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Time-dependent analytical R-matrix approach for strong-field dynamics. II. Many-electron systems
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Ionization of atoms and molecules in intense low-frequency fields is a multielectron process which may leave
the ion in different excited states. Within the adiabatic perspective on strong-field ionization, usually referred
to as optical tunneling, electrons remaining in the molecular ion are assumed to be frozen during the ionization
process. In this case, the only way to excite the molecular ion during ionization is to remove an electron from
a lower-lying molecular orbital. The higher ionization potential corresponding to such processes implies that
such channels are exponentially suppressed during tunneling. Here we show that correlation-induced coupling
between the departing electron and the core electrons removes the exponential penalty for ionic excitations,
resulting in complex attosecond dynamics of core rearrangement during strong-field ionization. We develop a
multichannel theory of strong-field ionization and demonstrate the importance of correlation-induced excitations
in the multiphoton and tunneling regimes for N2 and CO2 molecules.
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I. INTRODUCTION

Ionization is a ubiquitous phenomenon in laser-matter inter-
action, underlying such diverse processes as the photoelectric
effect, radiation damage, tunneling microscopy, and laser-
based mass spectroscopy, as well as many others. Even if only
one electron escapes the core, ionization at its heart involves
interaction between all electrons of the original system. This
interaction has been long appreciated in the case of single pho-
ton ionization, where different mechanisms such as “shake-up”
and postionization interaction (“knock-out” or “two-step-one”
process) play a crucial role in describing the rearrangement of
the core that may accompany ionization (e.g., see [1–3]).

In most pathways, electron-electron correlation plays a key
role. In shake-up, for example, this correlation occurs prior
to the absorption of the photon. In simple terms, the “core”
electrons feel the presence of the “active” electron before
ionization and feel its absence afterwards. The absence is
felt in the form of a modified potential, which no longer
experiences the contribution of the liberated electron. The old
wave function is then projected onto eigenfunctions of the
new potential. For shake-up to occur, the active electron must
escape more quickly than the core electrons can adjust to its
absence, so that the core wave function does not change during
the ionization process.

Interaction between the outgoing electron and electrons in
the core can also occur after the photon has been absorbed.
Part of the departing electron’s energy is transmitted to the
core, changing the state of the ion in what is essentially a half-
collision. Unlike shake-up, this postionization interaction can
take time: The long range of the Coulomb interaction allows
the escaping electron to interact with the core as it departs.

How will this picture change when not one but many
photons are absorbed? For a low-frequency field, the minimum
number of photons needed for ionization, N0 = Ip/ω, may be
very large. Here Ip is the ionization potential and ω is the laser
frequency. Because multiple photons are absorbed, there are
now multiple instances when electron-electron correlation may

be felt. If we were to treat the electron-electron correlation per-
turbatively, we would have the following intuitive picture: N1

photons could be absorbed before electron-electron correlation
and N2 photons could be absorbed after for any combination
such that N1 + N2 = N0. How do such pathways add up?
Is it possible for electron-electron interaction to change the
state of the core more than once? How important would such
higher-order terms in electron-electron correlations be? Here
we address these questions.

We apply the time-dependent analytical R-matrix (ARM)
approach developed in our companion paper [4], generalizing
it to N electron systems with one departing electron and N − 1
core electrons. Our results generalize the analytical theory of
strong-field ionization already developed for single-electron
systems [4–7] to the multielectron, multichannel case. In this
way, we are able to describe electron rearrangement in the core
of an atom or molecule which accompanies strong-field ioniza-
tion, going beyond the picture of direct ionization developed
in [8–11] (see also the so-called SU1 contribution in Ref. [12]).
The picture of direct ionization is widely applied in molecules,
where it is often viewed (interpreted) as tunneling from a
particular molecular orbital. From the perspective of different
contributions during tunneling described in Ref. [12], our
analysis explicitly incorporates electron-electron interaction
throughout the whole motion across the tunneling barrier, not
only correlation after the electron emerges from the classically
forbidden barrier region (called the SU2 contribution in [12]).

In theories based on the single active electron approxi-
mation, excitation of the core during strong-field ionization
has long been assumed to be negligible. This is most easily
understood in the following simple picture. The binding
potential and the time-dependent laser field combine to create
an oscillating barrier through which the electron must escape.
Aside from the oscillation, this picture is reminiscent of tunnel
ionization in static fields. The transmission rate through such a
barrier is exponentially suppressed with respect to Ip, not only
for static electric fields but also for oscillating laser fields [5].
It has therefore been a nearly universal assumption that the
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removal of the least bound electron from the molecule is
exponentially dominant, leaving the resulting ion in its lowest
electronic state.

The exponential penalty arises in the standard theory of
strong-field ionization because the core is either assumed to
be frozen during the tunneling process or is described using
self-consistent field (see, e.g., [13] for a recent application
of this approximation to strong-field ionization). Within the
self-consistent field approach, the electron would have to
tunnel from a more deeply bound orbital to leave the core
in an excited state. Thus, contrary to single-photon ionization,
multiphoton ionization in low-frequency fields (optical tun-
neling) is conventionally treated as an adiabatic process. This
perspective is embedded in the theory of inelastic tunneling
of [8–11].

Interestingly, this adiabatic picture contradicts the well-
known perspective on atom-ion collisions with charge ex-
change, where the tunneling of an electron from an atom to an
ion may involve substantial excitations of the donor [14,15].
Recent experimental advances have also begun to challenge
the picture of strong-field ionization as an adiabatic process
(see, e.g., [16,17] for the latest evidence of nonadiabatic
multielectron dynamics during strong-field ionization).

A nonadiabatic multielectron response implies the presence
of excited states of the ion after ionization. In principle,
these states could be detected by examining the photoelectron
spectra, as done for single-photon ionization. However, the
highly nonlinear nature of the strong-field interaction makes
such analysis very challenging, obscuring the identification
of different ionic states [18]. Alternatively, one could attempt
to identify excited states in molecules by the fragmentation
channels to which they correlate (see, e.g., Ref. [12]). However,
these techniques do not generally allow one to experimentally
distinguish ionic excitations that occur during ionization
from those that occur after. These problems have now been
addressed using coincidence techniques [19], which allow one
to correlate energies in the photoelectron spectra with ionic
fragments, “cleaning up” the photoelectron spectra and making
it possible to distinguish ionic excitations that have occurred
during or after ionization. Together with alternative evidence
[20–26], experiments have now unambiguously demonstrated
a significant contribution of multiple ionization channels,
which correspond to a population of different electronically ex-
cited states during ionization. Strong experimental arguments
suggest that, just like one-photon ionization, multiphoton
ionization is not an adiabatic process [16,17,24].

To address these issues, it is necessary to not only consider
multiple ionization channels associated with different final
states of the ion, but also to include the interaction between
these channels during ionization. Loosely speaking, these
channels correspond to the removal of electrons from different
orbitals. Rigorously, they correspond to different final states
of the ion. Interaction between channels is associated with
the excitation and deexcitation of the ion, that is, moving the
hole from one orbital to another during the ionization process.
The importance of channel coupling due to the laser field has
been emphasized theoretically in [24,27,28]. The combined
effect of the strong laser field and channel coupling on the
recombination step of high harmonic generation has been dis-
cussed in Ref. [29]. Reference [24] suggested the importance

FIG. 1. (Color online) An illustration of the direct (a) and
correlation-driven (b) channels in tunnel ionization.

of electron correlations during tunneling and provided the first
experimental indication of nontrivial dynamics induced by this
coupling. The theory presented below lays the foundation for
the analysis and interpretation of these dynamics.

Qualitatively, allowing the state of the ion to evolve during
ionization may significantly alter the likelihood of ionizing to
an excited final state. Electron-electron correlation between
the ion and the departing electron can induce nonadiabatic
dynamics as the electron leaves the core. As a result of this
excitation, which can happen at any point during ionization
(tunneling), the creation of excited ionic states is not subject
to the full exponential suppression accompanying direct
ionization from more deeply bound orbitals. Figure 1 shows an
illustration of this nonadiabatic, correlation-driven pathway.
The left panel shows the usual direct adiabatic tunneling
channels, corresponding to the removal of an electron from
the highest occupied molecular orbital (HOMO) and the one
just below it (HOMO-1). A thinner tunneling barrier for the
highest orbital gives the first channel an exponential advantage
over the second. The right panel shows the nonadiabatic
correlation-driven channel. Here the electron leaves from the
HOMO. However, before exiting the tunneling barrier, it
interacts with the core electrons and excites the ionic core.
The tunneling electron then loses its energy and has to pass
through a thicker barrier, which corresponds to the HOMO-1
being vacant. However, this thicker barrier appears only at
the end, so that the nonadiabatic channel does not incur the
full exponential penalty characteristic of the direct HOMO-1
channel.

This paper is organized as follows. Sections II and III
present a multichannel theory of strong-field ionization which
includes electron-electron correlation during tunneling. In
Secs. IV and V we perform saddle-point analysis of the
general expressions in the spirit of Perelomov, Popov, and
Terent’ev (PPT) theory [6,7] and derive simple analytical
expressions for direct and correlation-driven channels in
strong-field ionization. Section VI illustrates the importance of
correlation-induced excitations for tunnel ionization of N2 and
CO2 molecules. Section VII discusses the role of this channel
in strong-field phenomena.

II. BASIC EQUATIONS

We use the analytical time-dependent R-matrix approach
(ARM) [4] and the saddle-point method to develop a multi-
channel theory of strong-field ionization. First, we introduce
the Hamiltonian of an N -electron neutral molecule interacting
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with a laser field:

HN = T N
e + V N

C + V N
ee + V N

l ,

V N
C = −

i=N∑
m,i=1

Zm/|Rm − ri |, (1)

V N
ee =

N∑
i �=j

1/|ri − rj |, V N
L =

∑
i

F(t) · ri .

Here the nuclei with charges Zm are frozen at positions Rm.
Index m enumerates the nuclei, while i,j label the electrons.
Superscript N indicates the number of electrons involved.
T N

e is the electron kinetic energy operator, V N
C describes the

Coulomb potential of the nuclei, V N
ee describes the electron-

electron interaction, and V N
L describes the interaction with the

laser field.
We also use the Hamiltonian of the ion in the laser field

HN−1 and the Hamiltonian of an electron He interacting with
the laser field, the nuclei, and the (N − 1) electrons of the ion,
He = HN − HN−1.

Our goal is to solve the time-dependent Schrödinger
equation for the N -electron wave function of the molecule,
initially in its ground electronic state �g(r):

i
∂

∂t
|�N (t)〉 = ĤN |�N (t)〉, (2)

|�N (t = 0)〉 = |�g〉. (3)

Let us now apply the time-dependent ARM approach [4]. We
begin by reformulating the initial value problem as a boundary
problem. We divide the space into inner and outer regions and
introduce the Bloch operator for the outer region L̂−(a),

L̂−(a) = −
N∑

i=1

�̂i(a)B̂i , (4)

where the index i labels each of the N electrons. In coordinate
representation we have

〈r|�̂i(a)|r′〉 = δ(ri − a)〈r|r′〉 = δ(ri − a)δ(r − r′), (5)

〈r|B̂i |r′〉 =
(

d

dri

− b0 − 1

ri

)
δ(r − r′). (6)

Here b0 is an arbitrary constant (see, e.g., [4] for discussion).
We use the shorthand notation �̂(a)B̂ ≡ ∑

i �̂i(a)B̂i to imply
summation over all electrons. The δ function is defined such
that ∫ ∞

a

drδ(r − a) =
∫ a

0
drδ(r − a) = 1

2
. (7)

Adding and subtracting the Bloch operator to the Hamilto-
nian, we can rewrite Eqs. (2) and (3) as

i
∂

∂t
|�N (t)〉 = [ĤN + L̂−(a)]|�N (t)〉 − L̂−(a)|�N (t)〉,

(8)
|�N (t = 0)〉 = ∣∣�N

g

〉
.

The boundary nature of the Bloch operator allows one to
reformulate Eqs. (8) as a boundary value problem, with the

formal solution

|�N (t)〉 = −i

∫ t

−∞
dt ′UN (t,t ′)�̂(a)B̂|�N (t ′)〉. (9)

Here UN (t,t ′) is the N -electron propagator in the outer region,
corresponding to the outer-region Hamiltonian ĤN = ĤN +
L̂−(a).

We now use the same approach as in the one-electron case
[4] and approximate the wave function on the right-hand side
of Eq. (9) with the ground state of the neutral atom, |�N (t ′)〉 �
e−iEgt

′
ag(t ′)|ψN

g 〉, yielding

|�N (t)〉 = −i

∫ t

−∞
dt ′UN (t,t ′)�̂(a)B̂|ψN

g 〉ag(t ′)e−iEgt
′
,

(10)

where Eg is the energy of the ground state and ag(t ′)
incorporates Stark shift and the depletion of the ground state.
Our next step is to introduce a multichannel expansion into the
above equation.

III. MULTICHANNEL FORMALISM

A. Selection of channels

At this point, we need to identify the ionization channels
associated with different states of the ion. The key aspect we
have to consider is the presence of the strong laser field, which
can induce multiple transitions in the ion and in the continuum.

At first glance, one might like to introduce channels which
(i) incorporate the effects of the strong laser field fully and
(ii) lead to well-defined field-free states of the ion at the
end of interaction t = T . Referring to Eq. (10), this implies
projecting the final wave function |�N (T )〉 on the field-free
ionic states 〈n| at t = T . According to Eq. (10), these states
〈n| would then have to be propagated back in time from T to
t ′, with potentially complex evolution. Each channel defined
in this way may incorporate not only multiple bound but also
continuum states of the ion. Such complexity is undesirable.

To avoid backpropagation, one could instead project onto
field-free states of the ion at the moment t ′, as the wave function
is transferred through the boundary between the inner and outer
regions. However, given our goal of an analytical description,
this standard choice is also far from ideal. Indeed, since the
ion is created in the presence of a strong laser field, ionic
states populated during ionization are likely to be far from
their field-free counterparts. Distortion of the field-free ionic
states has to be included in the ionization step.

To find a good compromise, we recall the dynamics of
single-channel strong-field ionization. First, ionization occurs
in bursts centered around the instantaneous maxima of the
oscillating laser field. Second, the transition to the continuum
during each ionization burst is described by trajectories
moving in complex time, with the ionization step essentially
completed when the trajectory descends to the real time axis.
This time interval constitutes a small fraction of the laser
period. Thus, the required ionic basis states should (i) be
relatively straightforward to find, (ii) incorporate the strong
laser field, and (iii) minimize laser-induced transitions during
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the (complex-valued) fraction of the laser cycle associated with
the ionization step itself: the electron motion in the classically
forbidden region. For these reasons, we associate different
channels with quasistatic states of the ion, also known as
“field-polarized” and/or “adiabatic.”

These states, denoted as |nt 〉, satisfy the stationary
Schrödinger equation for the time-dependent ionic Hamilto-
nian HN−1 which includes the laser field. They are defined by
the equation

HN−1|nt 〉 = EN−1
n (t)|nt 〉 (11)

and follow the laser field adiabatically. They are found by
diagonalizing the Hamiltonian of the ion in the laser field
HN−1 at each moment of time. In practice, such diagonaliza-
tion requires knowledge of the ionic field-free states, including
their energies and transition dipoles between them. These can
be obtained using quantum chemistry approaches. At the end of
the laser pulse the quasistatic states |nt 〉 turn into the field-free
states |n〉, which are the eigenvectors of the field-free ionic
Hamiltonian.

For the continuum electron, we use an approach similar to
the one we have already used for the single-electron problem
[4]. For the multichannel case, we define the continuum states
as solutions of the channel-specific one-electron TDSE

i
∣∣k̇n

t

〉 = Hn
e

∣∣kn
t

〉
, (12)

where the one-electron Hamiltonian, defined as

Hn
e ≡ 〈nt |HN − HN−1|nt 〉, (13)

describes the dynamics of the electron in the laser field, the
Coulomb potential of the nuclei VC(r) = −∑i=N

m Zm/|Rm −
r|, and the Hartree potential of the core electrons,

V n
H (t) ≡ 〈nt |Vee|nt 〉. (14)

The electron-electron operator Vee ≡ V N
ee − V N−1

ee describes
the Coulomb interaction between the departing electron and
all the electrons left in the ion. Note that the Hartree potential
[Eq. (14)] is defined for the quasistatic states of the ion and
hence includes polarization of the core by the laser field.

In practice, for analytical calculations we approximate |kn
t 〉

with channel specific one-electron eikonal-Volkov states [30],
as in the one-electron case. The eikonal-Volkov approximation
works well for strong-field ionization [31,32] and laser-
assisted one-photon XUV ionization [33–35]. These states are
obtained by backpropagating field-free continuum solutions
defined at a time T after the laser field has been switched
off. For large T → ∞, these field-free solutions can be well
approximated by plane waves, characterized by a momentum
k. Under this assumption, we can express the EVA states at
any general time t as

〈
r
∣∣kEV A

n (t)
〉 = 1

(2π )3/2
ei(k+A(t))·r− i

2

∫ t

T
dτ [k+A(τ )]2

× e−i
∫ t

T
dτUn(rL(τ ;r,k,t)), (15)

where

rL(τ ; r,k,t) = r +
∫ τ

t

dt ′′[k + A(t ′′)] (16)

and Un is the effective ionic potential experienced by the
departing electron in channel n.

By introducing a basis of laser dressed states for the ion and
electron, we imply that, in the absence of electron-electron
correlation which couples these systems, the laser-induced
dynamics can be modeled accurately. While for analytical
calculations we use approximate eikonal-Volkov states, the
single-electron problem can be solved efficiently and the
dynamics of the continuum electron can be accurately de-
scribed numerically. Bound-state dynamics in the ion are also
reasonably simple as long as they require only a limited set
of ionic states; that is, the ion can be modeled as a multilevel
system in a laser field.

B. Multichannel amplitudes

Having defined the channels, we can now introduce the
channel projector:

Î =
∫

dk
∑

n

A
∣∣nt ⊗ kn

t

〉〈
nt ⊗ kn

t

∣∣A. (17)

Here the integration is over all asymptotic momenta k,
which characterize each channel-specific continuum state
|kn

t 〉. Equation (17) implies an (over)complete basis of the
quasistatic states for the ion and the active electron, including
continuum states of the ion and bound states of the active
electron. Operator A antisymmetrizes electrons and removes
basis set overcompleteness [36]. Inserting Î into Eq. (10) gives
a multichannel representation of the time-dependent wave
function (omitting the ⊗ sign):

|�(t)〉 = −i
∑

n

∫
dk

∫ t

−∞
dt ′UN (t,t ′)A

∣∣nt ′kn
t ′
〉

× 〈
nt ′kn

t ′
∣∣A�̂(a)B̂

∣∣ψN
g

〉
ag(t ′)e−iEgt

′
. (18)

Before proceeding further, consider the matrix element
determined by the Bloch operator, which is a single-particle
operator acting on all N electrons. This matrix element
includes two groups of terms. The first group contains those
terms where an electron i crossing the boundary ri = a is
projected onto the continuum state, while the other N − 1
electrons staying inside the inner region are projected onto the
ionic state nt ′ . The second group includes exchange-like terms,
where an electron j �= i from the inner region is projected
onto the continuum state, while the electron i at the boundary
is projected onto the bound ionic state. It is straightforward
to check that for a sufficiently large radius a of the boundary
(κa � 1), the second group of terms gives an exponentially
small contribution compared to the first group.

The equivalence of electrons ensures that all N terms in the
first group are identical, and we can label r1 the electron that
leaves the inner region and i = 2, . . . ,N the electrons that stay
inside the ion at the moment t ′. Recalling the normalization
factor 1/

√
N coming from antisymmetrization and introduc-

ing channel-specific Dyson orbitals for the quasistatic state of
the ion, ∣∣nD

t ′
〉 =

√
N

〈
nt ′

∣∣ψN
g

〉
, (19)
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we rewrite Eq. (18) as

|�(t)〉 = −i
∑

n

∫
dk

∫ t

−∞
dt ′UN (t,t ′)

∣∣nt ′kn
t ′
〉

× 〈
kn

t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
. (20)

Next, let us turn our attention to the N -electron propagator
UN , which acts on the N − 1 core electrons and one outgo-
ing electron. Their interaction introduces correlation-induced
coupling between the channels. To single out the contribution
of these dynamics, for each channel n, we split up our full
Hamiltonian (1) as

HN = HN
n + V n

ee(t). (21)

Here, HN
n is the “correlation-free” Hamiltonian for channel

n. It is a sum of the Hamiltonian for the N − 1 electrons
which remain in the ion and the Hamiltonian for the continuum
electron moving in the self-consistent field of the core,

HN
n ≡ HN−1 + Hn

e . (22)

This Hamiltonian fully describes laser-induced dynamics in
the ion, as well as the dynamics of the continuum electron
in the laser field, the field of the nucleus and the Hartree
potential [Eq. (14)] for channel n. However, it ignores coupling
between the electrons in the ion and the departing electron.
Correspondingly, the propagator UN

n (t,t ′) will be a product of
the propagator for the continuum electron Un

e (t,t ′) and for the
ion UN−1(t,t ′), UN

n (t,t ′) = UN−1(t,t ′)Un
e (t,t ′).

The second term,

V n
ee(t) ≡ Vee − 〈nt |Vee|nt 〉, (23)

describes correlations between the outgoing electron and the
electrons which remain.

With this in mind, we can introduce the following channel-
specific Dyson expansion of the full propagator

UN (t,t ′) = −i

∫ t

t ′
dt ′′UN (t,t ′′)V n

ee(t ′′)UN
n (t ′′,t ′) + UN

n (t,t ′).

(24)

This allows us to rewrite the total wave function (20) as a
sum of two contributions. The first is the “direct” contribution
which does not include electron-electron correlation,

|�(1)(T )〉 = −i
∑

n

∫
dk

∫ T

dt ′UN−1(T ,t ′)|nt ′ 〉

×Un
e (T ,t ′)

∣∣kn
t ′
〉〈

kn
t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
.

(25)

The second is the “indirect” correlation-driven contribution
that we are interested in,

|�(2)(T )〉 = −
∑

n

∫
dk

∫ T

dt ′′
∫ t ′′

dt ′UN (T ,t ′′)V n
ee(t ′′)

×UN−1(t ′′,t ′)|nt ′ 〉Un
e (t ′′,t ′)

∣∣kn
t ′
〉〈

kn
t ′
∣∣�̂1(a)

× B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
. (26)

IV. DIRECT IONIZATION AMPLITUDES

Let us begin with the first term, Eq. (25). Direct ionization
amplitudes are obtained by projecting |�(1)(T )〉 onto the final
states of the continuum electron and the ionic core. However,
we should keep in mind that the quasistatic states we have
used to define the ionization channels represent a good basis
only for a fraction of the laser cycle. They do not include
real laser-induced excitations which develop on the time scale
of a laser cycle and longer. These transitions can redistribute
the amplitude associated with a particular ionization channel
between other channels on the time scale of several cycles after
the ionization itself has been completed, obscuring the picture.

To obtain meaningful channel-specific direct ionization
amplitudes an(p), we recall the results obtained for the
single-electron case [4]. For a given final momentum p,
the integral over time t ′ has contributions associated with
different periodically spaced saddle points ts(p), where ts(p) =
ti(p) + iτT (p) satisfies

(p + A(ts))
2 = −2Ip (27)

and Ip is the ionization potential. Each saddle point, associated
with some final momentum p, corresponds to a particular
ionization burst centered around one of the instantaneous
maxima of the oscillating laser field. Ionization is essentially
completed when the complex-valued trajectory associated with
the saddle point t ′ = ts(p) descends to the real time axis.
We therefore rewrite the ionic propagator as UN−1(T ,t ′) =
UN−1(T ,t0)UN−1(t0,t ′). The moment t0 is selected on the
real time axis, ensuring that the saddle-point region around
ts(p) is passed. For the calculations described below, we use
t0 = Re[ts(p)] = ti .

We now project the wave function at the moment T onto
the ionic basis UN−1(T ,t0)|mt0〉 and the final state of the
continuum electron |p〉 to obtain the ionization amplitude
associated with the continuum electron with momentum p.
Since we are interested only in the contribution of a single
ionization burst near t0 to the total ionization amplitude, we
restrict our t ′ integral to the vicinity of a single saddle point
ts(p) by introducing the contour C(p,t0). This fact is stressed
by keeping t0 in the argument of a(1)

mn(p,t0):

a(1)
mn(p,t0) = −i

∫
dk

∫
C(p,t0)

dt ′〈mt0 |UN−1(t0,t
′)|nt ′ 〉

× 〈p|Un
e (T ,t ′)

∣∣kn
t ′
〉〈

kn
t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
.

(28)

Note that this amplitude correlates to the final state of the
ion |m̃(T ,t0)〉 = UN−1(T ,t0)|mt0〉, where |m̃(T ,t0)〉 is some
superposition of field-free states. The amplitude is formed
by the time t0. From t0 to T , only phase is accumulated
in the matrix element 〈p|Un

e (T ,t ′)|kn
t ′ 〉 (up to a nonadiabatic

Coulomb correction, discussed in [4], which is unimportant
for ionization near the peak of the laser field), accompanied
by unitary evolution of the ion UN−1(T ,t0)|mt0〉.

Equation (28) accounts for the fact that the laser field can
induce transitions between different quasistatic states during
the time interval t0 − ts(p). However, in all cases considered
below, such transitions are negligible during the short time
interval t0 − ts(p). One can therefore use the quasistatic
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approximation for the short-time propagator UN−1(t0,t ′) and
the matrix elements 〈mt0 |UN−1(t0,t ′)|nt ′ 〉:

〈nt0 |UN−1(t0,t
′)|mt ′ 〉 = δmnbm(t0,t

′)e−iEm(t0−t ′)

= δmne
−i

∫ t0
t ′ �E

(St)
m (τ )dτ−iEm(t0−t ′). (29)

Here Em is the field-free energy of the ionic state |m〉. The
additional factor bm(t0,t ′) accounts for the quasistatic Stark
shift �E(St)

m (τ ).
In practice (see Sec. VI), we will not make the quasistatic

approximation when calculating the matrix element Eq. (29).
However, off-diagonal contributions will be negligible. The
diagonal contribution is

a(1)
nn (p,t0,T ) = −i

∫
dk

∫
C(p,t0)

dt ′bn(t0,t
′)e−iEn(t0−t ′)

×〈p|Un
e (T ,t ′)

∣∣kn
t ′
〉〈

kn
t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)

× e−iEgt
′
. (30)

Orthogonality of the continuum states |kn
t ′ 〉 means that this

expression simplifies to

a(1)
nn (p,t0,T ) = −i

∫
C(p,t0)

dt ′bn(t0,t
′)e−iEn(t0−t ′)

× 〈
pn

t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
. (31)

The amplitude a(1)
nn (p) is very similar to the single active

electron (SAE) case (see, e.g., our companion paper [4]). The
difference is the extra phase evolution in the ionic channel
n. First, it encodes the field-free ionization potential for this
channel,

Ip,n = En − Eg. (32)

Second, the Stark shifts of both neutral and ionic states are also
present, via ag(t ′) and bn(t0,t ′), respectively. Treating both
ag(t ′) and bn(t0,t ′) as slow functions and evaluating the t ′
integral using the saddle-point method, we can express the
ionization amplitude a(1)

nn via its SAE counterpart aSAE,

a(1)
nn (p,t0) = ag(ts)bn(t0,ts)e

−iEnt0aSAE(p; Ip,n,t0). (33)

Note that in our companion paper [4], ag(ts) was included
in aSAE. The role of the ground-state wave function in the
single-electron ionization amplitude is played by the Dyson
orbital for the channel, and the unperturbed ionization potential
is Ip,n. Both amplitudes refer to the contribution of a single
ionization burst around t0 = Re ts(p).

V. CORRELATION-DRIVEN INDIRECT
IONIZATION AMPLITUDES

Consider now the correlation-driven contribution to the
total wave function:

|�(2)(T )〉 = −
∑

n

∫
dk

∫ T

dt ′′
∫ t ′′

dt ′UN (T ,t ′′)V n
ee(t ′′)

×UN−1(t ′′,t ′)|nt ′ 〉Un
e (t ′′,t ′)

∣∣kn
t ′
〉〈

kn
t ′
∣∣�̂1(a)

× B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
. (34)

In this exact expression, propagation between t ′ and t ′′ is
correlation-free, but includes the effect of the self-consistent

field of the core on the outgoing electron. Correlation can
induce transitions at an instant moment t ′′, after which the full
propagator is applied.

Let us now project this wave function onto the ionic basis
UN−1(T ,t0)|mt0〉 and the final state of the continuum electron
|p〉 at time T , just as we did for the direct channel. To first
order in electron-electron correlation, we can approximate the
full propagator after t ′′ as

UN (T ,t ′′) � UN−1(T ,t ′′)Um
e (T ,t ′′). (35)

Doing this, we obtain the correlation-induced transition am-
plitude from the quasistatic ionic state n to the quasistatic state
m:

a(2)
mn(p,t0) = −

∫
dk

∫ t0

dt ′′
∫ t ′′

dt ′
〈
pm

t ′′
∣∣〈mt0 |UN−1(t0,t

′′)

× |V n
ee(t ′′)UN−1(t ′′,t ′)|nt ′ 〉

∣∣kn
t ′′
〉〈

kn
t ′
∣∣�̂1(a)

× B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
. (36)

Here, we have again restricted our time integral by setting
the upper limit of the t ′′ integral to t0. This allows us to
compute the contribution from a particular ionization burst
as the continuum electron is moving away and eliminates
the contribution of the electron-ion recollision which happens
after the laser field turns the outgoing electron around and
brings it back to the core. Such contributions, responsible
for nonsequential double ionization [37], are described by an
equation similar to Eq. (36), except that the corresponding
contribution to the t ′′ integral comes from later times t ′′ > t0,
separated from t0 by about half a laser cycle or more.
Restricting the inner (i.e., t ′) integral to the vicinity of a single
saddle point effectively sets the lower limit of the outer t ′′
integral to ts(p).

Finally, let us explicitly factor out the phases associated
with the channel energies,

UN−1(t ′′,t ′)|nt ′ 〉 = e−iEn(t ′′−t ′)bn(t ′′,t ′)|n(t ′′,t ′)〉,
(37)

〈mt0 |UN−1(t0,t
′′) = e−iEm(t0−t ′′)bm(t0,t

′′)〈m(t0,t
′′)|,

where slow functions bk incorporate Stark shifts of the
quasistatic channels. Note that states |n(t ′′,t ′)〉 and |m(t ′′,t0)〉
defined by the above equations may be superpositions of
different quasistatic states. With this notation, we get

a(2)
mn(p,t0) = −

∫
dk

∫ t0

dt ′′
∫ t ′′

dt ′bm(t0,t
′′)e−iEm(t0−t ′′)

×〈m(t0,t
′′)

∣∣〈pm
t ′′
∣∣V n

ee(t ′′)
∣∣n(t ′′,t ′)〉∣∣kn

t ′′
〉
bn(t ′′,t ′)

× e−iEn(t ′′−t ′) 〈
kn

t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)e−iEgt

′
.

(38)

The integral over t ′, as we will soon see, is again accumulated
near the saddle point ts(p). Pre-empting this, for convenience
of notation, we can therefore take the slow function bn(t ′′,t ′)
out of the t ′ integral at the saddle point, replacing it with
bn(t ′′,ts). The same is done with |n(t ′′,t ′)〉. Recalling that
V n

ee = V n
ee(r, . . . ,rN ) and inserting the identity on the coor-

dinates of the departing electron,
∫

dr|r〉〈r|, we can rewrite
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Eq. (38) as

a(2)
mn(p,t0)

= −i

∫ t0

dt ′′e−iEmt0bm(t0,t
′′)bn(t ′′,ts)ei(Em−En)t ′′

×
∫

dr
∫

dk 〈pm
t ′′ |r〉 〈m(t0,t

′′)|V n
ee(t ′′,r)|n(t ′′,ts)〉

〈
r
∣∣kn

t ′′
〉

×
[

(−i)
∫ t ′′

dt ′
〈
kn

t ′
∣∣�̂1(a)B̂1

∣∣nD
t ′
〉
ag(t ′)eiIp,nt

′
]
. (39)

The operator V n
ee(t ′′,r) in Eq. (39) acts on all electrons but the

notation explicitly stresses the coordinate r of the outgoing
electron.

The expression in square brackets in Eq. (39) is almost
exactly the SAE ionization amplitude ak(T ), which we cal-
culated in the companion paper [4], with the hydrogen bound
state replaced by a Dyson orbital |nD

t ′ 〉. The main difference
here is that the upper limit of the t ′ integral is t ′′; the form of the
t ′ integrand itself is identical. However, as we saw in [4] and
as we discussed for the direct channel, the contribution to the
integral over t ′ comes only from the saddle-point region ts(p),
determined by Eq. (27). Thus, assuming we choose the contour
for t ′′ appropriately, this upper limit should not affect the value
of our integral. We can therefore replace the expression in
square brackets by ak(T ),

a(2)
mn(p,t0) = −i

∫ t0

dt ′′e−iEmt0bm(t0,t
′′)bn(t ′′,ts)ei(Em−En)t ′′

×Vmn(p,t ′′), (40)

where we have introduced

Vmn(p,t ′′) =
∫

dr
∫

dk 〈m(t0,t
′′)|V n

ee(t ′′,r)|n(t ′′,ts)〉
× 〈

pm
t ′′
∣∣r〉〈r∣∣kn

t ′′
〉
ak(T ). (41)

Let us now look more closely at the integrals over k and r
above. To evaluate these explicitly, we use eikonal-Volkov
states (15) for 〈pm

t ′′ |r〉 and 〈r|kn
t ′′ 〉 and quote the following

analytical result for ak(T ) from [4]:

ak(T ) = ag(ts)Rn(k)e− i
2

∫ T

ts
dτ [k+A(τ )]2+iIpts

× e
−i

∫ T

tκ
dτU

( ∫ τ

ts
dt ′[k+A(t ′′)]

)
. (42)

Here, Rn(k) is a term that encodes the impact of the angular
structure of our channel-n Dyson orbital on ionization exactly
as Rκlm(k) did for hydrogen bound states in [4]. The imple-
mentation for calculating Rn(k) terms here will be analogous
to the one discussed by Murray et al. for static fields [38],
showing how the static approach extends to oscillating fields.

Substituting in these expressions, we obtain

Vmn(p,t ′′) = e−i/2
∫ T

t ′′ (p+A(τ ))2dτ 1

(2π )3

∫
dr

×
∫

dkei(k−p)·r e−i/2
∫ t ′′
ts

(k+A(τ ))2dτ eiIp,nts

× ag(ts)Rn(k) 〈m(t0,t
′′)|V n

ee(t ′′,r)|n(t ′′,ts)〉
× e−iWmn

c (t ′′,r,k,T ), (43)

where

Wmn
c (t ′′,r,k,T ) =

∫ T

t ′′
dτ Um

(
r +

∫ τ

t ′′
dζ [p + A(ζ )]

)

+
∫ t ′′

T

dτ Un

(
r +

∫ τ

t ′′
dζ [k + A(ζ )]

)

+
∫ T

tκ

dτ Un

( ∫ τ

ts

dζ [k + A(ζ )]

)
. (44)

If we now compare this to ap(t) in [4], we see that the integrals
we have to evaluate are entirely analogous. We have simply
gained the factor 〈m(t0,t ′′)|V n

ee(t ′′,r)|n(t ′′,ts)〉, and Wc now has
an additional Um-dependent term. Both these terms, however,
can be treated as slow prefactors and will not affect our saddle-
point analysis. Thus, following the derivation in [4], we shall
proceed by integrating first over k and then over r.

Applying the saddle-point method for the integral over k,
assuming that Rn(k) is slowly varying and well-behaved, we
find

Vmn(p,t ′′) � e−i/2
∫ T

t ′′ (p+A(τ ))2dτ

∫
dr

e−iπ/4

[2π (t ′′ − ts)]3/2

× e
i
2

(r−rs (p,t ′′ ))2
t ′′−ts e−i/2

∫ t ′′
ts

(p+A(τ ))2dτ eiIp,nts

× ag(ts)Rn(ks) 〈m(t0,t
′′)|V n

ee(t ′′,r)|n(t ′′,ts)〉
× e−iWmn

c (t ′′,r,ks ,T ), (45)

where the stationary momentum ks is given by

ks = r − ∫ t ′′

ts
A(τ )dτ

t ′′ − ts
, (46)

and

rs(p,t ′′) =
∫ t ′′

ts

[p + A(τ )]dτ. (47)

The presence of the wave packet exp[ i
2

(r−rs (p,t ′′))2

t ′′−ts
]/

[2π (t ′′ − ts)]3/2 above allows us to evaluate the r integral
using the saddle-point method, where the saddle point is
given by Eq. (47) above. Note that in the classically forbidden
region t ′′ − ts = −iξ , this wave packet becomes a Gaussian.
It is the presence of this term which allows us to use a
single tunneling trajectory, as defined by Eq. (47), to evaluate
the contribution of the core potential to the SAE ionization
amplitude ap(t) in [4]. For exactly the same reason, we can
also substitute it in the correlation-driven matrix element
〈m(t0,t ′′)|V n

ee(r)|n(t ′′,ts)〉 here. Doing this, and noting that
Eqs. (46) and (47) together imply ks = p, we obtain the final
result

Vmn(p,t ′′) � ag(ts)Rn(p) e−i/2
∫ T

ts
(p+A(τ ))2dτ eiIp,nts

×〈m(t0,t
′′)|V n

ee(rs(t
′′))|n(t ′′,ts)〉

× e−i
∫ T

t ′′ dτ Um(rs (p,τ ))e−i
∫ t ′′
tκ

dτ Un(rs (p,τ )). (48)

Introducing the correction factor,

Qmn(t ′′) ≡
∫ T

t ′′
dτ [Um(rs(τ )) − Un(rs(τ ))], (49)
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we can express this as

Vmn(p,t ′′) � [
ag(ts)Rn(p) e−i/2

∫ T

ts
(p+A(τ ))2dτ eiIp,nts

× e−i
∫ T

tκ
dτ Un(rs (p,τ ))]〈m(t0,t

′′)|V n
ee(rs(t

′′))

× |n(t ′′,ts)〉 e−iQmn(t ′′). (50)

Comparing the first term [in brackets] to Eq. (42), we see that
this is simply the SAE ionization amplitude for channel n,
ap(T ) = ag(ts) aSAE(p; Ip,n,t0). Thus, we can now write down
a simple expression for our correlation-driven multichannel
ionization amplitude:

a(2)
mn(p,t0) = −i

∫ t0

dt ′′e−iEmt0bm(t0,t
′′)bn(t ′′,ts)ei(Em−En)t ′′

× ag(ts) aSAE(p; Ip,n,t0)〈m(t0,t
′′)|V n

ee(rs(t
′′))

× |n(t ′′,ts)〉 e−iQmn(t ′′). (51)

Recalling our final result for the direct channel ionization
amplitude Eq. (33), we can express this as

a(2)
mn(p,t0) = cmn(t0,ts) b−1

n (t0,ts) a(1)
nn (p,t0), (52)

where

cmn(t0,ts) = −i

∫ t0

ts

dt ′′〈mt0 |U (N−1)(t0,t
′′)V n

ee(rs(t
′′))

×U (N−1)(t ′′,ts)|nts 〉 e−iQmn(t ′′) (53)

or, explicitly writing out phases associated with the unper-
turbed energies of the channels,

cmn(t0,ts) = −i

∫ t0

ts

dt ′′bm(t0,t
′′)bn(t ′′,ts)e−i(Em−En)(t0−t ′′)

×〈m(t0,t
′′)|V n

ee(rs(t
′′))|n(t ′′,ts)〉 e−iQmn(t ′′).

(54)

Note that both ts and t0 = Re[ts] are determined by the
momentum p.

The amplitude cmn describes correlation-induced transi-
tions between the quasistatic electronic states of the ion.
The field responsible for these transitions is created by
the departing electron, which arrives at the detector with
momentum p. The transitions occur while the tunneling
electron is moving away from the core via the classically
forbidden region and result in correlation-driven ionization
into channel m.

The evolution of the states 〈m(t0,t ′′)| and |n(t ′′,ts)〉 is exact.
The t ′′ integral is taken in complex time, from the saddle
point ts = t0 + iτT (p) to t0 = Re(ts). Consequently, t0 − t ′′ =
−iξ and the factor exp(−i(Em − En)(t0 − t ′′)) in the integrand
becomes exp(−(Em − En)ξ ). This results in the exponential
suppression of the excitation amplitude cmn(p) if the eigenstate
|m〉 has higher energy than the eigenstate |n〉 [39], that is,
�Ip ≡ Em − En > 0.

Consider ionization at the maximum of the instantaneous
laser field, when p/v0 = p/

√
4Up � 0, with Up = F 2/4ω2

the ponderomotive potential. In this case ts = iτT and t0 = 0.
Changing the integration variable to imaginary ξ = i(t0 − t ′′),
we see that when the laser-induced Stark shifts in the ion
and the difference between the core potentials for different

ionization channels are neglected, we have

cmn =
∫ 0

τT

dξe−�Ipξ 〈m|V n
ee(rs(ξ ))|n〉. (55)

This expression shows that the exponential suppression factor
e−�Ipξ favors excitation which occurs close to the exit from
the tunnel (ξ = 0). The role of this factor is discussed in our
short report [40].

It will be convenient to evaluate the strength of the indirect
channel n → m by normalizing the corresponding amplitude
with respect to the direct ionization amplitude associated with
the “parent” channel n. Using the results above, this ratio is

ã(2)
mn(p) = a(2)

mn(p)/a(1)
nn (p)

= cmn(t0,ts)/bn(t0,ts) ≡ cmn(p)/bn(p), (56)

where in the last equality we have stressed that both ts and
t0 = Re[ts] are determined by the final momentum p.

VI. RESULTS

The central result of this work is given by Eqs. (52)–(54),
which connect the correlation-induced indirect ionization
amplitude with the amplitude for direct ionization from the
parent channel. In this section, we analyze the role of the
correlation-induced channel in strong-field ionization of N2

and CO2 molecules. As we will see, this depends strongly
on the electronic structure of the molecule and the details
of the laser field parameters. Direct ionization amplitudes
are calculated using the analytical approach developed in
Refs. [38,41]. We include the effect of Stark shifts, encoded
in the direct ionization amplitude via coefficients bn. Other
approaches supplying single-channel ionization amplitudes
[28,42,43] could also be used for this purpose.

As an example we consider the contribution to ionization
from the instantaneous maximum t = 0 of the laser field
F (t) = F0 cos(ωt), leading to p � 0. We neglect the correction
factor e−iQmn throughout.

To begin with, consider the case when only two ionic states
are involved. Denoting the relevant quasistatic states as |1〉 and
|2〉, the expressions for cmn and bn become

c21(p = 0) =
∫ 0

τT

dξ 〈2|UN−1(0,ξ )V 1
ee(rs(ξ ))UN−1(ξ,τT )|1〉,

b1(τT ) = 〈1|UN−1(0,τT )|1〉. (57)

Physically, such a system could describe N2 aligned at 90◦,
where essentially only two states are coupled by the laser
field: the ground state X(X2g) and the first excited state
A(A2�u) separated from the ground state by 1.3 eV. Here, the
correlation-driven excitation channel corresponds to the ionic
state changing from X to A during ionization.

In order to calculate the amplitude for correlation-induced
excitation at (imaginary) time ξ , it is necessary to propagate
state |1〉 in (imaginary) time from ts = iτT to t ′′ = iξ and state
〈2| from t0 = 0i to t ′′ = iξ :

UN−1(iξ,iτT )|1〉 = α11(ξ )|X〉 + α21(ξ )|A〉, (58)

〈2|UN−1(0,iξ ) = [〈X|β∗
21(ξ ) + 〈A|β∗

22(ξ )]e−�IXA
p ξ . (59)
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FIG. 2. (Color online) Molecular alignment-dependent ionization rates for direct XX (red circles), AA (violet squares), BB (blue triangles)
and correlation-driven channels XB (a) (green diamonds) and XA (b) (green inverted triangles) in N2. Laser parameters are in the regime of
nonadiabatic tunneling (γ � 1): λ = 800 nm, I = 0.8 × 1014 W/cm2.

Here the amplitudes αij (ξ ), βij (ξ ) reflect the time-
dependent evolution in the basis of field-free ionic states
|A〉, |X〉, due to propagation in the laser field. The field-free
energies of the two levels are set to EX = 0 and EA = �IXA

p ,
where �IXA

p > 0 is the field-free difference in ionization
potentials for channels X and A. Initial conditions for forward
and backward propagation in Eqs. (58) and (59) are determined
by the projection of the quasistatic eigenstate |1qs

ts 〉 at time
ts = iτT and eigenstate |2qs

0 〉 at time ti = 0 onto the field-
free states: α11(τT ) = 〈X|1qs

iτT
〉, α21(τT ) = 〈A|1qs

iτT
〉, β∗

22(0) =
〈2qs

0 |A〉, β∗
21(0) = 〈2qs

0 |X〉. In Eq. (57) the transition between
quasistatic states occurs at (imaginary) time ξ . Using Eqs. (58)
and (59), the integrand in Eq. (57) can be simplified to yield
a “polarized” correlation potential V21(ξ ), calculated between
the laser-dressed states of the ion:

V21(ξ ) = β∗
21〈X|Vee|X〉α11 + β∗

22〈A|Vee|X〉α11

+β∗
21〈X|Vee|A〉α21 + β∗

22〈A|Vee|A〉α21, (60)

c21(kf ) =
∫ 0

τ

dξV21(ξ )e−�IXA
p ξ . (61)

Here all time-dependent amplitudes αij ,βij are taken at
imaginary time iξ . If the states of the ion are not coupled by
the laser field (α21 = 0, β∗

21 = 0, α11 = 1, β∗
22 = 1), only the

second term β∗
22〈A|Vee|X〉α11 ≡ 〈A|Vee|X〉, corresponding to

the field-free correlation potential, contributes.
The dependence of polarized and field-free correlation

potentials for N2 and CO2 on the alignment and electronic
structure of the molecule has been discussed in our short
report [40]. Here we focus on the comparison of direct and
indirect pathways which leave the ion in an excited state.

The vertical ionization potential for channels X, A, and B
(corresponding to the ion left in the ground and first and
second excited electronic states, respectively) are known
spectroscopically: 15.6, 16.9, and 19.1 eV for N2 and 13.8,
17.3, and 18.1 eV for CO2. To calculate the effects of the
laser field, we use complete active space self-consistent field
(CASSCF) values for the dipole matrix elements calculated
by S. Patchkovskii for these molecules in our previous works
[21,24]. For N2, the dipole coupling vectors between the ionic
states are dCAS

XA = (0.25,0,0), dCAS
XB = (0,0,0.72), while for

CO2, they are dCAS
XA = (0,0,0.46), dCAS

XB = (0.27,0,0). The first
component in the brackets is perpendicular and the last is
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FIG. 3. (Color online) The ratio of ionization rates for correlation-driven and corresponding direct channels leading to the production
of N+

2 ions in excited states A (a) and B (b) for different laser parameters in the tunneling regime (γ < 1). (a) F = 0.04 a.u., λ = 1.6 μm
(red circles); F = 0.04 a.u., λ = 3.2 μm (black squares); F = 0.05 a.u., λ = 1.6 μm (green diamonds); F = 0.06 a.u., λ = 1.6 μm (violet
stars). (b) F = 0.04 a.u., λ = 1.6 μm (red circles); F = 0.04 a.u., λ = 3.2 μm (black squares); F = 0.05 a.u., λ = 1.6 μm (green diamonds);
F = 0.06 a.u., λ = 1.6 μm (violet stars).
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FIG. 4. (Color online) The ratio of ionization rates for correlation-driven and corresponding direct channels leading to the production of
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λ = 0.4 μm (pink diamonds); F = 0.04 a.u., λ = 0.8 μm (blue circles). (b) F = 0.05 a.u., λ = 0.4 μm (pink diamonds); F = 0.04 a.u.,
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parallel to the molecular axis. It is important to use the more
accurate dipoles, because the Hartree-Fock approximation
overestimates the strength of the dipole couplings: for the
XA transition in CO2 by a factor of 3.5, for the XB transition
in N2 by a factor of 2.2. Hartree-Fock dipoles would thus
overestimate laser-induced dynamics in our molecular ions.

When calculating correlation potentials, here we use the
Hartree-Fock orbitals of the neutral molecules. The correlation
potential calculated using these orbitals,

V ee
mn(t) =

∫
dr

φ∗
m(r)φn(r)

|rs(t) − r| , n,m = X, A, B, (62)

approaches V ee
mn(t) ≈ dmn/r2

s for large rs , where dmn are the
Hartree-Fock dipoles. Thus, it is likely that the unadjusted
correlation potential will lead to an overestimation of the
correlation effects. This overestimation of the electronic
coupling strength is likely to affect any method based on the
expectation values of the Hartree Fock orbitals, and may be
responsible for the strong laser-induced coupling between the
X and A channels in CO2 reported in Ref. [28]. To correct this
problem, we scale the value of the correlation potential by the
ratio of the CASSCF and Hartree Fock dipoles; using the full
CASSCF correlation potentials is the planned next step.

To calculate angle-resolved ionization rates for the direct
ionization channels, we use analytical formulas derived by
Murray and Ivanov [38,41]. The Stark shifts of the neutral
molecule and of the ion are included in the same way as in our
previous work [21,24].

As correlation-driven excitation is not subject to the full
exponential suppression characteristic of direct ionization
from lower orbitals, it becomes particularly important for low
fields and high �Ipτ , that is, in the regime of nonadiabatic
tunneling. However, our results indicate that this channel is
also important in the tunneling regime γ < 1.

We first consider N2, where correlation-driven channels
are particularly strong. We treat the N2

+ ion as a three-level
system, in the same manner as the two-level system discussed
earlier. The correlation potentials are

VAX(ξ ) =
∑

m,i,j,l=1,3

〈
A

qs

ξ=0

∣∣mN−1
〉
bmj (0,ξ )V ee

ji bil(ξ,τT )

×〈lN−1|Xqs
ξ=τT

〉, (63)

VBX(ξ ) =
∑

m,i,j,l=1,3

〈
B

qs

ξ=0

∣∣mN−1
〉
bmj (0,ξ )V ee

ji bil(ξ,τT )

× 〈
lN−1

∣∣Xqs
ξ=τT

〉
. (64)
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FIG. 5. (Color online) Angular-dependent ionization rates for direct XX (red circles), AA (violet squares), BB (blue triangles), and
correlation-driven channels XB (a) (green diamonds) and XA (b) (green inverted triangles) in CO2. Laser parameters are in the regime of
nonadiabatic tunneling (γ � 1): λ = 800 nm, I = 0.8 × 1014 W/cm2 laser field.

043409-10



TIME-DEPENDENT . . . . II. MANY-ELECTRON SYSTEMS PHYSICAL REVIEW A 86, 043409 (2012)

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

Angle of molecular alignment (deg)

|X
B

|2 /|B
B

|2

(b) CO
2
 

F=0.04, λ=1.6 mm, γ=0.76
                                   F=0.04, λ=3.2 mm, γ=0.38
                                   F=0.05, λ=1.6 mm, γ=0.6
                                  F=0.06, λ=1.6 mm, γ=0.5
                                  

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

Angle of molecular alignment (deg)

|X
A

|2 /|A
A

|2

(a) CO
2
 

F=0.04, λ=1.6 mm, γ=0.7                       
F=0.04, λ=3.2 mm, γ=0.38
                                   F=0.05, λ=1.6 mm, γ=0.6
                                  F=0.06, λ=1.6 mm, γ=0.5
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Detailed analysis of the properties of these potentials can be
found in [40]. The excitation amplitude is given by their time
integrals.

As seen in Fig. 2, correlation-driven channels play a very
important role in the strong-field ionization of N2. Here
the correlation-driven XA channel is comparable to the the
direct AA channel, while XB always dominates the direct
BB channel. In this figure, we used laser parameters similar
to experimental parameters in [24], which put the system in
the regime of nonadiabatic tunneling (γ � 1). As seen in
Figs. 3 and 4, respectively, correlation-driven channels play a
significant role in tunneling (γ < 1) and multiphoton regimes
(γ ∼ 3) as well.

In CO2, shown in Figs. 5 and 6, the XB channel is significant
for large but not for small alignment angles. The suppression at
small alignment angles is due to the dipole coupling between
the X and B states of the ion, which is maximized when the
molecule is aligned perpendicular to the laser field and is zero
for parallel alignment. For the same reason, the XA channel
dominates at small angles, but drops at large angles. As seen in
Fig. 6, a similar angular dependence applies in the tunneling
regime. Note that the contribution of the direct BB channel
shown in Fig. 5(a) is enhanced due to the Stark shift.

VII. CONCLUSIONS

Strong-field ionization is an intrinsically multielectron
process. In contrast to the usual SAE approximation, the
state of the electrons which do not escape the ion may
evolve due to interactions with the departing electron, causing
excitation of the ion and leading to attosecond dynamics of
core rearrangement. These dynamics determine the initial
conditions and the coherence of the hole created upon
ionization. Novel ultrafast imaging techniques may allow
one to time resolve core rearrangements upon strong-field
ionization [21,24] and characterize the coherence of hole
motion [25]. Thus, understanding multielectron excitations
during strong-field ionization is crucial for controlling and
imaging hole dynamics and its coherence [44] in atoms [25]
and molecules. It is also important for applications such as

mass spectrometry with femtosecond infrared pulses. Here
fragmentation patterns will strongly depend on the excitations
of the molecular ions during ionization.

To describe these multielectron dynamics, we have devel-
oped a multichannel theory of strong-field ionization. In this
theory, interaction with the departing electron couples different
ionization channels and leads to new ionization pathways,
which may compete with or even dominate the direct channels
for ionization to a particular final state. We obtained simple
analytical expressions for the ionization amplitudes for these
channels using a saddle-point method in the spirit of PPT
theory, well known for accurately describing strong-field
ionization in single-electron systems.

Using this theory, we find that nonadiabatic excitations of
the core are important under typical experimental conditions.
Compared with direct tunneling from more deeply bound
orbitals, the correlation-driven channel does not suffer the full
exponential suppression accompanying the thicker tunneling
barrier. This effect appears to be particularly strong for large
values of the Keldysh parameter γ and large �Ip. When
important, correlation-driven channels approximately follow
the angular dependence of their parent direct channels.

We are now in a position to address the questions asked
in the Introduction. Because the exponential suppression
accompanying an excited ionic state is minimized if the
excitation occurs just before the tunneling exit, diagrams
where N1 (the number of photons absorbed before electron-
electron correlation) approaches N0 = Ip/ω (the total number
of photons required for ionization) will be favored over those
with small N1. Note that the derived analytical expressions in-
corporate all such pathways. This insight also sheds light on the
question of higher-order contributions of the electron-electron
correlation. Here, powers of the correlation which contribute
to the direct amplitude by returning the core to its original state
describe polarization of the ionic core induced by the outgoing
electron. After accounting for the effects of this polarization,
correlation-induced change of the ionic state is dominated by
first-order terms, as higher-order diagrams are likely to involve
the electron spending more time under a thicker tunneling
barrier, with the accompanying exponential suppression.
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Note added in proof. We would like to draw the reader’s
attention to a recent paper by M. Amusia [45]. It points out
that the exchange between an electron tunneling from a deeply
bound orbital and an electron in the HOMO, mediated by the
electron-electron interaction, can enhance the amplitude of
the deeply bound electron orbital in the classically forbidden
region, leading to slower exponential decay in the classically
forbidden region, consistent with the behaviour of the HOMO.
The enhancement is proportional to the matrix element of
the electron-electron interaction between the two electrons,
and is mathematically similar to the enhancement discussed
in this paper. We note, however, the fundamentally dynamic

nature of effect discussed in our paper. We also bring the
reader’s attention to [46], where a similar effect and its role
in double ionization has been analyzed classically and termed
“precollision” [47].
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