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Relativistic polarization analysis of Rayleigh scattering by atomic hydrogen
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A relativistic analysis of the polarization properties of light elastically scattered by atomic hydrogen is
performed, based on the Dirac equation and second-order perturbation theory. The relativistic atomic states used
for the calculations are obtained by making use of the finite basis set method and are expressed in terms of
B splines and B polynomials. We introduce two experimental scenarios in which the light is circularly and
linearly polarized, respectively. For each of these scenarios, the polarization-dependent angular distribution and
the degrees of circular and linear polarization of the scattered light are investigated as a function of scattering
angle and photon energy. Analytical expressions are derived for the polarization-dependent angular distribution
which can be used for scattering by both hydrogenic as well as many-electron systems. Detailed computations
are performed for Rayleigh scattering by atomic hydrogen within the incident photon energy range 0.5 to
5 keV. Particular attention is paid to the effects that arise from higher (nondipole) terms in the expansion of the
electron-photon interaction.
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I. INTRODUCTION

Polarization is one of the main characteristics of light which
can be employed in order to investigate the properties of matter.
In atomic physics, especially, the polarization properties of
light have been studied for various processes, such as atomic
and ionic photoionization [1], hyperfine-quenched transitions
[2], two-photon decay [3,4], atomic-field bremsstrahlung [5],
radiative electron capture [6], and elastic scattering of light.
Elastic scattering of light by atoms and ions [7,8] (so-called
Rayleigh scattering) has applications in astronomy, shielding,
medical diagnostics, and also is used extensively to obtain
information about the structural properties of materials and
complex molecules [9–14].

Owing to the development of x-ray polarization sensitive
detectors [6,15], tunable polarization free-electron lasers [16],
as well as synchrotron radiation sources [17], an increasing
demand for accurate theoretical predictions of polarization-
dependent atomic phenomena has been pointed out in the
literature. For instance, elastic scattering experiments with a
nearly 100% polarized hard x-ray beam have been recently per-
formed at the European Synchrotron Radiation Facility (ESRF,
Grenoble, France), while further experiments are planned to
be realized at the Deutsches Elektronen-Synchrotron (DESY,
Hamburg, Germany) in the near future [18]. Moreover, the
linear polarimetry technique based on Rayleigh scattering
was used for the first time [15] and recently applied as a
complementary technique to Compton scattering [5].

During the past decades, the total cross section for Rayleigh
scattering has been widely investigated within the relativistic
as well as nonrelativistic frameworks [19–25]. In contrast,
only a few studies have been done on the angular and
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polarization properties of scattered photons. For example,
Roy et al. calculated linear polarization effects in the elastic
scattering of x-rays and γ rays from targets with Z ranging
from 13 to 92, by using numerically obtained Rayleigh
scattering amplitudes [26]. More recently, Manakov et al. ana-
lyzed photon-polarization effects in two-photon bound-bound
atomic transitions, including relativistic and retardation effects
[27]. In particular, they numerically investigated circular
dichroism effects in scattering of hard photons by hydrogenic
as well as many-electron systems [28,29].

In the present work, we investigate the polarization proper-
ties in Rayleigh scattering by an unpolarized hydrogen atom,
within the fully relativistic framework of the Dirac equation.

The use of a relativistic framework is important in studying
polarization effects in Rayleigh scattering by a hydrogen
atom, since the polarization of the latter is fully included in
the electronic spin. A full description of the electronic spin,
as a matter of fact, can be only achieved by using Dirac
relativistic atomic states. Moreover, within the nonrelativis-
tic Kramers-Heisenberg scattering amplitude (KH) [30,31],
spin-flip scattering events are normally not considered [23].
Consequently, even though the angular distribution of the
scattered photons can be reasonably well described within
KH [23], a relativistic framework is needed when dealing with
photon-atom polarization exchanges.

In this article, we introduce two experimental scenarios
in which the light is circularly and linearly polarized, re-
spectively. For each of these scenarios, we investigate the
polarization-dependent angular distribution (PDAD) and the
degrees of circular and linear polarization of the scattered
light. We derive an analytical expression for the PDAD, which
is valid for scattering by hydrogenic as well as many-electron
systems. With the aid of the Wigner-Racah algebra, we write
such an expression in terms of angular parts and reduced matrix
elements, where the latter are independent of the scattering
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geometry. The angular parts, which are directly responsible
for the shape of the PDAD, are derived analytically while the
reduced matrix elements, which determine the magnitude of
each angular part, are evaluated numerically. The numerical
evaluation of the reduced matrix elements is relativistically
carried out for the Rayleigh scattering by atomic hydrogen,
through the use of finite basis sets for the Dirac equation
constructed from B splines and B polynomials. The photon
energy range we investigate is 0.5 to 5 keV. It has been recently
shown by us that, within this energy range, the finite basis set
approach to Rayleigh scattering gives good agreement with
National Institute of Standards and Technology (NIST) data
values and other calculations [32].

This article is structured as follows: In Sec. II, we introduce
the geometry and the notation used. In Sec. III, we recall
the general polarization-dependent transition amplitude for
Rayleigh scattering and evaluate it separately for the circular
and linear polarization scenarios. In Sec. IV, we describe the
numerical method used for carrying out the calculations, while,
in Sec. V, we present the results for the PDAD and the degrees
of circular and linear polarization of the light scattered by
atomic hydrogen. Finally, a short summary is given in Sec. VI.

SI units are used throughout the article.

II. ATOMIC SYSTEM AND GEOMETRY

Let us start by introducing the atomic system and the
geometry under which the distribution of the Rayleigh-
scattered photons is investigated. We consider a hydrogen atom
in the ground state which is irradiated by light, as displayed in
Fig. 1. We adopt the quantization (z) axis along the direction
of the incident photon (k1). As we will see, such a choice

FIG. 1. (Color online) Adopted geometry for scattering process.
The polar angle θ uniquely defines the direction of the scattered
photon in the xz plane (scattering plane). The angle χ1 (χ2)
parametrizes the linear polarization of the incident (scattered) photon.
The hydrogen atom is placed at the origin of the coordinate axes xyz.

of quantization axis simplifies the multipole expansion of
the electron-photon interaction operator. The scattered photon
propagates along the direction k2 at angle θ with respect to the
z axis. The scattering plane (xz) is defined by the incident and
scattered photon’s directions. The incident (scattered) photon
has energy Eγ1 = h̄ω1 (Eγ2 = h̄ω2), propagation vector k1 (k2)
and polarization unit vector ε̂1 (ε̂2), where h̄ is the reduced
Planck constant.

The photon polarizations we consider are linear (ε̂ = ε̂l
χ )

and circular (ε̂ = ε̂c
λ). Neither linear combinations of these

polarizations nor mixed polarization states are taken into
account. In particular, we do not consider elliptically polarized
light. From an experimental point of view, linear polarization
is probably the most interesting type for the considered photon
energy range [6]. The polarization angle 0 � χ � π and
the helicity λ = ±1 are the variables used to parametrize
the linear and circular polarization states, respectively. In
this notation, λ = +1 describes right-handed and λ = −1
left-handed polarized photons, respectively. The definitions of
the polarization angles are displayed also in Fig. 1 if incident
and scattered photons are taken to be linearly polarized.

III. THEORY

A. Transition amplitude and observables

The second-order transition amplitude for Rayleigh (and
Raman) scattering is given by [32–34]

Mif (ε̂1,ε̂2) =
∑

ν

∫ 〈f |R†(k2,ε̂2)|ν〉〈ν|R(k1,ε̂1)|i〉
ωνi − ω1

+
∑

ν

∫ 〈f |R(k1,ε̂1)|ν〉〈ν|R†(k2,ε̂2)|i〉
ωνi + ω2

, (1)

where ωνi = (Eν − Ei)/h̄ is the transition frequency between
states |ν〉 and |i〉. Here, the transition operator R(k1,ε̂1)
(R(k2,ε̂2)) describes the relativistic interaction between the
bound electron and the incident (scattered) photon. In the
Coulomb gauge, the explicit expression of this transition
operator is

R(k,ε̂) = α · ε̂ eik·r , (2)

where α is the vector of Dirac matrices.
The summation over the intermediate states shown in

Eq. (1) runs over the complete one-particle spectrum |ν〉,
including a summation over the discrete part of the spectrum as
well as the integration over the positive- and negative-energy
continua. Performing this summation is perhaps the most
difficult part in determining the transition amplitude and we
shall postpone further discussion of it to Sec. IV.

The relativistic amplitude (1) approaches the nonrelativistic
Kramers-Heisenberg amplitude in the limit cα → p/m, which
corresponds to the nonrelativistic limit. Here, m is the electron
mass. However, the Kramers-Heisenberg formula contains a
further term due to the e2 A2/(2m) element in the nonrelativis-
tic Hamiltonian (the so-called seagull term). Such a quadratic
term does not explicitly appear in Eq. (1) (since the relativistic
Hamiltonian is linear in momentum) but can be nonetheless
obtained from it by carefully evaluating the contribution of the
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negative continuum intermediate states for photon energies
much smaller than the electron rest energy [34].

The initial |i〉 and final |f 〉 states of atomic hydrogen
have well-defined angular momentum j , angular momentum
projection mj , and parity (−1)l , where l is the orbital angular
momentum of the larger component of the Dirac spinor. In
the following, we denote them respectively as |βi,ji,mji

〉 and
|βf ,jf ,mjf

〉, where β is a collective label used to denote all
the additional quantum numbers needed to specify the atomic
states but for j and mj . For hydrogenic ions, specifically,
β refers to the principal quantum number n and the parity
quantum number l. Owing to the conservation of energy,
moreover, the energies Eγ1,2 and Ef,i are simply related by
the equation

Ef − Ei = Eγ1 − Eγ2 . (3)

Since Rayleigh scattering is an elastic process, the initial and
final states coincide, |i〉 = |f 〉, and thus Eq. (3) simplifies to
Eγ1 = Eγ2 ≡ Eγ . It is furthermore assumed that both initial
(mji

) and final (mjf
) polarizations of atomic states remain

unobserved, as is typical for most experiments.
In this work, we shall separately consider the two ex-

perimental scenarios corresponding to circularly and linearly
polarized light. In the circular polarization scenario, the
incident light is circularly polarized or unpolarized and the
polarization of the scattered light is measured in the circular
base. In the linear polarization scenario, the incident light
is linearly polarized or unpolarized and the polarization of
the scattered light is measured in the linear base. We conduct
our analysis by investigating the PDAD (i.e., the polarization-
dependent angular distribution) and the degrees of circular and
linear polarization of the scattered light.

For the circular polarization scenario, the PDAD can be
written in terms of the scattering amplitude (1) as [32]

dσ c

d�
(λ1,λ2,Eγ ,θ ) = α2c2

(2ji + 1)

∑
mji

mjf

|Mc(λ1,λ2)|2, (4)

if the polarization of the incident light is known. In the above
equation, α is the electromagnetic coupling constant, c is the
speed of light in vacuum, and for simplicity we defined

Mc(λ1,λ2) ≡ Mif
(
ε̂c

λ1
,ε̂c

λ2

)
. (5)

If the incident light is unpolarized, the PDAD for the circular
polarization scenario is obtained by taking Eq. (4) and
averaging over the (two independent) circular polarizations
of the incident light [35]:

dσ̄ c

d�
(λ2,Eγ ,θ ) = 1

2

∑
λ1

dσ c

d�
(λ1,λ2,Eγ ,θ ). (6)

The PDADs for the linear polarization scenario,
dσ l/d�(χ1,χ2,Eγ ,θ ) and dσ̄ l/d�(χ2,Eγ ,θ ), are simply
obtained from Eqs. (4) and (6), respectively, with the
replacements c → l, λ1 → χ1, and λ2 → χ2.

The degrees of circular (PC) and linear (PL) polarization of
the scattered light, if incoming light is polarized, are defined
as [6,36]

PC = P3, PL =
√

(P1)2 + (P2)2, (7)

where

P1 = dσ l(χ1,0◦,Eγ ,θ ) − dσ l(χ1,90◦,Eγ ,θ )

dσ l(χ1,0◦,Eγ ,θ ) + dσ l(χ1,90◦,Eγ ,θ )
,

P2 = dσ l(χ1,45◦,Eγ ,θ ) − dσ l(χ1,135◦,Eγ ,θ )

dσ l(χ1,45◦,Eγ ,θ ) + dσ l(χ1,135◦,Eγ ,θ )
, (8)

P3 = dσ c(λ1, + 1,Eγ ,θ ) − dσ c(λ1, − 1,Eγ ,θ )

dσ c(λ1, + 1,Eγ ,θ ) + dσ c(λ1, − 1,Eγ ,θ )
.

P1, P2, and P3 are called the first, second, and third Stokes
parameter, respectively. We have denoted, above and in the
following, dσ/d� by dσ for brevity. If the incoming light is
unpolarized, the degrees of circular and linear polarization of
the scattered light will be denoted by P̄C and P̄L, respectively.
Their definitions are given by

P̄C = P̄3, P̄L =
√

(P̄1)2 + (P̄2)2, (9)

where

P̄1 = dσ̄ l(0◦,Eγ ,θ ) − dσ̄ l(90◦,Eγ ,θ )

dσ̄ l(0◦,Eγ ,θ ) + dσ̄ l(90◦,Eγ ,θ )
,

P̄2 = dσ̄ l(45◦,Eγ ,θ ) − dσ̄ l(135◦,Eγ ,θ )

dσ̄ l(45◦,Eγ ,θ ) + dσ̄ l(135◦,Eγ ,θ )
, (10)

P̄3 = dσ̄ c(+1,Eγ ,θ ) − dσ̄ c(−1,Eγ ,θ )

dσ̄ c(+1,Eγ ,θ ) + dσ̄ c(−1,Eγ ,θ )
.

Prior to showing the results for the above defined PDADs
and degrees of linear and circular polarization of the scattered
light, in the following subsections we will further evaluate
the scattering amplitude (1) for both circular and linear
polarization scenarios. We will show that the use of Wigner-
Racah algebra technique allows for significant simplifications.

B. Evaluation of transition amplitude for circular polarization
scenario

We shall here evaluate the amplitude (1) for the case in
which the incident light is circularly polarized or unpolarized
and the polarization of the scattered light is measured in the
circular base. To this end, we expand the vector plane wave
ε̂c

λe
ik·r in terms of spherical tensors with well-defined angular

momentum properties [37]:

ε̂c
λe

ik·r =
√

2π

+∞∑
L=1

L∑
M=−L

∑
p=0,1

iL[L]1/2(iλ)p ap

LM (k,r)

×DL
Mλ(ϕk,θk,0), (11)

where [L1,L2, . . . ,Ln] = (2L1 + 1)(2L2 + 1) · · · (2Ln + 1),
and the spherical tensor ap

LM (k,r) refers to the magnetic
(p = 0) and electric (p = 1) multipoles. Each term ap

LM (k,r)
has angular momentum L, angular momentum projection M ,
and parity (−1)L+1+p.

As seen from Eq. (11), the angular dependence of the
vector plane wave results from the Wigner (rotation) matrices.
The Wigner matrices transform each multipole field, with
the original quantization axis along the photon propagation
direction, into the field with quantization axis along the
z||k1 direction (as shown in Sec. II). This definition of the
quantization axis enables us to describe the second photon
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direction by means of the single polar angle θ . Thus the Wigner rotation matrices simplify as D
L2
M2λ2

(ϕk2 ,θk2 ,0) = d
L2
M2λ2

(θ ) and

D
L1
M1λ1

(ϕk1 ,θk1 ,0) = δM1λ1 .
Combining Eqs. (1), (2), and (11), and making use of the Wigner-Eckart theorem [38], the transition amplitude can be

written as

Mc(λ1,λ2) = 2π
∑
L1L2
M2

∑
p1p2

(+i)L1−L2+p1+p2 [L1,L2]1/2(λ1)p1 (λ2)p2d
L2
M2−λ2

(θ )

×
∑
jν

(−1)−jν
1

(2jν + 1)1/2
(�jν (1,2)Sjν (1,2) + �jν (2,1)Sjν (2,1)), (12)

where the reduced (second-order) matrix element is given by

Sjν (1,2) =
∑
βν

〈βi,ji |
∣∣α · ap1

L1
(k1,r)

∣∣|βν,jν〉〈βν,jν |
∣∣α · ap2

L2
(k2,r)

∣∣|βi,ji〉
ωνi + ω2

, (13)

and Sjν (2,1) is obtained from Eq. (13) by (i) interchanging
the label 1 with 2 and (ii) replacing the positive sign in the
denominator with a negative sign. This latter replacement is
given by the fact that, while the second photon is emitted, the
first photon is absorbed by the atom. Following the notation
used in Refs. [32,39], in Eq. (12) we have furthermore defined

�jν (1,2) =
∑
mjν

(−1)mjf
+mjν (2jν + 1)1/2

(
jf L1 jν

−mjf
λ1 mjν

)

×
(

jν L2 ji

−mjν
M2 mji

)
, (14)

where �jν (2,1) is obtained from Eq. (14) by replacing L1 ↔
L2 and λ1 ↔ M2.

Equation (12) can be used to evaluate Rayleigh scattering
by hydrogenic as well as many-electron systems. For the latter
case, we must just replace hydrogenic states with states of
many-electron systems. In this article, results are only given
for Rayleigh scattering by atomic hydrogen.

C. Evaluation of transition amplitude for linear polarization
scenario

We shall here evaluate the amplitude (1) for the case in
which the incident light is linearly polarized or unpolarized
and the polarization of the scattered light is measured in the
linear base. To this end, we make a decomposition of the vector
plane wave ε̂l

χ eik·r by using the relation [37]

ε̂l
χ = − 1√

2

∑
λ=±1

e−iλχ ε̂c
λ (15)

together with Eq. (11). By combining Eqs. (1), (2), and (15),
we get a simple equation which relates the amplitudes for
circular and linear polarization scenarios:

Ml(χ1,χ2) = 1

2

∑
λ1λ2

e−iλ1χ1eiλ2χ2Mc(λ1,λ2), (16)

where for simplicity we defined

Ml(χ1,χ2) ≡ Mif
(
ε̂l

χ1
,ε̂l

χ2

)
. (17)

The amplitude for the linear polarization scenario can be thus
easily evaluated by using Eqs. (16) and (12).

IV. COMPUTATION

In this section, we shall discuss how the reduced matrix
element (13) is calculated in the present work.

During the last decade, various methods have been investi-
gated for calculating the reduced matrix element (13) as well as
the whole transition amplitude (1) (see Refs. [21–23,40,41]). In
practice, the summation over the complete spectrum contained
in Eq. (13) cannot be performed explicitly. Several approaches
and approximation techniques have thus been proposed in the
literature to perform this summation, such as the Coulomb-
Green function approach, which has been widely used for
studying different decay and scattering processes of atoms
and ions [42,43].

An alternative approach is the finite basis set method
[44–50]. The finite basis set method is based on the supposition
that the ion (or atom) is enclosed in a finite cavity. Such
a restriction leads to a fully “discretized” atomic spectrum,
including the bound as well as the continuum part of it. Upon
this supposition, the representation of the hydrogenic wave
functions is given in terms of pseudo basis set functions [45].
The radius of the cavity R is of course taken large enough to
ensure a good approximation for the wave functions.

In the present work, we calculate the reduced matrix
element (13) by adopting the finite basis set method, using
B splines and B polynomials as finite basis sets. The B splines
are one of the most commonly used family of piecewise
polynomials, since they are well adapted to numerical tasks
[45]. The B polynomials, or the Bernestein polynomials [46],
are a good alternative to the B splines since they allow for
analytical finite-basis-set calculations. These are polynomial
functions of nth degree that are used to obtain the solution of
linear and nonlinear differential equations [46]. The details of
these basis sets, as well as a comparison between them, can be
found in Ref. [51]. Thus, we restrict ourselves to describe the
characteristic parameters used in this work.

The parameters of the B spline basis set are the radius of
the cavity (Rbs), the number of B splines (nbs) and their degree
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(k). As for the B polynomials, the parameters are the radius of
the cavity (Rbp) and the number of B polynomials (nbp) (the
degree of the B polynomials is nbp − 1). The parameters used
in both basis sets were optimized in order to obtain stability
and agreement of six digits between the results of both basis
sets. The optimal parameters are Rbs = 60 a.u., nbs = 60,
k = 9, Rbp = 50 a.u., and nbp = 40. Such set of parameters
was already obtained for the case of two photon emission
[51,52], and for the angular distribution in Rayleigh scattering
by atomic hydrogen [32].

V. RESULTS AND DISCUSSION

In this section, we shall present the results for the PDADs
and the degrees of circular and linear polarization of the scat-
tered light which we defined in Sec. III A [see Eqs. (4), (6), (7),
and (9)]. Such results have been obtained by using the relations
presented in Secs. III B and III C, and by implementing the
computation technique presented in Sec. IV.

A. Circular polarization scenario

Figure 2 displays the angular distribution function (4),
dσ c/d�, for the four polarization configurations λ1 = ±1,
λ2 = ±1 and λ1 = ±1, λ2 = ∓1. The analyzed photon ener-
gies are 500 eV (a) and 5 keV (b). The shape of the angular
distribution for Eγ = 500 eV can be easily understood owing
to the conservation of angular momentum: Since the leading
electric-dipole (E1E1) term is independent of spin interaction
operators within the low-energy limit, the photon helicity must
be conserved (flipped) for forward (backward) scattering. In

0 90 180
0

0.04

0.08

dσ
c
/d

Ω
(b

ar
n) λ1 = ±1, λ2 = ±1

(a) Eγ = 500 eV

θ (deg)
0 90 180

0

0.04

0.08

λ1 = ±1, λ2 = ∓1

θ (deg)

0 90 180
0

0.04

0.08

λ1 = ±1, λ2 = ±1

θ (deg)

dσ
c
/d

Ω
(b

ar
n)

(b)Eγ = 5 keV

0 90 180
0

0.04

0.08

λ1 = ±1, λ2 = ∓1

θ (deg)

All multipoles

E1E1

FIG. 2. (Color online) Angular distribution of scattered light
when incident light is circularly polarized and scattered light is
measured in circular base (dσ c/d�). Results are calculated with
the account of all photon multipoles (solid-black line) and within
the electric dipole approximation (dashed-red line) for two selected
photon energies: (a) Eγ = 500 eV; (b) Eγ = 5 keV.

the low-photon energy regime, it can be indeed easily found
that the PDAD is ∼(1 + λ1λ2 cos θ )2.

A similar discussion also applies to the higher-energy case
Eγ = 5 keV. However, as discussed elsewhere [32], multipoles
beyond the E1E1 approximation (especially M1M1) determine
here a strong suppression of backwards scattering, thereby
suppressing helicity-flip scattering events. The contribution of
the negative continuum intermediate states in the calculation of
the amplitude for M1M1 multipole is dominant (≈100%), as it
has been also shown for the two-photon decay process in high-
Z and low-Z ions [53]. However, this cannot be taken as an
estimation of the relativistic effects in calculating the PDADs
since, as mentioned is Sec. III, for Eγ 
 mc2 the contribution
of the negative continuum can be related to the seagull term of
the nonrelativistic Hamiltonian [the term ∼e2 A2/(2m)].

We expect that relativistic effects in the PDADs shown
in Fig. 2, as well as in the PDADs shown further on, are
limited to a few percent (�5%) in this photon energy range,
as it has also been shown for the angular distribution of the
scattered photons [23,54]. However, a full comparison between
relativistic and high-multipole effects in PDADs is still to be
done.

Figure 3 displays PC (i.e., the degree of circular polarization
of the scattered light), as a function of the scattering angle
θ , for the two energy values Eγ = 500 eV and 5 keV.
When compared with Fig. 2, it is evident that the degree of
circular polarization is less sensitive to corrections from higher
multipoles than the angular distribution. At Eγ = 5 keV, the
(weak) effect that higher multipoles have on the degree of
circular polarization of the scattered light, PC , is to slightly
increase it within the interval 0 � θ � 60◦, where 90% of the
scattering events occur [32].

The angular distribution function dσ̄ c/d� can be obtained
from Fig. 2, by taking the arithmetic mean of the curves refer-
ring to positive (λ1 = +1) and negative (λ1 = −1) helicity of
the first photon, for fixed λ2. Following this procedure, the an-
gular distribution takes the familiar shape ∼1 + cos2 θ at low
energies, independently of the helicity of the scattered photon.

The function P̄C (i.e., the degree of circular polarization
of the scattered light for unpolarized incident light) vanishes

0 90 180
−1

−0.5

0

0.5

1

P
C

Eγ = 500 eV

θ (deg)
0 90 180

−1

−0.5

0

0.5

1
Eγ = 5 keV

θ (deg)

All

E1E1
s

E1E1

λ1 = +1

λ1 = −1
λ1 = −1

λ1 = +1

FIG. 3. (Color online) Degree of circular polarization of scat-
tered light when incident light is circularly polarized (PC), as a
function of the scattering angle θ . The curves corresponding to
positive (λ1 = +1) and negative (λ1 = −1) helicity of the incident
photon are displayed. Results are calculated with the account of all
photon multipoles (solid-black line) and within the electric dipole
approximation (dashed-red line).
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FIG. 4. (Color online) Angular distribution of scattered light
when incident light is linearly polarized and scattered light is
measured in linear base (dσ l/d�). Results are calculated with the
account of all photon multipoles (solid-black line) and within the
electric dipole approximation (dashed-red line), for two selected
photon energies: (a) Eγ = 500 eV; (b) Eγ = 5 keV.

for all angles and energies. This is easily seen by applying
the definition (9) to the graphs shown in Fig. 2. Such a result
is somehow expected since, in this case, both hydrogen atom
and incident light are unpolarized and therefore there cannot
be any preferred direction for the circular polarization of the
scattered light. If there were any, then violation of parity would
occur.

B. Linear polarization scenario

Figure 4 displays the angular distribution function dσ l/d�

for the four polarization configurations χ1 = 0◦(90◦), χ2 =
0◦(90◦) and χ1 = 0◦(90◦), χ2 = 90◦(0◦). The analyzed pho-
ton energies are 500 eV (a) and 5 keV (b). Similarly
to the circular polarization scenario, deviations from the
electric-dipole approximation are more pronounced for higher
photon energies. At low energies, where the electric-
dipole approximation holds, we recover the well-known
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Eγ = 500 eV

All
E1E1

0 90 180
0
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1
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FIG. 5. (Color online) Degree of linear polarization of the
scattered light when incident light is unpolarized (P̄L), as a function
of the scattering angle θ . Results are calculated with the account of
all photon multipoles (solid-black line) and within the electric dipole
approximation (dashed-red line).

behavior dσ l(χ1,χ2,Eγ ,θ ) ∝ |ε̂l
χ1

· ε̂l
χ2

|2, which characterizes
the polarization-dependent angular distribution in the nonrela-
tivistic (Thomson) limit. More specifically, at low energies we
obtain

dσ l(0◦, 0◦, Eγ , θ ) ∝ cos2 θ,

dσ l(90◦, 90◦, Eγ , θ ) ∝ (const), (18)

dσ l(0◦, 90◦, Eγ , θ ) = dσ l(90◦, 0◦, Eγ , θ ) = 0.

These nonrelativistic polarization correlations are the same as
for two-photon decay in the hydrogen atom [4]. This result is
not unexpected in view of the similarity of the amplitude for
the two processes.

As seen from Fig. 4, the angular distribution for Rayleigh
scattering vanishes at normal angle (θ ≈ 90◦) if the incident
light is linearly polarized along χ1 = 0◦ direction. Moreover,
the same figure shows that spin-flip scattering events (i.e.,
events for which χ1 = 0◦, χ2 = 90◦ or χ1 = 90◦, χ2 = 0◦) are
strongly suppressed at any angle θ and any energy Eγ . The
linear polarization of the photon, which coincides with its spin,
is therefore conserved, at any photon energy.

As can be easily verified from Eq. (7), suppression of
spin-flip transitions implies also that the degree of linear
polarization, PL, turns out to be simply ≈1, for incident
polarization along χ1 = 0◦, 90◦ direction and therefore is not
displayed.

The results for the function dσ̄ l/d� can be obtained from
Fig. 4, by taking the arithmetic mean of the curves referring to
χ1 = 0◦ and χ1 = 90◦, for fixed χ2.

Figure 5 displays P̄L (i.e., the degree of linear polarization
of the scattered light for unpolarized incident light) as a
function of the scattering angle θ , for the two photon energies
500 eV and 5 keV. We read from the figure that light scattered
at the normal angle is fully linearly polarized, while light
scattered forwards or backwards is unpolarized, at any photon
energy. This polarization feature is also known to characterize
the scattering of light by small molecules, when the photon
wavelength is small compared with the molecular radius. It
is due to this property that the sunlight scattered by surfaces
at normal angles is always linearly polarized along the axis
which is orthogonal to the scattering plane [7].
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VI. SUMMARY AND PERSPECTIVES

We studied polarization properties of light in Rayleigh
scattering by unpolarized atomic hydrogen, based on second-
order perturbation theory and the Dirac relativistic equation.
We introduced two experimental scenarios in which the light
is circularly and linearly polarized, respectively. For each
of these scenarios, we analyzed the polarization-dependent
angular distribution and the degrees of circular and linear
polarization of the scattered light. To this end, we first
decomposed the Rayleigh transition amplitude in terms of
spherical tensors (angular part) and reduced amplitudes (radial
part). We then calculated these latter for scattering by a
hydrogen atom by means of the finite-basis-set method based
on the relativistic Dirac equation. The polarization-dependent
angular distribution and the degrees of circular and linear
polarization of the scattered light were plotted for the photon
energy range 0.5 to 5 keV.

We found that, for circularly polarized incident light,
helicity-flip scattering events are allowed at low energies
(Eγ � 500 eV) and are suppressed at high energies (Eγ � 5
keV), due to the suppression of backward scattering. Thus,
the helicity of the incident photon is not conserved at low
photon energies while it is conserved at high photon energies.

For linearly polarized incident light, it was shown that
spin-flip scattering events (i.e., events for which the linear
polarization angle of incident and scattered light differ by a
normal angle) are strongly suppressed, at any scattering angle

and photon energy. Thus, the linear polarization of the incident
photon is approximately conserved and conveyed to the scat-
tered photon, in the whole investigated photon energy range.

Finally, light scattered at normal angles was found to be
fully linearly polarized, at any photon energy.

With advances in polarization-sensitive detectors in the
x-ray and γ -ray regions, theoretical studies of polarization of
photons emitted or scattered by atomic systems have lately
become important [6,15,18]. Further studies to investigate
polarization properties of light scattered by solid targets are
underway.
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