velocity must
be equal to ui(t,t ′,�r). Thus, Eq. (69) defines a moment of
ionization t ′ in the adiabatic regime. The number and positions
of SPs in zone A depend on r, r′, and t . Consider the region

r = O(ε0), r ′ = O(ε0), |t ′ − t | = O(ε0). (70)

The first of these conditions is our temporary assumption, the
second follows from Eq. (2), and the third indicates where
the solutions to Eq. (69) are sought. Equation (69) has four
solutions in this region to be denoted by t (±,±)

a . Expanding all
functions in Eq. (69) near t ′ = t , we find

t (±,±)
a = t ± i

F (t)
{κ2(r; t) ± 2[κ2(r; t)κ2(r′; t)

− F2(t)�r2
⊥]1/2 + κ

2(r′; t)}1/2 + O(ε1), (71)

where �r⊥ is defined with respect to e(t) and

κ(r; t) = {2[F(t)r − E0(t)]}1/2, κ(r; t → −∞) = κ. (72)

For �r → 0, two of these solutions coalesce with t , while the
two others stay at a finite distance from t ; in I they were termed
the adiabatic and tunneling SPs, respectively. In the case of
general position, when |�r| ∼ r ∼ r ′ and t is not too close to
a zero of F(t), the SPs (71) indeed lie at a distance O(ε0) from
t , in accordance with the third of Eqs. (70). As r grows, they
move away from t . When r approaches the boundary of the
QS zone, that is, for r ∼ R(t), they approach the boundary of
zone A, that is, |t (±,±)

a − t | ∼ T0; in this case the error term in
Eq. (71) becomes O(ε−1). Thus, as long as r is in the QS zone,
there are four SPs in zone A given by Eq. (71).

The SPs (71) approach each other and coalesce with the
singular point t ′ = t of the integrand in Eq. (67) as F (t)
grows. The overall strength of the field is characterized

by the parameter ξ [see Eqs. (10)]. For sufficiently large
ξ , the contributions from these SPs cannot be considered
independently. Thus, to obtain the asymptotic solution of
Eq. (67), which is uniform in terms of ξ , the complex including
all four SPs and the singular point must be treated as a
whole. Such a uniform treatment generalizing the procedure
developed in I is possible. Let us again consider the region
(70). In this region,

Sa(r,t ; r′,t ′) = �r2

2δ
− 1

2
F(t)(r + r′)δ − 1

24
F2(t)δ3 + E0(t)δ

+ 1

6
Ḟ(t)(r + 2r′)δ2 + 1

24
F(t)Ḟ(t)δ4

− 1

2
Ė0(t)δ2 + O(ε2), (73a)

φ0(r′; t ′) = φ0(r′; t) + φ̇0(r′; t ′)δ + O(ε2), (73b)

where δ = t − t ′. The terms containing slow functions F(t),
E0(t), and φ0(r′; t) and their derivatives in these expansions
have orders 0 and 1, respectively. Substituting Eqs. (73) into
Eq. (67) and collecting together terms of the same order in ε,
in the zeroth order using Eq. (42) we obtain

φ0(r; t) =
∫

G(r,r′; E0(t),F(t))V (r′)φ0(r′; t) dr′. (74)

This equation is equivalent to Eq. (40), so its solution is given
by

E0(t) = E0(F(t)), φ0(r; t) = N (t)φ0(r; F(t)), (75)

where N (t) is yet unknown normalization factor. To find this
factor, one must proceed to the next order of the expansion. In
the first order, we obtain∫ [(

2φ̇0(r′; t) + φ0(r′; t)
d

dt

)
∂G(r,r′; E,F(t))

∂E

∣∣∣∣
E=E0(t)

+ 1

6
(r − r′)φ0(r′; t)

∂2G(r,r′; E,F(t))
∂E2

∣∣∣∣
E=E0(t)

]
×V (r′) dr′ = 0. (76)

Multiplying this equation by V (r)φ0(r; t), integrating over r,
and using Eq. (74), it can be shown (we omit the details) that
Eq. (76) is equivalent to

d

dt

∫
φ2

0(r; t) dr = 0. (77)

Taking into account the normalization (8) and (45) and initial
(65) conditions, we thus find

N (t) = 1. (78)

This completes the construction of the leading-order term in
the asymptotics of ψa(r,t). The procedure can be continued;
considering the next term in the expansion, one can obtain
a correction to φ0(r; t) of order O(ε1), etc. An alternative
derivation of this asymptotic series for φ0(r; t) in operator
form, including the first-order correction term, is presented in
Appendix A.

The adiabatic part ψa(r,t) of the wave function is the
central object of the present theory from which all further
results are derived. So it is important to specify the region
of validity of Eq. (63), which determines that of the whole
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theory. Expansions (73) hold for δ � T0, which explains the
size of the adiabatic zone (66). For the SPs (71) to be located
in this zone, two conditions must be fulfilled: (i) r � R(t),
which means that the region of validity of Eq. (63) in terms of
r coincides with the QS zone; (ii) |t (±,±)

a − t | ∼ κ/F0 � T0,
which amounts to ε � ξ . In addition, solving Eq. (67) we
have expanded the exponential function. So the dotted terms in
Eq. (73a) taken at the SPs, that is, for δ ∼ κ/F0, must be small
compared not only with the leading-order terms, which leads
to ε � ξ , but also with unity [58], which requires ε � ξ 2.
We thus arrive at Eq. (13) as the condition of validity of the
adiabatic approximation.

Summarizing, the leading-order term in the asymptotics of
ψa(r,t) for ε → 0 is given by Eqs. (63) and (64), where E0(t)
and φ0(r; t) are expressed in terms of the SS by Eqs. (75) and
(78). Thus, in the presence of an external electric field, the
initial bound state turns into a properly normalized SS which
adiabatically follows a variation of the field. The integral term
in Eq. (64) accounts for a difference between the eigenvalues.
It describes the accumulation of an additional phase and decay
of the initial state due to its interaction with the field. For
weak fields, these effects can be approximately described in
well-known terms of the second-order Stark shift and tunneling
ionization rate given by Eqs. (48a) and (48b). The exact SS
eigenvalue E0(F) arising in the present analysis makes Eq. (63)
applicable to fields of arbitrary strength. The preexponential
factor in Eq. (63) is the SS eigenfunction. Its difference from
the initial bound state can be quantitatively characterized by
a deviation of the projection (46) from unity (see Fig. 3); we
show in Sec. VII A that this also leads to observable effects.
We emphasize that the asymptotics (63) is uniform in terms
of ξ . As shown in Appendix A, Eq. (63) does not rely on the
assumption (2) and holds also for potentials with the Coulomb
tail.

C. Formation zone

Let the electric field F(t) have a simple zero at t = tF ,

F(tF ) = 0, Ḟ(tF ) �= 0. (79)

In the GP and PP cases, such a zero can appear only
accidentally and can be eliminated by a small variation of
the function F(t). However, not so in the LP case: The zeros
of the electric field are a generic property of linearly polarized
pulses. Since linearly polarized pulses are frequently used in
applications, consequences of Eq. (79) must be discussed.

One of the consequences has already been mentioned in
Sec. V A. The adiabatic approximation breaks down near tF ,
because the radius of the momentary QS zone (58) turns to
zero. Taking into account that Ḟ(tF ) = O(ε1), the condition
a � R(t) is violated inside a region |t − tF | = O(ε1). This
does not cause any problem because the electric field in this
region is very weak, F(t) = O(ε2), so the interaction with it
can be neglected.

Another consequence can be seen from Eq. (71). As t

approaches tF , the SPs t (±,±)
a depart from t . The analysis of

the previous section does not apply if they leave the adiabatic
zone (66). Thus, the validity of Eq. (63) for t in a vicinity of
tF requires special consideration. Following I, let us introduce

the formation zone defined by

zone F : |t − tF | = O(ε−1/2). (80)

In this zone F(t) = O(ε1/2) and R(t) = O(ε−3/2). For r =
O(ε0), r ′ = O(ε0), and t ∈ F , Eq. (69) has six solutions:
Two of them (adiabatic SPs) are located near t ± i|r − r′|/κ,
and four others (tunneling SPs) lie at a distance ∼κ/F (t) =
O(ε−1/2) from t , which is still inside the adiabatic zone (66).
Evaluating the contributions from these SPs, it can be shown
(this analysis is similar to that presented in I, so we skip
the details) that the asymptotic solution to Eq. (67) in zone
F is given by Eqs. (63) and (64), where φ0(r; t) is to be
substituted by the unperturbed initial state φ0(r) and E0(t)
by the weak-field approximations (48a) and (48b) for the
SS eigenvalue. In other words, the solution is given by the
weak-field approximation to Eqs. (63) and (64), as one would
expect. We thus conclude that the asymptotics (63) remains
valid throughout zone F and hence is uniform in terms of t .

The third consequence of Eq. (79) is the appearance of
rescattering trajectories and a new type of SPs associated with
them. In zone F , these new SPs coincide with two of the four
tunneling SPs mentioned above. Their contribution to the time
integral in Eq. (67) is a seed from which the rescattering term
in Eq. (60) grows up as t passes through zone F . Thus, zone F

is where the formation of ψr (r,t) takes place, which explains
the terminology.

D. Rescattering part of the wave function

Substituting Eq. (63) for ψ(r,t) into the rhs of Eq. (36)
and calculating the contribution to the time integral from the
adiabatic zone (66), one obtains a term with action of order
−1. This term is compensated by the adiabatic part ψa(r,t) of
the wave function on the lhs of the equation (see Sec. V B).
In this section we show that, under a certain condition, the
asymptotics of the rhs of Eq. (36) contains terms with actions
of order −3. This leads to the appearance of the rescattering
part ψr (r,t) on the lhs of the equation.

Let ψ (a)
r (r,t) denote a function obtained by substituting

ψa(r,t) for ψ(r,t) into the rhs of Eq. (36) and omitting the
contribution to the time integral from zone A. We have

ψ (a)
r (r,t) = e3iπ/4

(2π )3/2

∫
dr′

∫ t

−∞
eiSr (r,t ;r′,t ′)V (r′)φ0(r′; t ′)

× dt ′

(t − t ′)3/2

∣∣∣∣
t ′ /∈A

, (81)

where

Sr (r,t ; r′,t ′) = S(r,t ; r′,t ′) − s0(t ′). (82)

One could expect that ψ (a)
r (r,t) coincides with ψr (r,t), which

is sought, but this is not so; we show that the latter function
satisfies an inhomogeneous integral equation where the former
one acts as a source term. In the following, we first discuss the
condition of the appearance of the rescattering term in Eq. (60),
then find ψ (a)

r (r,t) by reducing the rhs of Eq. (81) to an integral
over the transverse momentum of an ionized electron, then
solve the integral equation for ψr (r,t), and finally integrate
over the transverse momentum.
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The SPs for the action (82) are defined by

∂Sr

∂t ′
= 1

2
u2

i (t,t ′,�r) + F(t ′)r′ − E0(t ′) = 0. (83)

This equation coincides with Eq. (69) and hence defines a
moment of ionization t ′ in the adiabatic regime. However, now
we are interested in the solutions lying in a different region
of the complex t ′ plane. The SPs responsible for appearing
on the rhs of Eq. (81) terms with actions of order −3 lie at a
distance O(ε−1) from t . We need to consider only SPs which
are located sufficiently close to the real axis; otherwise their
contribution is negligible. Let us analyze when such solutions
to Eq. (83) exist. Similar to Eqs. (70), consider the region

r = O(ε0), r ′ = O(ε0), |t ′ − t | = O(ε−1). (84)

In the case of general position in this region ui(t,t ′,�r) =
O(ε−1), so the first term in Eq. (83) is O(ε−2), while the other
two terms are O(ε0). We also have ui(t,t ′,�r) = ui(t,t ′) +
O(ε1), where ui(t,t ′) = O(ε−1) [see Eqs. (20a) and (21a)].
Therefore, the solutions to Eq. (83) should be sought near the
zeros of ui(t,t ′). This argumentation justifies the frequently
heard assertion that an ionized electron emerges after tunneling
through the potential barrier with zero initial velocity, which
is usually taken for granted. The vanishing of ui(t,t ′) means
that a classical trajectory starting with zero initial velocity
at the moment t ′ at any point returns at the moment t to
the same point. Such trajectories were termed in I closed
rescattering trajectories (CRTs). The requirement ui(t,t ′) = 0
is unnecessarily too strong for the 3D case. An important
difference of the present 3D problem from the 1D model
considered in I is that at the moment of ionization the electron
can have a nonzero transverse momentum k⊥ = O(ε0) [see
Eq. (38)], which can compensate for the transverse component
of ui(t,t ′). This enables us to slightly extend the definition
of CRTs by including closed trajectories with not quite zero
initial velocity. The CRTs in the 3D case are associated with
the solutions to

e(t ′)ui(t,t
′) = 0 → t ′ = ti(t), (85a)

ui⊥(t,ti(t)) = O(ε0), (85b)

where the ⊥ component is defined with respect to e(ti(t)).
This definition includes the case ui⊥(t,ti(t)) = 0. Equations
(85) may have several solutions corresponding to the different
CRTs ending at the same moment t . Equation (85a) defines
the initial moment ti(t) of a CRT, and Eq. (85b) ensures that
the corresponding solutions to Eq. (83) are located sufficiently
close to the real axis. Indeed, it can be shown that for each
CRT Eq. (83) has two solutions t±r lying at a distance O(ε0)
from ti(t). The existence of CRTs critically depends on the
polarization. In the GP case, they may appear only accidentally.
In the PP case, they can exist only for some isolated values of
t . However, CRTs are a generic property of linearly polarized
pulses. The analysis of CRTs in I fully applies to the present
problem in the LP case. It was shown that for the existence
of CRTs for a given t the electric field F(t ′) must have zeros
in the interval −∞ < t ′ < t , and a new CRT appears when
t passes through a zero of F(t). The appearance of a new
CRT is accompanied by the appearance of a new pair of
the solutions t±r to Eq. (83), which explains the role of the
formation zone discussed in the end of the previous section.

Thus, the condition of appearance of the rescattering term in
Eq. (60) is the existence of the solutions to Eqs. (85), that is,
CRTs ending at the moment t . In such a general form, this
condition applies to all polarization cases.

We turn to calculating ψ (a)
r (r,t). Using Eq. (37), the

integration over r′ in Eq. (81) can be performed by parts.
The volume integral in the result consists of two terms where
the integrand in Eq. (81) is multiplied by (t − t ′)−1 = O(ε1)
and the derivative (83), respectively. These terms are of higher
order in ε than the surface integral and should be neglected in
the leading-order approximation. We thus obtain

ψ (a)
r (r,t) = e−3iπ/4

(2π )3/2

∫ t

−∞

∫
�′

j(r,t ; r′,t ′) d�′ dt ′

(t − t ′)3/2

∣∣∣∣
t ′ /∈A

,

(86)

where

j(r,t ; r′,t ′) = −i

2
[eiSr (r,t ;r′,t ′)∇′φ0(r′; t ′)

−φ0(r′; t ′)∇′eiSr (r,t ;r′,t ′)]. (87)

The spatial integration in Eq. (86) goes over r′ ∈ �′, where
�′ is any surface enclosing the region occupied by the atomic
potential, for example, a sphere of radius r ′ > a, d�′ = n′d�′,
and n′ is the external unit normal vector to �′. We first
calculate the surface integral. Let r′ = r ′

‖e(t ′) + r′
⊥, where

the components are defined with respect to the momentary
polarization vector e(t ′). We deform �′ into a plane r ′

‖ =
const < −a perpendicular to e(t ′). This is possible because
φ0(r′; t ′) vanishes as r ′ → ∞ in all directions except that
opposite to e(t ′), where the ionization flux goes. On this plane,
φ0(r′; t ′) can be substituted in the form (38). Then the integral
over �′ can be calculated exactly using∫

eiSr (r,t ;r′,t ′)+ik⊥r′
⊥ dr′

⊥ = 2iπ (t − t ′)eiS̃r (r,t ;r ′
‖,k⊥,t ′), (88)

where

S̃r (r,t ; r ′
‖,k⊥,t ′) = S(r,t ; ui ,t

′) − ui‖r ′
‖ − s0(t ′), (89a)

ui = ui‖e(t ′) + k⊥, ui‖ = ui‖(t,t ′) + �r‖
t − t ′

, (89b)

and S(r,t ; ui ,t
′) is defined by Eqs. (28). Now we calculate the

time integral. The SPs for the action (89a) are defined by

∂S̃r

∂t ′
= 1

2
u2

i + F (t ′)r ′
‖ − E0(t ′) = 0. (90)

Consider this equation in the region (84). Near each solution
ti(t) to Eqs. (85), there exist two solutions to Eq. (90) to be
denoted by t̃±r . Expanding all functions in Eq. (90) near t ′ =
ti(t), we find

t̃±r = ti(t) ± i
[κ2(r′,ti(t)) + k2

⊥]1/2

F (ti(t))
+ O(ε1). (91)

These two SPs coalesce as ξ grows. Thus, to obtain the
asymptotics of ψ (a)

r (r,t), which is uniform in terms of ξ , the
complex including both SPs must be treated as a whole. This
can be done by expanding the action (89a) near some suitable
reference point inside the complex [59]. In the case of general
position, when F (ti(t)) = O(ε0), the distance between the SPs

043417-11



OLEG I. TOLSTIKHIN AND TORU MORISHITA PHYSICAL REVIEW A 86, 043417 (2012)

is O(ε0), so they both contribute to the integral. Then the
moment ti(t) lying between t̃+r and t̃−r is a suitable reference
point. However, the case when ti(t) is located close to a zero tF
of F(t) causes a difficulty. This happens when t has just passed
through tF and a new solution ti(t) to Eqs. (85) has appeared.
It can be shown that when t is still in the formation zone (80),
ti(t) is also located in the formation zone on the other side of
tF , and the distances between the SPs t̃±r as well as between
each of them and ti(t) are O(ε−1/2). In this case, only one
SP t̃+r located in the upper half of the complex time plane
contributes to the integral. Hence, the reference point must be
chosen somewhere near t̃+r ; the moment ti(t) is not suitable for
this role anymore. Let us introduce t±i (t,k⊥) defined by

1
2u2

i‖(t,t ′) + 1
2 k2

⊥ − E0(t ′) = 0 → t ′ = t±i (t,k⊥). (92)

We have left here terms of two leading orders in the formation
zone from Eq. (90). The solutions to this equation lie at
a distance O(ε0) from the solutions to Eq. (90) uniformly
in t , including the case when t is in the formation zone.
Thus, choosing t+i (t,k⊥) instead of ti(t) as the reference
point for expanding the action (89a) resolves the above-
mentioned difficulty and enables one to obtain the asymptotics
of ψ (a)

r (r,t), which is uniform in terms of t . For brevity, in the
following we omit the arguments in t+i (t,k⊥). In the region
δ = t ′ − t+i = O(ε0) we have

S̃r (r,t ; r ′
‖,k⊥,t ′)

= S̃r (r,t ; r ′
‖,k⊥,t+i ) + F (t+i )r ′

‖δ

− 1
2F (t+i )ui‖(t,t+i )δ2 + 1

6F 2(t+i )δ3 + O(ε1). (93)

Substituting this expansion into the rhs of Eq. (88), one can
calculate the time integral in Eq. (86). The result is expressed
in terms of an Airy function whose argument differs from
that of the other Airy function, the one which originates from
φ0(r′; t+i ) substituted in the form (38), by a factor e−2iπ/3. The
flux (87) taken at the plane �′ reduces to the Wronskian of
the two Airy functions, which eliminates the dependence on
r ′
‖ defining the position of the plane. Omitting further details,

the result is

ψ (a)
r (r,t) =

∑
i

∫
A0(k⊥; t+i )

[(t − t+i )F (t+i )]1/2
�(r,t ; u+

i ,t+i )

× exp

[
−is0(t+i ) − iu3

i‖(t,t+i )

3F (t+i )

]
dk⊥

(2π )2
, (94)

where A0(k⊥; t) ≡ A0(k⊥; F(t)). Here

�(r,t ; u+
i ,t+i ) = eiu+

f r−iS(t,t+i ,u+
i ) (95)

is the Volkov state defined by Eqs. (28) and (34), u+
i and u+

f

are shorthand notation for the initial velocity of an electron at
the moment of ionization t+i ,

u+
i (t,k⊥) = ui‖(t,t+i )e(t+i ) + k⊥ = O(ε0), (96a)

and its final velocity at the moment of rescattering t [see
Eq. (25)],

u+
f (t,k⊥) = u+

i (t,k⊥) − v(t+i ) + v(t) = O(ε−1), (96b)

and the summation runs over the different (for the same t and
k⊥) solutions to Eq. (92). All the components here are defined
with respect to e(t+i ).

We now turn to the derivation of ψr (r,t). The superscript
in ψ (a)

r (r,t) indicates that this contribution to ψr (r,t) comes
directly from the adiabatic term in Eq. (60). A key moment
in the derivation consists of recognizing the fact that there
exist other terms on the rhs of Eq. (36) which have the same
actions as individual terms in the sum in Eq. (94). Indeed, let
us substitute ψ (a)

r (r,t) for ψ(r,t) into the rhs of Eq. (36) and
calculate the contribution to the time integral from the adiabatic
zone (66). The result is given by a sum of terms with the same
actions as in Eq. (94), but different amplitudes. Substituting it
for ψ(r,t) into the rhs of Eq. (36) and again calculating the
contribution from the adiabatic zone, one obtains yet another
sum of terms with the same actions, etc. The function ψr (r,t)
is given by the sum of the series of all such terms on the rhs
of Eq. (36). As follows from the construction, this function
satisfies the inhomogeneous integral equation

ψr (r,t) = ψ (a)
r (r,t) + e3iπ/4

(2π )3/2

∫
dr′

×
∫ t

−∞
eiS(r,t ;r′,t ′)V (r′)ψr (r′,t ′)

dt ′

(t − t ′)3/2

∣∣∣∣
t ′∈A

.

(97)

We solve this equation under the condition

1
2 u+2

f 	 max[E0(t),F (t)a] = O(ε0). (98)

Taking into account Eq. (96b), this condition is fulfilled in the
adiabatic regime for all values of t except for small intervals
near the moments where u+

f turns zero, if any. At such moments
tunneling recombination occurs, which is the inverse process to
tunneling ionization (for more details, see I). Thus, excluding
the recombination zones from the consideration, we seek the
solution to Eq. (97) in the form

ψr (r,t) =
∑

i

∫
A0(k⊥; t+i )

[(t − t+i )F (t+i )]1/2
�r (r,t,k⊥)

× exp

[
−iS(t,t+i ,u+

i ) − is0(t+i ) − iu3
i‖(t,t+i )

3F (t+i )

]

× dk⊥
(2π )2

. (99)

Substituting this into Eq. (97) and expanding the actions in the
integral term near t ′ = t using

∂

∂t
[S(t,t+i ,u+

i ) + s0(t+i )] = 1

2
u+2

f , (100)

we obtain an equation for �r (r,t,k⊥),

�r (r,t,k⊥) = eiu+
f r +

∫
G

(
r − r′; 1

2 u+2
f

)
V (r′)

×�r (r′,t,k⊥) dr′, (101)

where G(r; E) is defined by Eq. (51). This equation coincides
with Eq. (50), so the solution is given by

�r (r,t,k⊥) = ϕ(r; u+
f ), (102)
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where ϕ(r; k) is a scattering state introduced in Sec. IV. Thus,
the effect of the integral term in Eq. (97) amounts to replacing
the incident plane wave factor in the Volkov state (95) with the
scattering state.

Equation (99) is a fork in the derivation. A further simplifi-
cation of this intermediate result by performing the integration
over the transverse momentum depends on the properties of
the scattering state (102). For potentials with the Coulomb
tail, the scattering amplitude contained in ϕ(r; u+

f ) diverges
in the forward direction, which requires a special treatment.
Keeping this circumstance in mind for future generalizations,
we proceed with the derivation for finite-range potentials.

The action in Eq. (99) depends on k⊥ through the term
− 1

2 [k⊥ − ui⊥(t,t+i )]2(t − t+i ). In the case of general position
t − t+i = O(ε−1), so one can think of calculating the integral
over k⊥ by the steepest descent method. The corresponding
SP is given by k⊥ = ui⊥(t,t+i ). For this value of the transverse
momentum of an electron ionized at the moment t+i , its
trajectory returns to the initial point at the moment t . Thus,
the dominant contribution to the integral in Eq. (99) comes
from closed trajectories. The width of the region around the
SP contributing to the integral is ∼|t − t+i |−1/2 = O(ε1/2),
while the widths of the TMD amplitude and the scattering
state as functions of k⊥ are O(ε0) (this is where the Coulomb
tail causes a problem). In this case, the integral indeed can be
evaluated using the steepest descent method. The result is

ψr (r,t) = −i

2π

∑
i

A0(u+
i⊥(t); t+i )

[(t − t+i )3F (t+i )]1/2
ϕ(r; u+

f (t))

× exp

[
−iS(t,t+i ,u+

i (t)) − is0(t+i ) − iu+3
i‖ (t)

3F (t+i )

]
.

(103)

Here t+i = t+i (t) is the moment of ionization and u+
i (t) and

u+
f (t) are the initial and final velocities for the closed trajectory

obtained by substituting into Eqs. (92), (96a), and (96b) the SP
value of k⊥ and explicitly defined in terms of functions (21)
by

1
2 u2

i (t,t ′) − E0(t ′) = 0 → t ′ = t±i (t), (104)

and

u+
i (t) ≡ ui(t,t+i (t)), u+

f (t) ≡ uf (t,t+i (t)). (105)

The ⊥ and ‖ components of u+
i (t) in Eq. (103) are defined with

respect to e(t+i (t)). This completes the construction of ψr (r,t).
Summarizing, the existence of CRTs defined by Eqs. (85)

leads to the appearance of the rescattering part of the wave
function in Eq. (60). The leading-order term in the asymptotics
of ψr (r,t) for ε → 0 is given by Eq. (103). This asymptotics
is uniform in terms of ξ and holds for all values of t excluding
small intervals near the recombination points, where the
electron’s velocity at the moment of rescattering u+

f (t) turns
zero.

The asymptotics of ψr (r,t) given by Eq. (103) holds in
the case of general position, that is when t − t+i (t) = O(ε−1),
as well as in the formation zone, when t − t+i (t) = O(ε−1/2).
In the former case Eq. (103) can be simplified further. To
make this result more transparent, it is instructive to discuss
its simplification. Using ti(t) defined by Eqs. (85) as a

reference point for expanding the action (89a) and repeating
the derivation, we obtain

ψr (r,t) = −i

2π

∑
i

A0(ui⊥(t); ti)
[(t − ti)3F (ti)]1/2

ϕ(r; uf (t))

× exp[−iS(t,ti ,ui(t)) − is0(ti)], (106)

where ti = ti(t) and

ui(t) ≡ ui(t,ti(t)), uf (t) ≡ uf (t,ti(t)). (107)

Note that from Eq. (85a) we have ui‖(t) = 0, so ui⊥(t) = ui(t),
where the components are defined with respect to e(ti(t)).
Equation (106) is the simplified form of Eq. (103) mentioned
above. The rhs of Eq. (106) is expressed in terms of the
initial moment ti(t) of a CRT, which is real and completely
determined by classical mechanics, while t+i (t) in Eq. (103) is
generally complex and depends on the properties of the SS [see
Eq. (104)]. The different terms in the sum correspond to the
different CRTs arriving for rescattering at the moment t . Each
term is a scattering state ϕ(r; uf (t)) multiplied by appropriate
amplitude. The incident velocity uf (t) is equal to the final
velocity on the corresponding CRT. We note that the incident
velocities in Eqs. (103) and (106) are related by

u+
f (t) = uf (t) +

[
1

2
u2

i (t) − E0(ti)

]
F(ti)

(t − ti)F 2(ti)
+ O(ε2),

(108)

where the second term on the rhs is O(ε1). The amplitude
consists of factors describing the following stages in the
evolution of the electron prior to the rescattering event:
(i) staying in the adiabatic SS (63) until the moment ti
[the quantum action s0(ti)], (ii) ionization at the moment ti
with the transverse momentum ui⊥(t) [the TMD amplitude
A0(ui⊥(t); ti)], and (iii) traveling along a CRT and returning
to the initial point at the moment t [the classical action
S(t,ti ,ui(t))]. From Eqs. (85) we obtain

uf ‖(t)

t − ti
= −F (ti)

dti

dt
+ O(ε1). (109)

Using this relation, it can be shown that the denominator
in Eq. (106) ensures conservation of the flux (for more
details, see I). Such an interpretation of Eq. (106) is quite
in the spirit of a naive picture of the ionization dynamics
known as the “simple-man theory” [16–18]. However, the
fact that Eqs. (103) and (106) express ψr (r,t) in terms of the
adiabatic SS (63) instead of the unperturbed initial state (7)
and the presence in the former equation of the quantum t+i (t)
instead of classical ti(t) moment of ionization show that the
true quantitatively predictive theory is not that simple. From
Eq. (106) one can clearly see the necessity of condition (85b);
indeed, because of a rapid decay of the TMD amplitude at
large transverse momenta, contributions from CRTs for which
this condition is not fulfilled are negligible. Since the first CRT
appears not earlier than the first zero of F(t), Eq. (106) satisfies
the initial condition (62b). Because of the factor (t − ti)−3/2,
the amplitude in Eq. (106) is O(ε3/2), in accordance with
Eq. (61b). One can notice that in the present analysis we have
taken into account only one-loop CRTs, using the terminology
of I. The contributions to ψr (r,t) from many-loop CRTs with
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several rescattering events are generally of higher order in ε

and are neglected in the leading-order approximation.

VI. PHOTOELECTRON MOMENTUM DISTRIBUTION

Having constructed the asymptotic solution to Eqs. (1) and
(7) for ε → 0, we can calculate the observables. For example,
the leading-order term in the probability to find the system in
the initial bound state as a function of time is determined by
the projection of ψa(r,t) onto φ0(r) and given by

P0(t) = |�0(t)|2 exp

[
−

∫ t

−∞
�0(t ′) dt ′

]
, (110)

where �0(t) ≡ �0(F(t)) and �0(t) ≡ �0(F(t)). The survival
probability is

P0 = P0(t → ∞) = exp

[
−

∫ ∞

−∞
�0(t) dt

]
. (111)

The probabilities of transitions to other bound states can be
obtained in a standard way [60–62]. This, however, requires
to analyze the Riemann surface and branch points of the
solution to Eq. (37) as a multivalued analytic function of F .
We postpone this analysis to future studies. In this work, we
restrict our treatment to calculating the PEMD.

A. Exact expressions

The PEMD P (k) can be expressed in terms of the exact
solution to Eqs. (1) and (7) in several different ways. We begin
with the derivation of a formula which is most convenient for
the present purposes. By definition,

P (k) = |I (k)|2 , Pion =
∫

P (k)
dk

(2π )3
, (112)

where the ionization amplitude I (k) for potentials satisfying
Eq. (2) is given by

I (k) =
∫

e−ik·r+iEt (1 − P̂b)ψ(r,t)dr

∣∣∣∣
t→∞

, (113)

and Pion is the total ionization probability. Here E = k2/2 and
P̂b is the projector onto the subspace of bound states of the
unperturbed atom. Substituting Eq. (36) into the first term on
the rhs of Eq. (113), we obtain

I (k) =
[

− i

∫ t

−∞
dt ′

∫
e−iS(r,t ′;k)V (r)ψ(r,t ′)dr

−
∫

e−ikr+iEt P̂bψ(r,t)dr
]

t→∞
, (114)

where the action S(r,t ; k) is defined by Eqs. (29). Using
V (r)(1 − P̂b)ψ(r,t)|t→∞ = 0, it can be shown that∫

e−ik·r+iEt P̂bψ(r,t)dr

∣∣∣∣
t→∞

= i

∫ ∞

t

dt ′
∫

e−iS(r,t ′;k)V (r)ψ(r,t ′)dr

∣∣∣∣
t→∞

, (115)

and hence

I (k) = −i

∫ ∞

−∞
dt

∫
e−iS(r,t ;k)V (r)ψ(r,t)dr. (116)

Using Eq. (1) and integrating by parts, we obtain yet another
representation for I (k),

I (k) =
∫ ∞

−∞
dt

∫
�

j(r,t)d�, (117)

where

j(r,t) = −i

2
[e−iS(r,t ;k)∇ψ(r,t) − ψ(r,t)∇e−iS(r,t ;k)]. (118)

The spatial integration here goes over r ∈ �, where � is
again any surface enclosing the region occupied by the atomic
potential, d� = nd�, and n is the external unit normal vector
to �. Formulas (113), (116), and (117) are equally exact, but
differ in implementation. The last formula is most convenient
for calculating PEMD within the adiabatic theory. We note that
it relies on the assumption (2) and does not hold for potentials
with the Coulomb tail. For realS(r,t ; k), the exponential factor
in Eqs. (116) and (118) coincides with the complex conjugate
of the Volkov state (35). However, this is not so if t is complex;
therefore, we refrain from using notation �∗(r,t ; k).

Similarly to Eq. (54), we have

S(r,t ; k) = O(ε−3), (119)

so the time integral in Eq. (117) can be evaluated using
the steepest descent method. This is consistent with the
asymptotic solution of Eq. (36) and does not introduce any
additional approximation. Substituting Eq. (60) into Eq. (118),
the ionization amplitude (117) can be presented in the form

I (k) = Ia(k) + Ir (k), (120)

where the two terms correspond to the two terms in Eq. (60).
We calculate these two terms separately. As before, our
strategy is to analyze contributions from the different SPs and
collect together terms having the same action.

B. Adiabatic part of the ionization amplitude

The adiabatic part Ia(k) of the ionization amplitude is
defined by Eqs. (117) and (118), where ψ(r,t) is to be
substituted by ψa(r,t) given by Eq. (63). The corresponding
action is

Sa(r,t ; k) = −S(r,t ; k) − s0(t). (121)

The SPs for this action are the solutions to
∂Sa

∂t
= 1

2
u2

i (t,k) + F(t)r − E0(t) = 0. (122)

Similarly to Eq. (69), this equation defines a moment of
ionization t in the adiabatic regime, now as a function of
the point r, where the ionization occurs, and the asymptotic
velocity k of an ionized electron. Equation (122) implies that
after ionization the electron interacts only with the field; thus,
Ia(k) represents the direct (without rescattering) part of the
ionization amplitude.

The number and positions of the solutions to Eq. (122)
in the complex t plane depend on r and k. Let us specify
the region in the space of these variables where the solutions
are sought. As for r, its length is restricted by r > a, which
follows from r ∈ � [see Eq. (117)], and r � R0 = O(ε−2),
which is required for the applicability of Eq. (63). We satisfy
both conditions by assuming that r = O(ε0). The region of

043417-14



ADIABATIC THEORY OF IONIZATION BY INTENSE . . . PHYSICAL REVIEW A 86, 043417 (2012)

k
F

t
F

O(Ε
�	�

)

O(Ε

�
)

K
a

�
a

k
�

k
z

t

k
a
(t)

FIG. 5. (Color online) Illustration of the function ka(t) = ka(t)ez

and the corresponding classical Ka and quantum Ka supports of the
adiabatic part of the PEMD for a few-cycle linearly polarized laser
pulse. Solid circles show the classical boundaries of the PEMD.

interest in the k space coincides with the support of the
function Ia(k). In the adiabatic regime it is determined by
the following consideration. In the case of general position
ui(t,k) = O(ε−1), so the first term in Eq. (122) is O(ε−2),
while the other two terms are O(ε0). Hence, the solutions
to Eq. (122) should be sought near the zeros of ui(t,k). This
situation is similar to the one we met in the analysis of Eq. (83).
Let us introduce ka(t) defined by

ui(t,k) = 0 → k = ka(t) = v∞ − v(t). (123)

Let Ka denote a curve in the k space traced by the end of ka(t)
as t varies along the real axis. In the extreme adiabatic limit
ε → 0, which corresponds to classical mechanics, possible
values of the asymptotic velocity of an ionized electron are
restricted to Ka , so Ka is the classical support of the adiabatic
part of the PEMD. The curve Ka begins at ka(−∞) = v∞
and ends at ka(+∞) = 0, being closed if v∞ = 0. The shape
of Ka depends on the polarization. In the GP case, Ka is a
3D curve; in the PP case, Ka is a 2D curve lying in the kxkz

plane; in the LP case, Ka is an interval of the kz axis (see
Fig. 5). The function ka(t) parameterizes Ka by time. In the
GP case, there is a one-to-one correspondence between the
points of Ka and moments on the real-time axis. In the PP
case, Ka generally has self-intersection points. There is only
one moment corresponding to each generic point of Ka , but
there are two moments corresponding to each self-intersection
point. In the LP case, Ka is multiply traced by ka(t), so there
generally are several moments corresponding to each point of
Ka (see Fig. 5). The electric field F(t) is tangential to Ka at the
point ka(t). The curve Ka has cusps where F(t) = 0. For any
polarization, the ends of Ka are the cusp points [see Eq. (6)].
The existence of internal cusps in Ka is an accident in the
GP and PP cases, but is a generic property of Ka in the LP
case. The cusp points are also called the classical boundaries
of the PEMD. The length of Ka is O(ε−1). Let Ka denote
the neighborhood of Ka in the k space of size O(ε0) (see
Fig. 5). This quasi-1D set is a quantum counterpart of Ka;
we show shortly that in the adiabatic regime Ia(k) rapidly
vanishes outside Ka . Thus, we are interested in the solutions
to Eq. (122) in the region

r = O(ε0), k ∈ Ka. (124)

The classical boundaries divide Ka and Ka into segments.
Let us consider one of the segments. We first assume that k is
located in its main part, that is, sufficiently far from its ends.
Each k in this region can be presented in the form

k = ka(ti(k)) + �k⊥, �k⊥ = O(ε0), (125)

where the moment ti(k) is defined by

e(t)ui(t,k) = 0 → t = ti(k), (126)

and �k⊥ is perpendicular to Ka at the point ka(ti(k)). One
can see that ti(k) is the inverse function to ka(t) for k ∈ Ka .
Equation (122) has two solutions in this region to be denoted
by t±a . Expanding all functions in Eq. (122) near t = ti(k), we
find

t±a = ti(k) ± i
[κ2(r,ti(k)) + �k2

⊥]1/2

F (ti(k))
+ O(ε1). (127)

These two SPs coalesce as ξ grows. For obtaining the
asymptotics of Ia(k) which is uniform in terms of ξ , the
complex including both SPs must be treated as a whole. To
this end, we need to find a suitable reference point inside the
complex for expanding the action (121) [59]. In the main part
of the segment F (ti(k)) = O(ε0), the distance between the SPs
(127) is O(ε0), so they both contribute to the time integral in
Eq. (117). In this case, the moment ti(k) lying between t+a and
t−a is a suitable reference point. Let now k be located near
one of the ends of the segment. Let tF be the corresponding
zero of F(t). As k approaches kF = ka(tF ), ti(k) approaches
tF (see Fig. 5), so F (ti(k)) vanishes and Eq. (127) ceases to
hold. It can be shown that in the region k − kF = O(ε0) the
distances between the SPs t±a as well as between each of them
and ti(k) become O(ε−1/2). In this case, only one SP t+a located
in the upper half of the complex time plane contributes to the
integral, and the moment ti(k) cannot be used as a reference
point anymore. This difficulty is similar to the one discussed
in Sec. V D, so its remedy is known. Let us introduce t±i (k)
defined by

1
2 u2

i (t,k) − E0(t) = 0 → t = t±i (k). (128)

The solutions to this equation lie at a distance O(ε0) from
the solutions to Eq. (122) uniformly in k ∈ Ka , including the
regions near the classical boundaries of the PEMD. Thus,
choosing t+i (k) instead of ti(k) as the reference point for
expanding the action (121) we obtain the asymptotics of Ia(k),
which is uniform in terms of k. In the rest of this section, we
omit the argument in t+i (k) and all the components are defined
with respect to e(t+i ). Each k ∈ Ka can be presented in the
form

k = ka(t+i ) + �k, �k = �k‖e(t+i ) + �k⊥ = O(ε0). (129)

In the region δ = t − t+i = O(ε0) we have

Sa(r,t ; k) = Sa(r,t+i ; k) + F (t+i )r‖δ − 1
2 F (t+i )�k‖δ2

+ 1
6 F 2(t+i )δ3 + O(ε1). (130)

This expansion enables one to calculate the time integral in
Eq. (117). The result is expressed in terms of an Airy function.
To calculate the surface integral over r ∈ � we substitute
r = r‖e(t+i ) + r⊥ and deform � into a plane r‖ = const < −a

perpendicular to e(t+i ). On this plane, φ0(r; t) can be substituted
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in the form Eq. (38). Then the integral can be calculated, which
results in the appearance of another Airy function. The flux
(118) taken at the plane � reduces to the Wronskian of the
two Airy functions, which eliminates the dependence on r‖.
We thus obtain

Ia(k) = eiπ/4(2π )1/2
∑

i

A0(�k⊥; t+i )

F 1/2(t+i )

× exp

[
iS(t+i ,k) − is0(t+i ) − i�k3

‖
3F (t+i )

]
, (131)

where the summation runs over the different (for the same
k) solutions to Eq. (128), and the vector �k depends on the
summation index via Eq. (129). Summarizing, Eq. (131) gives
the leading-order term in the asymptotics of the adiabatic part
Ia(k) of the ionization amplitude. This asymptotics is uniform
in terms of ξ and k ∈ Ka .

Two comments regarding this result are in order here. First,
since the TMD amplitude A(�k⊥; t+i ) rapidly decays as �k⊥
grows [45], and the solutions to Eq. (128) rapidly move deep
into the complex time plane as �k‖ grows, function (131)
rapidly vanishes outside the region Ka , in agreement with what
was stated above. Second, the number of terms in Eq. (131)
depends on the polarization. In the GP and PP cases, there
is only one term for each k in the main part of Ka , and
there are two such terms near the classical boundaries of the
PEMD and self-intersection points of Ka , if any, where the
different segments of Ka overlap. However, in the LP case,
there generally are several terms for each k ∈ Ka , provided
that F(t) has zeros. This means that, in the adiabatic regime,
PEMDs typically have a rich interference structure in the LP
case, but are smooth function of k in the GP and PP cases.

Another comment concerns the Keldysh approximation
[11]. We now can show how it emerges within the present
theory. As can be seen from Eqs. (43), ψa(r,t) converges to
the unperturbed initial state (7) as ξ → 0. Hence, in this limit
Ia(k) coincides with the ionization amplitude in the Keldysh
approximation IK(k) (see Appendix B ). For Ia(k) to preserve
its meaning, the limit ξ → 0 must be taken within the adiabatic
regime, that is, condition (13) must be fulfilled. We thus
conclude that IK(k) is a weak-field approximation to Ia(k) that
holds in the region ε � ξ 2, ξ � 1. Physically, the difference
between Ia(k) and IK(k) accounts for the interaction with the
laser field in the initial state, which is neglected in the Keldysh
approximation. This interaction leads, in particular, to the Stark
shift and depletion of the initial state. It was shown in I that,
because of these effects, the Keldysh approximation becomes
qualitatively wrong for sufficiently long and/or intense laser
pulses.

The asymptotics of Ia(k) given by Eq. (131) holds in the
main part of Ka as well as near classical boundaries of the
PEMD. In the former case it can be simplified. As shown
above, in this case one can use ti(k) defined by Eq. (126) as a
reference point for expanding the action (121). Then, repeating
the derivation, we obtain

Ia(k) = eiπ/4(2π )1/2
∑

i

A0(�k⊥; ti)

F 1/2(ti)
exp[iS(ti ,k) − is0(ti)],

(132)

where ti = ti(k) and �k⊥ = k − ka(ti). Equation (132) could
be also obtained from Eq. (131) by expanding all the functions
in t+i (k) − ti(k) and retaining only the leading-order terms.
Note that the moment ti(k) is real and determined by classical
mechanics, while t+i (k) is complex and depends on the
properties of the SS [see Eq. (128)]. Such an expansion is
not possible when ti(k) is close to a zero of F (t), that is when
k is close to a classical boundary of the PEMD, which explains
the advantage of Eq. (131) over Eq. (132).

C. Rescattering part of the ionization amplitude

We begin with classical consideration of rescattering. Being
ionized at the moment ti(t) defined by Eqs. (85), an electron
moves along the CRT and returns for rescattering at moment
t with velocity uf (t). In order to fly away with the asymptotic
momentum k, its velocity after rescattering must be equal to
ui(t,k) (we consider only trajectories with one rescattering).
From the conservation of energy in the rescattering event, we
have

u2
i (t,k) = u2

f (t) → t = tr (k). (133)

This equation defines the moment of rescattering tr (k) as a
function of k. Let Kr denote a set in the k space where
Eq. (133) has real solutions. This is the classical support of
the rescattering part of the PEMD. At the boundary of Kr

the different solutions to Eq. (133) coalesce, which results
in a caustic in Ir (k). The neighborhood of Kr of size O(ε0)
including this caustic is denoted by Kr . We show shortly that
Ir (k) rapidly vanishes outside Kr , so Kr is the quantum support
of the rescattering part of the PEMD. Since in the illustrative
calculations we focus on Ka , we do not describe the structure
of Kr in more detail here.

The rescattering part Ir (k) of the ionization amplitude
is defined by Eqs. (117) and (118), where ψ(r,t) is to be
substituted by ψr (r,t) given by Eq. (103). To calculate the
spatial integral in Eq. (117), we choose the surface � to
be a sphere of radius r satisfying a < r � R(t); these two
conditions are required for the applicability of Eqs. (117) and
(103), respectively. Taking into account Eqs. (57) and (98), for
ε → 0 it is always possible to choose a sufficiently large r in
the specified interval such that the scattering state in Eq. (103)
on the surface � can be substituted by its asymptotics (49b).
We thus obtain

Ir (k) = −i

2π

∫ ∞

−∞
dt

∑
i

A0(u+
i⊥; t+i )

[(t − t+i )3F (t+i )]1/2

× exp

[
iS+

r (t,k) − iu+3
i‖

3F (t+i )

]

× 1

2

∫
�

{
[u+

f + ui]e
iu+

f r + [u+
f n + ui]f (u+

f ,n)
eiu+

f r

r

}
× e−iuir d�, (134)

where

S+
r (t,k) = S(t,k) − S(t,t+i ,u+

i ) − s0(t+i ). (135)

Here n = r/r and we have omitted the arguments in t+i (t),
u+

i (t), u+
f (t), and ui(t,k). The SPs for the action (135) are
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defined by

∂S+
r

∂t
= 1

2
u2

i (t,k) − 1

2
u+2

f (t) = 0 → t = t+r (k). (136)

We recall that u+
f (t) is the incident velocity of an electron

ionized at moment t+(t) and arriving for rescattering at mo-
ment t . So this equation is nothing but the energy conservation
condition for the rescattering event and its solution t+r (k) is
the quantum counterpart of tr (k) defined by Eq. (133). The
integration over � in Eq. (134) can be performed with the help
of the relation [63]

eik·r|r→∞ = 2π

ikr

[
eikrδ

(
r
r

− k
k

)
− e−ikr δ

(
r
r

+ k
k

)]
.

(137)

The first term in the curly brackets vanishes at the SP, and we
obtain

Ir (k) = eiπ/4(2π )1/2
∑
ir

A0(u+
i⊥(t+r ); t+i )

[(t+r − t+i )3F (t+i )S+′′
r ]1/2

× f

(
u+

f (t+r ),
ui(t+r ,k)

ui(t
+
r ,k)

)

× exp

[
iS+

r (t+r ,k) − iu+3
i‖ (t+r )

3F (t+i )

]
, (138)

where

S+′′
r = ∂2S+

r

∂t2

∣∣∣∣
t=t+r

= F(t+r )[u+
f (t+r ) − ui(t

+
r ,k)] + u+2

f (t+r )

t+r − t+i
.

(139)

Here t+i = t+i (t+r (k)) and t+r = t+r (k) are the quantum mo-
ments of ionization and rescattering defined by Eqs. (104) and
(136), respectively. The summation in Eq. (138) runs over the
different (for the same k) solutions to Eqs. (104) and (136).
Equation (138) gives the leading-order term in the asymptotics
of Ir (k). Since the moments t+i and t+r go deep into the complex
plane as k leaves the set Kr , Ir (k) rapidly vanishes outside Kr .
This asymptotics is uniform in terms of ξ and k ∈ Kr . We note
that the exact scattering state appears in Eq. (103) and, as a
consequence, exact scattering amplitude appears in Eq. (138).

Let us return to the comment on the integration over
the transverse momentum of an ionized electron made in a
paragraph following Eq. (102). On the step from Eq. (99)
to Eq. (103) this integral has been calculated using the
steepest descent method. As a result, Ir (k) given by Eq. (138)
is proportional to the scattering amplitude f (k,n) taken at
appropriate values of its arguments. For potentials with the
Coulomb tail, this amplitude diverges in the forward direction.
This indicates that in the Coulomb case the integration in
Eq. (99) should be performed differently.

Without further details, we give a simplified form of
Eq. (138) similar to Eq. (132). Using Eq. (108), we obtain

Ir (k) = eiπ/4(2π )1/2
∑
ir

A0(ui⊥(tr ); ti)
[(tr − ti)3F (ti)S ′′

r ]1/2

×f

(
uf (tr ),

ui(tr ,k)

ui(tr ,k)

)
exp [iSr (tr ,k)] , (140)

where

Sr (t,k) = S(t,k) − S(t,ti ,ui(t)) − s0(ti), (141)

and

S ′′
r = ∂2Sr

∂t2

∣∣∣∣
t=tr

= F(tr )[uf (tr ) − ui(tr ,k)] + u2
f (tr )

tr − ti
. (142)

Here ti = ti(tr (k)) and tr = tr (k) are the classical moments
of ionization and rescattering defined by Eqs. (85) and (133),
respectively. Equation (140) does not hold in the regions of
Kr where ti lies near a zero of F (t), while Eq. (140) holds
uniformly in Kr .

VII. ILLUSTRATIVE CALCULATIONS

In this section we illustrate the theory by numerical
calculations. Although the theory is developed for arbitrary
polarization of laser field, here we consider only linearly
polarized pulses; testing the theory against exact numerical
solution of the TDSE for more general polarizations is much
more laborious and left for future studies. The target potential
used in the calculations is given by Eq. (47). The initial state
is chosen to be the ground 1s state. We consider pulses with
the Gaussian envelope,

F(t) = F0e
−τ 2

f (τ )ez, τ = 2t/T , (143)

where f (τ ) defines the internal shape of the pulse. In the LP
case, only the z components of the velocity v(t) and coordinate
r(t) for the reference trajectory defined by Eqs. (16) differ
from zero, so it is convenient to slightly modify notation. Let
v∞ = v∞ez, ka(t) = ka(t)ez, and k = k⊥ + kzez. Because of
spherical symmetry of the potential (47), the PEMD P (k)
does not depend on the orientation of k⊥ and is denoted by
P (k⊥,kz). The set Ka is an interval of the kz axis of length
O(ε−1) whose boundaries are denoted by kmin

z and kmax
z . The

set Ka is a neighborhood of Ka of size O(ε0), as shown in
Fig. 5.

We wish to clearly specify the role of the illustrative
calculations in the present study. Our goal is to test the
performance of the adiabatic theory and thus demonstrate its
validity at a quantitative level rather than discuss some physical
properties of the particular system under consideration or the
corresponding spectra. We plan to turn to the analysis of
various interesting features of PEMDs in the adiabatic regime
on the basis of the present theory in future publications; in
this work, we focus on establishing the theory. We therefore
consider only simplest half- and one-cycle pulses, which is
necessary and sufficient for testing the accuracy of the adiabatic
and rescattering parts of the wave function (60) and ionization
amplitude (120). The adiabatic parameter ε for the present
pulse (143) is inversely proportional to T . Thus, our goal is
to demonstrate that the adiabatic results converge to the exact
ones as the pulse length T grows and this convergence is
uniform with respect to the pulse amplitude F0. The “exact”
results reported below are obtained by solving Eq. (1) with the
initial condition (7) and calculating the spectrum numerically
using a program described in [64]. These results are fully
converged with respect to all parameters of the numerical
scheme. The maximum values of F0 and T considered are
limited by our computational resources available for the exact
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FIG. 6. (Color online) Exact results and adiabatic approximation
(AA) for (a) time-dependent probability to survive in the initial 1s

state, (b) ionization rate, and (c) projection factor for three half-cycle
pulses [Eqs. (143) and (144)] with F0 = 0.1. The adiabatic results in
(a) are obtained from Eq. (110). The “exact” results in (b) and (c) are
reconstructed from the exact P1s(t) using Eqs. (145).

calculations. The adiabatic results are obtained by finding the
SPs and implementing formulas (131) and (138), as prescribed
in Secs. V and VI. The implementation of the adiabatic theory
is restricted only by the ability of our program to calculate the
SS [45] and can be extended to F0 � 1 and arbitrarily large T .

A. Half-cycle pulse: Testing the adiabatic part

The overall accuracy of the present theory is determined by
that of the adiabatic parts of the wave function and ionization
amplitude; the rescattering parts are derived from them. So our
first goal is to scrutinize the quality of ψa(r,t) and Ia(k) given
by Eqs. (63) and (131), respectively. To this end, we consider
a half-cycle pulse with,

f (τ ) = −1. (144)

The electric field F(t) in this case does not have zeros; hence,
no rescattering occurs and ψr (r,t) = Ir (k) = 0. Although
this model for F(t) is far from realistic laser pulses, it is
quite suitable for testing the performance of the adiabatic
approximation. The dependence of the total probability of
ionization of hydrogen by Gaussian pulses on the pulse
length for rather weak amplitudes F0 � 0.06 was analyzed
in Ref. [65].

We consider two series of pulses with underbarrier,
F0 = 0.1, and overbarrier, F0 = 0.4, amplitudes and growing
length T . The characteristic time T0 in this case coincides with
T , so the onset of the adiabatic regime defined by ε = 1 is
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FIG. 7. (Color online) Same as in Fig. 6, but for F0 = 0.4.

T = 4π . To illustrate the quality of ψa(r,t) as an approximate
solution to Eq. (1), we consider the time-dependent probability
to survive in the initial state P1s(t). The exact and adiabatic
results for this function for pulses with F0 = 0.1 and 0.4 are
shown in Figs. 6(a) and 7(a), respectively. The final survival
probabilities are given in Table I. For both values of F0, the
adiabatic results do converge to the exact ones as T grows, and
for the stronger field this convergence is faster, in accordance
with condition (13).

The behavior of P1s(t) shown in Figs. 6(a) and 7(a) deserves
a more detailed discussion. In simple models of tunneling
ionization it is generally believed that the time-dependent
survival probability is given by Eq. (110) with the preex-
ponential factor omitted. This would result in a monotonic
decay of P0(t) with time. However, as is seen from Fig. 6(a),

TABLE I. Probability to survive in the initial 1s state. The results
of the adiabatic approximation (AA) are obtained from Eq. (111).
a[b] = a × 10b.

F0 = 0.1 F0 = 0.4

T Exact AA T Exact AA

Half-cycle pulses
25 0.878 0.916 10 0.834[−1] 0.765[−1]
50 0.819 0.839 20 0.602[−2] 0.585[−2]
75 0.755 0.769 30 0.452[−3] 0.448[−3]

One-cycle pulses
50 0.729 0.783 20 0.770[−3] 0.900[−3]
75 0.656 0.693 30 0.229[−4] 0.270[−4]
100 0.587 0.613 40 0.691[−6] 0.810[−6]

043417-18



ADIABATIC THEORY OF IONIZATION BY INTENSE . . . PHYSICAL REVIEW A 86, 043417 (2012)

0.0

0.2

0.4

0.6
exact T=25

0.6

0.4

0.2

AA

0.0

0.2

0.4

0.6
exact T=50

k � (
a.

u.
)



0.6

0.4

0.2

AA

0.0

0.2

0.4

0.6
exact T=75

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.4

0.2

max

AA

k
z
/k

z

0 15 30 45 60

FIG. 8. (Color online) Exact results and adiabatic approximation
(AA) for PEMDs P (k⊥,kz) produced by three half-cycle pulses with
F0 = 0.1 (see Fig. 6). The upper classical boundaries of the PEMD
kmax

z for these pulses are 2.22, 4.43, and 6.65, respectively.

there are situations when function P1s(t) is nonmonotonic.
A similar nonmonotonic behavior of the ionization yield
related to the survival probability by unitarity was observed
experimentally [66]. Such a behavior in the adiabatic regime
cannot be explained without invoking the preexponential factor
in Eq. (110). A remarkable property of Eq. (110) is that this
equation enables one to reconstruct the ionization rate �0(t)
and projection factor |�0(t)|2 from P0(t). Indeed, for the
present pulse F (t) = F (−t), so both �0(t) and |�0(t)|2 are
even functions of t . Then they can be found from the even and
odd parts of the logarithmic derivative of P0(t), respectively,

�0(t) = −1

2

[
Ṗ0(−t)

P0(−t)
+ Ṗ0(t)

P0(t)

]
, (145a)

|�0(t)|2 =
√

P0(−t)P0(t)

P0
. (145b)

Assuming that the exact P1s(t) has the form (110) and using
Eqs. (145), we can reconstruct the corresponding “exact”
�1s(t) and |�1s(t)|2; the results are shown in the bottom two
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FIG. 9. (Color online) The cuts of P (k⊥,kz) shown in Fig. 8
at k⊥ = 0 (left) and kz = 0.5kmax

z (right). All panels have the same
vertical scale.

panels in Figs. 6 and 7. In the adiabatic approximation, these
functions for a given F0 depend only on the ratio t/T , so
the adiabatic results in Figs. 6 and 7 for all three pulses
are represented by the same curves. One can see that the
reconstructed “exact” results converge to the adiabatic ones
as T grows. Their comparison with the predictions of the
adiabatic theory provides a much more stringent test of the
accuracy of ψa(r,t) than the comparison of P1s(t) alone. The
behavior of �1s(t) and |�1s(t)|2 in Figs. 6 and 7 is explained
by the properties of the SS shown in Figs. 2(b) and 2(c). We
note that while the ionization rate is a standard and commonly
used characteristic, the projection factor in Eq. (110) is a more
subtle quantity. For F0 = 0.1 its effect on P1s(t) is within
6%, but for F0 = 0.4 replacing this factor by unity would
cause a more considerable error of 25%. Thus, not only �1s(t)
defined by the SS eigenvalue, but also |�1s(t)|2 defined by
its eigenfunction can be extracted from the observable P1s(t).
We emphasize that this is true also in the overbarrier regime,
when the SS does not seem to have any physical meaning as
an individual state. Equations (145) hold for any even F (t),
for spherically symmetric potentials (atoms), and even F(t),
for general potentials (molecules). The reconstructed functions
�0(t) and |�0(t)|2 present an additional with respect to P0(t)
information on the ionization dynamics, which may be found
useful in applications. For example, Eqs. (145) were used in
Ref. [67] for the analysis of tunneling ionization dynamics of
a model diatomic molecule.
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FIG. 10. (Color online) Same as in Fig. 8, but for half-cycle pulses
with F0 = 0.4 (see Fig. 7). The values of kmax

z for these pulses are
3.54, 7.09, and 10.63, respectively.

The PEMDs for the same pulses are shown in Figs. 8–11.
Figures 8 and 10 present 2D distributions P (k⊥,kz) for F =
0.1 and 0.4, respectively; Figs. 9 and 11 show their cuts at
k⊥ = 0 and some value of kz near the maximum of P (k⊥,kz).
The adiabatic results are obtained from Eq. (131), where the
moment of ionization t+i (k) is found by solving Eq. (128). For
the present pulse shape, ka(t) monotonically decreases from
v∞ =

√
π

2 F0T , at t → −∞, to 0, at t → ∞, so Ka consists of
a single segment bounded by kmin

z = 0 and kmax
z = v∞, which

are the classical boundaries of the PEMD. The PEMDs are
shown in a region corresponding to Ka . For each k in this
region, there is only one solution to Eq. (128), and hence only
one term in Eq. (131).

Let us first focus on the differences between the adiabatic
and exact results. The first feature to be noticed is the d

resonance mentioned in Sec. III and seen in Fig. 4. This
resonance state reveals itself in exact spectra near k = 0. Its
excitation proceeds via a nonadiabatic transition [60–62], so
its contribution to the spectrum rapidly decreases as T grows.
This excitation mechanism is not (but can be) accounted for
by the present theory. Another difference stems from a feature
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FIG. 11. (Color online) The cuts of P (k⊥,kz) shown in Fig. 10
at k⊥ = 0 (left) and kz = 0.9kmax

z (right). All panels have the same
vertical scale.

seen in the adiabatic results for F = 0.1 and T = 75 near
kz = 0.1kmax

z . This feature arises from a branch point of the
function E1s(F ) encountered by the moment of ionization
t+i (k) in complex time plane as k varies within Ka . Such
branch points provide a path to excitation. As T grows further,
t+i (k) passes closer to the real axis, the branch point is not
encountered anymore, and the feature indicated disappears.
These two features are peculiar to the present atomic model.
The main difference is localized near k = 0, as can be seen
from the cuts shown in Figs. 9 and 11. This part of the spectra
corresponds to electrons ionized by the tail of the pulse. The
difference here decreases as T grows, but very slowly. The
failure of the adiabatic approximation in this case seems to
have a general origin; a similar difference was observed in I.

Apart from these rather minor differences, it is clear that
the agreement between the adiabatic and exact results in
Figs. 8–11 rapidly improves as T grows. For the longest
pulses considered, the agreement (excluding the region near
k = 0) is virtually perfect. This is true for both pulse ampli-
tudes, including the overbarrier case, when almost complete
ionization occurs (see Table I). Again, for the stronger field
a good agreement is achieved at smaller T , in accordance
with Eq. (13). The results shown in Figs. 8–11 establish the
validity of Eq. (131). It is worth noting that they are very
far from the predictions of the first-order perturbation theory:
The spectrum in this approximation is an even function of kz,
which is obviously not the case. We also note that the Keldysh
approximation [Eq. (B2)] does not account for depletion of the
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FIG. 12. (Color online) Exact results and adiabatic approximation
(AA) for PEMDs P (k⊥,kz) produced by three one-cycle pulses
[Eqs. (143) and (146)] with F0 = 0.1. The values of kmax

z for these
pulses are 2.91, 4.37, and 5.83, respectively.

initial state and hence fails qualitatively for sufficiently large
F0 and T , as demonstrated in I.

Figures 8–11 illustrate the quantitative performance of the
adiabatic theory. To close this section, let us give an example
of a qualitative analysis of PEMDs which can be done on the
basis of this theory. For the present pulse, there is only one
contribution to Ia(k) for each k ∈ Ka , so there is a one-to-one
correspondence between photoelectron momentum k and the
moment of ionization t+i (k). In this case, P (k⊥,kz) is a smooth
function exhibiting no interference structure. The PEMDs are
localized in the region Ka , as predicted. The vanishing of
P (k⊥,kz) near the classical boundaries of Ka results from
smaller values of F (t) at the moment of ionization, and hence
smaller ionization rate �1s(t) (see Figs. 6 and 7). For the
weaker field, depletion is not very important. The distributions
P (k⊥,kz) in this case are more or less symmetric with respect
to the center of Ka , which results from the evenness of F (t).
For the stronger field, the PEMDs are localized near the upper
boundary kmax

z of Ka . This is explained by depletion: Almost
complete ionization occurs on the rising part of the pulse,
which contributes to the region near kmax

z . The dependence of
P (k⊥,kz) on k⊥ essentially reproduces the shape of the TMD,
see Fig. 3, for F equal to the value of F (t) at the moment of
ionization. This explains why PEMDs for the stronger field
are broader in the transverse direction.
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FIG. 13. (Color online) The cuts of P (k⊥,kz) shown in Fig. 12 at
k⊥ = 0 (left) and kz = 0.6kmax

z (right).

B. One-cycle pulse: Testing the rescattering part

In the LP case, rescattering appears only after the electric
field F(t) passes through a zero. Each zero of f (τ ) in Eq. (143)
leads to the appearance of new CRTs, and each such CRT
produces a contribution to the rescattering part Ir (k) of the
ionization amplitude. To be able to focus on a single CRT
and its individual contribution to the PEMD, we consider a
one-cycle pulse with only one zero of f (τ ) defied by

f (τ ) = −
√

2e τ. (146)

The coefficient here is chosen to satisfy maxt F (t) = F0. For
this pulse v∞ = 0, kmin

z = 0, and kmax
z = √

2eF0T/4. Function
ka(t) traces the set Ka twice, once per each half-cycle. Hence,
there are two contributions to Ia(k) originating from each of
the two half-cycles and given by Eq. (131). The moments
of ionization t+i (t+r (k)) and rescattering t+r (k) needed to
implement Eq. (138) are found by solving Eqs. (104) and
(136). These equations have solutions describing rescattering
trajectories originating only in the first half-cycle. There are
two such trajectories for each k ∈ Kr . In a smaller region
Ka ∈ Kr , they correspond to rescattering in almost forward
and backward directions, respectively. The contribution from
the backward rescattering trajectory to Ir (k) is suppressed by
small values of the scattering amplitude (see Fig. 4). Thus,
focusing on the region Ka enables us to retain only the
forward rescattering trajectory and, hence, to single out the
only contribution to Ir (k) to be tested. In the following, we
restrict our consideration of PEMDs to the region Ka .
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FIG. 14. (Color online) Same as in Fig. 12, but for F0 = 0.4. The
values of kmax

z for these pulses are 4.66, 6.99, and 9.33, respectively.

We again consider two series of pulses with F0 = 0.1 and
0.4 and growing length T . The characteristic time T0 in this
case estimated as the duration of each of the two half-cycles
coincides with T , so the onset of the adiabatic regime remains
the same. The probabilities to survive in the initial state are
given in Table I. For F0 = 0.1, the relative error of the adiabatic
results decreases as T grows, as it should, but for F0 = 0.4
it does not change and remains on the level of 17% for
all three pulses considered. Given very small values of the
survival probabilities in this case, it is difficult to say whether
the difference comes from an imperfection of our numerical
calculations or results from some physical mechanism, such
as excitation, not accounted for by the present theory.

The PEMDs for these pulses are shown in Figs. 12–15.
Figures 12 and 14 present 2D distributions P (k⊥,kz) for
F = 0.1 and 0.4, respectively, and Figs. 13 and 15 show
their cuts. Note that the cuts are now plotted in a linear
scale. The agreement between the exact and adiabatic results
rapidly improves as T grows, and for the stronger field the
convergence is faster, as predicted. For the longest pulses
considered, the agreement is very good. There remains a small
difference in the amplitude and a tiny phase shift between the
interference fringes (see the insert for T = 100 in Fig. 13),
which should disappear as T grows further. However, even
the level of accuracy already achieved is certainly sufficient
for the majority of applications. We note that the present
pulse can be approximated by one cycle of a monochromatic
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FIG. 15. (Color online) The cuts of P (k⊥,kz) shown in Fig. 14 at
k⊥ = 0 (left) and kz = 0.2kmax

z (right).

field with period 2T , so T = 50, for example, corresponds to
the wavelength of 800 nm. Since the adiabatic part of the
ionization amplitude has been already tested, these results
establish the validity of Eq. (138) defining the rescattering
part. Because of the existence of several different contributions
to the ionization amplitude, the PEMDs in the present case
exhibit rich interference structures. Similar structures were
recently observed experimentally [68]. Their analysis on the
basis of the adiabatic theory will be presented elsewhere.

VIII. SUMMARY AND PERSPECTIVES

In this paper, the adiabatic theory of ionization of an
electron, initially bound in a potential well, by an intense low-
frequency laser pulse in the 3D case is developed. The theory
is developed for arbitrary time dependence and polarization
of the laser field and arbitrary (without any symmetry) finite
range potential. The asymptotics of the solution of the TDSE
and PEMD for ε → 0 are obtained. The main results are given
by the asymptotics of the adiabatic [Eq. (63)] and rescattering
[Eq. (103)] parts of the wave function and the corresponding
adiabatic [Eq. (131)] and rescattering [Eq. (138)] parts of
the ionization amplitude. These asymptotics are expressed in
terms of the SS originating from the initial bound state in the
presence of an external static electric field and scattering states
in the unperturbed target potential. They are uniform in terms
of ξ , that is, they apply to weak underbarrier as well as strong
overbarrier fields and hold in the adiabatic regime defined by
Eq. (13). In comparison with the Keldysh theory [11,12] and
the strong-field approximation [13–15], the adiabatic theory
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is based on different physical assumptions and has a different
region of applicability (see Sec. II B), so the two approaches
are complimentary. The Keldysh approximation [11] is shown
to emerge in the weak-field limit of the adiabatic theory.

The target potential may have arbitrary shape and hence
can model an atom or a molecule in the single-active-electron
approximation. The only limitation of the present formulation
of the theory stems from the assumption that the potential
has no Coulomb tail. The generalization to potentials with
a Coulomb tail is the most important direction for further
development of the theory.

In terms of applications, it should be emphasized that
the adiabatic theory does not deal with one particular phe-
nomenon, like photoionization, but can treat all kinds of
phenomena in the adiabatic regime. The calculations presented
in this work are aimed only at validating the theory. They can be
extended to realistic few-cycle pulses and to the entire region
of localization of the photoelectron spectrum, including the
backward rescattering ridge [9,10]. The adiabatic theory can
be used to calculate and analyze spectra produced by pulses
with the wavelength, amplitude, and polarization beyond the
capability of current computational resources to solve the
TDSE. The excitation of other bound and resonance states
via nonadiabatic transitions [60–62] also can be included into
the theory. Finally, the adiabatic asymptotics of the high-order
harmonic spectrum can be obtained on the basis of the present
theory, as it was demonstrated for the 1D ZRP model in
Ref. [69]. All these extensions and applications of the theory
are subjects for future studies.
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APPENDIX A: FORMAL DERIVATION OF THE
ADIABATIC APPROXIMATION

The derivation of the adiabatic part of the wave function
in Sec. V B is specific to the present problem and may seem
to be essentially based on the knowledge of the exact Green’s
function (32). To emphasize the generality of the result (63),
it is instructive to reproduce the derivation in more general
operator form. We begin with the time-dependent retarded
Green’s function defined by[

i
∂

∂t
− H (εt)

]
G(t,t ′) = δ(t − t ′), G(t,t ′)|t<t ′ = 0, (A1)

where the operators H (εt) and G(t,t ′) are understood as ma-
trices with discrete or continuous indices representing spatial
coordinates, and we have explicitly introduced the adiabatic
parameter ε → 0. Let us introduce new time variables,

T = t − t ′, τ = εt. (A2)

In terms of these variables Eq. (A1) reads[
iε

∂

∂τ
+ i

∂

∂T
− H (τ )

]
G(T ,τ ) = δ(T ), G(T ,τ )|T <0 = 0.

(A3)

Substituting

G(T ,τ ) =
∫

G(E,τ )e−iET dE

2π
, (A4)

we obtain [
iε

∂

∂τ
+ E − H (τ )

]
G(E,τ ) = 1. (A5)

We seek the solution in the form of the expansion

G(E,τ ) =
∞∑

n=0

εnG(n)(E; τ ). (A6)

In the zeroth order we find

G(0)(E; τ ) = [E − H (τ ) + i0]−1 . (A7)

This is the stationary outgoing-wave Green’s function for the
Hamiltonian H (τ ); it depends on slow time τ as a parameter.
It can be readily seen that

G(n)(E; τ ) =
[
−iG(0)(E; τ )

∂

∂τ

]n

G(0)(E; τ ) (A8)

and

G(E,τ ) =
[

1 + iεG(0)(E; τ )
∂

∂τ

]−1

G(0)(E; τ ). (A9)

Let us now consider a nonstationary problem associated with
Eq. (A1), [

i
∂

∂t
− H (εt) − V

]
ψ(t) = 0, (A10)

where the operator V does not depend on time and ψ(t)
is understood as a column vector. We refrain from using
Dirac’s notation because 〈ψ(t)| means transpose and complex
conjugate of |ψ(t)〉, while we will never need complex
conjugation. We assume that H (εt) becomes independent of
time for t → −∞, and

ψ(t)|t→−∞ = φ0e
−iE0t , (A11)

where E0 and φ0 are the eigenvalue and eigenvector corre-
sponding to one of the bound states of the initial Hamiltonian
H (−∞) + V . Equation (A10) with the initial condition (A11)
is equivalent to

ψ(t) =
∫

G(t,t ′)V ψ(t ′) dt ′. (A12)

We seek the solution in the form

ψ(t) = φ0(τ ) exp

[
− i

ε

(
E0τ +

∫ τ

−∞
[E0(τ ′) − E0]dτ ′

)]
,

(A13)

where τ = εt [see Eqs. (A2)] and the functions E0(τ ) and
φ0(τ ) are to be found. The equation for φ0(τ ) reads

φ0(τ ) =
∫

G(T ,τ ) exp

[
i

ε

∫ τ

τ−εT

E0(τ ′) dτ ′
]

×V φ0(τ − εT ) dT . (A14)

Substituting here

φ0(τ ) =
∞∑

n=0

εnφ
(n)
0 (τ ), (A15)
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and expanding the right-hand side in powers of ε using
Eq. (A6), in the zeroth order we obtain

φ
(0)
0 (τ ) = G(0)(E0(τ ); τ )V φ

(0)
0 (τ ). (A16)

Thus, φ(0)
0 (τ ) is an eigenvector of the momentary Hamiltonian

H (τ ) + V satisfying outgoing-wave boundary conditions and
E0(τ ) is the corresponding eigenvalue; in other words, the
solution of Eq. (A16) is an adiabatic SS. This state depends on
slow time τ as a parameter. In order to satisfy Eq. (A11) we
require E0(−∞) = E0 and φ

(0)
0 (−∞) = φ0, which means that

the SS of interest is the one that coincides with the initial bound
state for τ → −∞. This explains the subscript 0 in notation
φ0(τ ) and E0(τ ). Note that at this stage of the derivation the
normalization of φ

(0)
0 (τ ) remains undefined. In the first order

we obtain[(
G(1)(E; τ ) + i

2
Ė0(τ )

∂2G(0)(E; τ )

∂E2

)
V φ

(0)
0 (τ )

+ i
∂G(0)(E; τ )

∂E
V φ̇

(0)
0 (τ )

]
E=E0(τ )

= [1 − G(0)(E0(τ ); τ )V ]φ(1)
0 (τ ), (A17)

where the dots denote differentiation with respect to τ .
Multiplying this equation from the left by φ

(0)T
0 (τ )V , where

the superscript T stands for transpose, and using Eqs. (A8),
(A16), and the relation

∂G(0)(E; τ )

∂E
= −[G(0)(E; τ )]2, (A18)

which follows from Hilbert’s identity [63],

G(0)(E; τ )G(0)(E′; τ ) = −G(0)(E; τ ) − G(0)(E′; τ )

E − E′ , (A19)

one can see that Eq. (A17) reduces to

d

dτ

[
φ

(0)T
0 (τ )φ(0)

0 (τ )
] = 0. (A20)

The expression in the square brackets is the norm of the
adiabatic SS, and the equation means that this norm should
not depend on τ and hence should coincide with the norm
φT

0 φ0 of the initial bound state. Equation (A20) completes the

derivation of φ
(0)
0 (τ ). We can proceed to higher-order terms in

the expansion (A15). For example, from Eq. (A17) we find

φ
(1)
0 (τ ) = −iG(E0(τ ); τ )

∂

∂τ
φ

(0)
0 (τ ), (A21)

where

G(E; τ ) = [E − H (τ ) − V + i0]−1 . (A22)

Equation (A21) can be also obtained by substituting Eqs. (A13)
and (A15) into Eq. (A10).

In the application of this procedure to the laser-atom
interaction problem, H (εt) is the Hamiltonian in Eq. (1) with
the potential energy term dropped, and V is the potential. In
this case, Eq. (A13) reproduces the result (63) obtained in
Sec. V B. The present derivation is more general. In particular,
it does not rely on the explicit form of G(t,t ′). In addition, it
does not impose any restrictions on the potential V , provided
that the SSs for the momentary Hamiltonian H (τ ) + V exist,
and hence applies also to potentials with the Coulomb tail [45].
Another advantage is that it very clearly exhibits the role of
SSs in the development of the adiabatic approximation. At the
same time, this derivation is only formal, because it does not
specify the region of validity of the expansion (A15) which for
the present problem is defined by Eq. (13).

APPENDIX B: THE KELDYSH APPROXIMATION

Substituting into Eq. (116) the unperturbed initial state [see
Eq. (7)]

ψK(r,t) = φ0(r)e−iE0t (B1)

for the exact solution of Eq. (1) and integrating by parts, one
obtains

IK(k) = −i

∫ ∞

−∞
dt

∫
�∗(r,t ; k)F(t)rψK(r,t) dr. (B2)

This formula is the starting point of the Keldysh theory [11].
It looks as if one had substituted the Volkov state (35) for the
final state in the first-order time-dependent perturbation theory
transition amplitude [52]. In contrast to Eqs. (113), (116), and
(117), which are exact, Eq. (B2) is an approximation. As far
as we know, the region of validity of this approximation has
never been clearly defined.
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