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Anti-Stokes-enhanced tunneling ionization of molecules
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We consider the influence of vibrational motion of nuclei on the tunneling ionization of a molecule in a strong
light field. Unlike the molecular Ammosov-Delone-Krainov (MO-ADK) model [X. M. Tong et al., Phys. Rev. A
66, 033402 (2002)], the Franck-Condon factors that take into consideration the quantization of nuclear vibrations
are introduced in the theory. Modification of the vibrational motion of nuclei by the external field leads to the
time-dependent constant in the asymptotic form of the electronic wave function. This in turn leads to a more
significant modification of the Keldysh theory for the tunnel effect in molecules as compared to the MO-ADK
model. We take into account the possibility of vibrational quantum numbers changing in a neutral molecule and in
a molecular ion in the process of the tunneling ionization, which in principle enables one to get molecular ions of
a certain isotopic composition if the vibrational states of the neutral molecules with this isotopic composition are
pumped before ionization. We present numerical results illustrating this possibility for the isotopes of a hydrogen
molecule.
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I. INTRODUCTION

The ionization of molecules by a laser field has been
investigated extensively both theoretically and experimentally.
For a sufficiently intensive laser field of a frequency that is
not very high (appropriate estimates are given below) this
ionization occurs in the tunneling regime. The availability of
vibrational and rotational degrees of freedom of molecules
leads to a larger number of possible effects accompanying the
tunneling ionization of molecules compared to the tunneling
ionization of atoms. One of these effects connected with the
vibrational degrees of freedom is examined in this paper.

In the tunneling removal of an electron from a molecule, the
molecular ion can occur in the ground vibrational as well as
in excited vibrational states. In terms of energy, it is clear that
the ion formation probability in one of the excited vibrational
states is less than the probability of its formation in the ground
vibrational state. The appropriate calculations were performed
in Ref. [1]. By analogy with the Raman effect, such a decrease
of the tunneling rate can be called Stokes attenuated. However,
if initially a neutral molecule is in an excited vibrational state,
then after the tunneling removal of an electron a molecular ion
can occur in the ground vibrational state. Again, as regards
energy, it is clear that the tunneling rate will be greater than
the tunnel effect rate for a neutral molecule in the ground
vibrational state. Such an increase of the tunnel effect rate can
be called anti-Stokes enhanced.

The reasons for the occurrence of a molecule in the excited
vibrational state at the moment of tunneling ionization may be
different, for example, for a high temperature of molecular gas
or a thermodynamically unbalanced population of molecular
vibrational levels formed as a result of a chemical reaction.
Purposively prepumping the excited vibrational states due
illumination by resonance IR radiation is also possible. In the
latter case the anti-Stokes-enhanced tunneling ionization may
be useful for the laser isotope separation [2–4]. In this paper
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this possibility is demonstrated by an example of hydrogen
isotopes.

Note that the analogous phenomenon in ordinary single-
photon molecular ionization was described in Ref. [5]. The
vibrational excitation of a molecule shifts the photoelectric
threshold to the long-wave region.

Several remarks should be made now concerning the
accuracy of the method of taking into account the core
excitation or deexcitation in the tunnel effect proposed in
Ref. [1]. The development of this method made it possible to
include many-body effects into the theory of the tunnel effect
in atoms [6–9]. In turn, the many-body effects made it possible
to explain the large number of experimental results [10–12].
In a recent paper [13] good agreement between the method
proposed in Ref. [1] and the time-dependent Schrödinger
equation numerical solution [14] was demonstrated.

In this paper we restrict consideration to a hydrogen
molecule to make it possible to use the most illustrative
analytical methods. In Sec. II the electronic wave functions are
constructed in the neutral hydrogen molecule and its positive
ion by the variational method. In Sec. III the vibrational motion
of molecules is considered in the Morse potential, the Dyson
orbital is calculated, and the influence of a strong laser field
on the vibrational molecular motion is taken into account,
namely, on the magnitude of Franck-Condon factors. In Sec. IV
the formula of the tunneling ionization rate is derived on the
basis of the molecular Ammosov-Delone-Krainov (MO-ADK)
model but with a more accurate account of vibrational motion.
In Sec. V formulas are given for the ionization signal in the
laser beam focus. In Sec. VI the results of calculation of the
ionization signal are given for molecules with various isotopic
composition in various initial vibrational states.

The atomic units are used hereafter, except in specified
cases.

II. ELECTRON MOTION

The success of the Keldysh theory in describing the atomic
ionization rate in a strong laser field (see, e.g., the review
in Ref. [15]) stimulated the appearance of theoretical works
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devoted to the generalization of the theory on molecules. As
is well known, the tunneling regime of ionization arises in the
limit of the small Keldysh parameter γ ,

γ 2 =
(κω

F

)2
� 1,

where ω is the carrier frequency of laser radiation, F is the
amplitude value of the laser wave electric field, and κ2/2 is the
atomic ionization potential. This limiting case is also referred
to as the ADK model [16].

In Ref. [17] the Keldysh theory was generalized to the
case of the tunnel effect in Rydberg molecules including the
polar ones, when the angular part of the wave function of
the Rydberg electron is not a simple spherical function. In
Ref. [18] the ADK model was used to describe the tunneling
ionization of molecules in which the effective charge of the
residual ion depended on the angle between the axis of the
molecule and the direction of the light wave electric field.
Thereby the anisotropy of the molecular core potential was
taken into account. The most complete generalization of the
tunneling ionization theory for molecules was carried out in
Ref. [19] (the MO-ADK model); thus we will adhere to this
work further in this section.

The MO-ADK model [19] requires using the valence
electron wave function in the asymptotic form. For the ground
state of the neutral hydrogen molecule and its positive ion
the wave function in the single-electron approximation can be
written in the form of an expansion in terms of the spherical
functions Ylm,

�(r) = R(r)
∑

l=0,2,...

ClYl0(r̂), r̂ = r/r,

∑
l

|Cl|2 = 1, (1)

where R(r) is the radial wave function corresponding to
the electron binding energy κ2/2. Its asymptotic behavior is
determined by the expression

R(r) → Cκ3/2(κr)1/κ−1e−κr , r → ∞. (2)

We shall put forth the procedure of calculating the Cl

coefficients, the κ parameter, and the C coefficient. Note that
the influence of relativistic effects on the C constant was
investigated in our recent research [20]. We shall use the
direct variational method given in Ref. [21] as the basis of
the calculation. We shall provide quantities relating to the
hydrogen molecular ion with the index f and the neutral
molecule of hydrogen with the index i.

A. Hydrogen-molecule ion

The Hamiltonian of a singly charged ion of the hydrogen
molecule has the form

Ĥf = −1

2
∇2

r − 1

2Ma

∇2
Ra

− 1

2Mb

∇2
Rb

− 1

ra

− 1

rb

+ 1

R
.

Here Ri and Mi (i = a,b) are the coordinate and the mass of the
ith nucleus and ri = r − Ri and R = Ra − Rb are vectors that
are equal to the absolute value of the internuclear separation
and specify the molecule orientation in space. For symmetric
nonpolar molecules Ra = −Rb and Ra = Rb = R/2.

In the Born-Oppenheimer approximation the electron wave
function satisfies the stationary Schrödinger equation at a fixed
R value,

Ĥ
(BO)
f (R)�f (r; R) = Ef (R)�f (r; R), (3)

where

Ĥ
(BO)
f (R) = −1

2
∇2

r − 1

ra

− 1

rb

.

In the simplest case of the variational method, the solution to
Eq. (3) is chosen in the form of a superposition of two wave
functions of the hydrogen-atom ground state with the centers
in the corresponding nuclei,

�f (R,r) = γ
3/2
f

[2π (1 + Sf )]1/2
(e−γf ra + e−γf rb ). (4)

Here γf is the variational parameter that should be defined and
Sf is the electronic overlap integral of the functions, centered
on the different nuclei, giving the function (4) as normalized.
This integral is obtained in prolate spheroidal coordinates [21]

Sf = S(ρf ) = (
1 + ρf + 1

3ρ2
f

)
e−ρf , ρf = γf R. (5)

The γf parameter is found from the functional minimum
condition

Jf (γf ,R) = 〈�f (R)|Ĥ (BO)
f (R)|�f (R)〉,

with R given, which leads to the transcendental equation

2γf = −gf (ρf )/hf (ρf ), (6)

where

hf (ρ) = −1

2
+1 + E(ρ)

1 + S(ρ)
, gf (ρ)= 1

ρ
− 1 + C(ρ) + 2E(ρ)

1 + S(ρ)
,

C(ρ) = 1

ρ
[1 − (1 + ρ)e−2ρ], E(ρ) = (1 + ρ)e−ρ.

B. Neutral hydrogen molecule

Analogous calculations for the neutral hydrogen molecule
give

�i(r1,r2; R) = γ 3
i

π
[
2
(
1 + S2

i

)]1/2 [e−γi (ra1+rb2) + e−γi (rb1+ra2)].

(7)
Here the electronic overlap integral Si = S(γiR) is determined
by Eq. (5) and the parameter γi is found from the functional
minimum condition

Ji(γi,R) = 〈�i(R)|Ĥ (BO)
i (R)|�i(R)〉

at a given R. This implies that γi is the root of the
transcendental equation

2γi = −gi(ρi)/hi(ρi), ρi = γiR, (8)

where

hi(ρ) = 1 − S2(ρ) + 2S(ρ)E(ρ)

1 + S2(ρ)
,

gi(ρ) = 1

ρ
− 2[1 + C(ρ)] + 4S(ρ)E(ρ) − C ′(ρ)E ′(ρ)

1 + S2(ρ)
,

C ′(ρ) = 1

ρ

[
1 −

(
1 + 11

8
ρ + 3

4
ρ2 + 1

6
ρ3

)
e−2ρ

]
,

043401-2



ANTI-STOKES-ENHANCED TUNNELING IONIZATION OF . . . PHYSICAL REVIEW A 86, 043401 (2012)

E ′(ρ) =
(

5

8
− 23

20
ρ − 3

5
ρ2 − 1

15
ρ3

)
e−2ρ + 6φ(ρ)

5ρ
,

φ(ρ) = S2(ρ)(ln ρ + γ )

− S2(−ρ)E1(4ρ) + S(ρ)S(−ρ)E1(2ρ),

γ ≈ 0.577 is the Euler constant, and

E1(z) =
∫ ∞

z

e−t

t
dt

is the integral exponent. The quantities C ′(ρ) and E ′(ρ) are due
to the exchange Coulomb interaction between electrons.

Equations (6) and (8) are solved numerically at a given R.
Let us denote the result by γ̃μ(R). The total electron energy
of the molecule or its ion is given by the following expression
without taking into account vibrations and rotations:

Eμ(R) = Jμ(γ̃μ(R),R) + 1

R
. (9)

More accurate values of Eμ(R) can be obtained by means of
the GAUSSIAN code [22]. In compliance with the general theory,
they would be slightly lower than the variational values (9).
According to the estimates, the difference is not more than 5%.

III. VIBRATIONAL MOTION

For the complete description of the molecule stationary
states in the Born-Oppenheimer approximation, the electron
functions (4) and (7) should be multiplied by the wave
functions of the nuclei vibrational motion,

�μ,vμ
(R,re) = χμ,vμ

(R)�μ(R,{r}), μ = i,f,

where {r} is the set of the electron coordinates and χμ,vμ

describes the vibrational stationary state with the quantum
number vμ = 0,1, . . .. The potential energy of molecule
vibrations is conveniently modeled by the Morse potential

V (R) = De[e−2a(R−Re) − 2e−a(R−Re)], (10)

where Re is the equilibrium internuclear separation. The
energy levels in the potential (10) have the form

Ev = − a2

2M

(
β − v − 1

2

)2

, v = 0,1, . . . , (11)

where β = √
2MDe/a and M = MaMb/(Ma + Mb) is the

reduced mass of the nuclei.
The quantity (11) can be considered as the spectrum of the

anharmonic oscillator

Ev = ωe

(
v + 1

2

) − ωexe

(
v + 1

2

)2 − De,

the parameters ωe and xe of which are directly connected with
the Morse potential parameters De, a, and Re. In our case these
parameters can be obtained by minimization of the total energy
functionals (9) with respect to R. However, major theoretical
models of quantum chemistry give overestimated frequency
values of ωe up to 10%. Thus, to correct the results achieved
by means of the GAUSSIAN code, corresponding scaling factors
[23,24] were obtained. The method [21] used in this paper is
also not an exception. Therefore, in the present paper we use
the more accurate values of the parameters ωe, xe, and De

cited in Ref. [25]. Wave functions normalized to the unity

that correspond to the vibrational levels (11) are given by the
expression

χv(R) = Nvz
β−v−1/2e−z/2L2β−2v−1

v (z), (12)

where

Nv =
[
av!(2β − 2v − 1)

�(2β − v)

]1/2

,

z = 2βe−(R−Re), v = 0,1, . . . ,

and L is the Laguerre polynomial.

A. Dyson orbital

In the traditional ADK and MO-ADK models, the core of
an atom or an ion is regarded as frozen; its state does not
change after the removal of the tunneling electron. However,
the electron wave functions of the core electrons in a neutral
molecule and in a molecular ion are generally different. This
difference is the electronic analog of the Franck-Condon factor,
which is stronger for the few-electron systems, in particular,
for the hydrogen molecule under consideration in this paper.
To account for the differences between the core electronic
functions, the Dyson orbital should be used, which corresponds
to the overlap integral between the electronic configurations
of a neutral molecule in the initial state and of its ion in the
final state,

�
(Dyson)
f i (r) =

∫ ∞

0
dR χ∗

f,vf
(R)χi,vi

(R)

×
∫

�∗
f (R,r′)�i(R; r,r′)d3r ′. (13)

The importance of the Dyson orbital usage in studying the
ionization of molecules was emphasized in Ref. [26].

Taking into account the small magnitude of the classical
vibration amplitude compared to the equilibrium internuclear
separation, expression (13) can be simplified

�
(Dyson)
f i (r) ≈ 〈f,vf |i,vi〉�̃(Ref ,Rei ; r).

Here

〈f,vf |i,vi〉 =
∫ ∞

0
χ∗

f,vf
(R)χi,vi

(R)dR (14)

is the vibrational overlap integral. Its absolute square is
the Franck-Condon factor. In Ref. [27] analytical recurrent
formulas for the integral (14) were derived within the harmonic
oscillator model. In the case of vi = 0 the results practically
do not differ from those obtained in the Morse potential
model. However, with the growth of vi the role of the
anharmonic effects increases dramatically. For example, for
the H2 molecule at vi = 1 the vibrational overlap integrals
differ by ∼10%, at vi = 2 by ∼25%, and at vi = 3 by more
than twice as much. Therefore, in taking into account the
excitations of the vibrational degrees of freedom the harmonic
oscillator model appears to be just qualitative. Thus the integral
(14) for the Morse potential can be found only numerically
with specified values of parameters.

In a strong laser field the collisionless orientation of the
molecular axes occurs along the direction of the light wave
electric vector [28–32]. The direct observation of the molecule
orientation influence on its ionization probability in a strong
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laser field was carried out in Ref. [33]. Here we will not take
into account this effect, assuming that the ionizing laser pulse
is sufficiently short. Accounting for the orientation for the long
pulses is not difficult. Therefore, in Eq. (13), R is used instead
of R. The final result will be averaged with respect to the
random orientation of the molecule relative to the radiation
polarization vector.

Further, in Eq. (13), the electronic overlap integral

�̃(Ref ,Rei ; r) =
∫

�∗
f (Ref ,r′)�i(Rei ; r,r′)d3r ′,

where Rei and Ref are the equilibrium internuclear separations
in the neutral molecule and in its ion, respectively, is
transformed by taking into account the axial and reflection
symmetries of the integrand functions in Eqs. (4) and (7),

�̃(Ref ,Rei ; r)

= 2
(
γ̃ 2

i γ̃f

)3/2[
π

(
1 + S̃2

i

)
(1 + S̃f )

]1/2

×e−γ̃iRc(Rei ;r, cos θ)
∫ ∞

0

∫ +1

−1
e−γ̃iRc(Rei ;r ′,ζ ′)

×[e−γ̃f Rc(Ref ;r ′,ζ ′) + e−γ̃f Rc(Ref ;r ′,−ζ ′)]dζ ′r ′2dr ′.

Here

γ̃μ ≡ γ̃μ(Reμ), S̃μ ≡ S(γ̃μReμ), μ = i,f,

Rc(Re; r,ζ ) = [
r2 + 1

4R2
e − rReζ

]1/2
.

The angle θ specifies the direction of the vector r with respect
to the molecule axis. Integration is performed numerically.

The obtained Dyson orbital must be expanded in series over
spherical functions

�
(Dyson)
f i (r) = 〈f,vf |i,vi〉

∑
l=0,2,...

Rl(r)Yl0(r̂),

where summands with the odd orbital and nonzero quantum
numbers are absent due to the symmetry of the hydrogen-
molecule ground state (the 1�g

+
term). It is convenient to

construct the quantity

Tl(κvar,r) = Rl(r)(κvarr)1−1/κvareκvarr (15)

out of the obtained Dyson orbitals.
A parameter κvar is fitted so that at large values of r , the

value of Tl(κvar,r) tends to a constant limit that is independent
of r . The values of vi , vf , and l are supposed to be given.
Practically, the required value of κ can be found by fitting so
that at the r variation in the interval [25 35] a.u., the value of
Eq. (15) would be constant, for example, within five decimal
places. In this case the values of C and Cl used in Eq. (1)
are obtained automatically within an accuracy of up to four
decimal places.

The coefficient κ in the asymptotic form of the radial wave
function (2) is calculated out of the ionization potential. For
many diatomic molecules, the ionization potentials between
the ground vibrational states Iexp are presented in Ref. [34]. In
the Born-Oppenheimer approximation, the values of κ in the
case of the ionization from the excited vibrational states are

obtained by the formula

κf i =
√

2
(
Iexp − E

(i)
vi

+ E
(i)
0 + E

(f )
vf

− E
(f )
0

)
, (16)

where E(i)
vi

and E
(f )
vf

are given by Eq. (15) with the corre-
sponding parameters for both a neutral molecule and its ion,
respectively.

As demonstrated in calculations for the H2, HD, and D2

molecules, the values of κvar and κf i differ from each other
within 10%. Therefore, in Eqs. (1) and (2) we will use the
experimental values κf i for the parameter κ and we will use
the variational values κvar for the calculation of the parameters
C and Cl . Only these κ values produce the constant limit of
Eq. (15) at r → ∞ and therefore the C and Cl constants.

Thus the Dyson orbital (13) for the hydrogen molecule with
r → ∞ gets the asymptotic form

�
(Dyson)
f i (r) ≈ 〈f,vf |i,vi〉Cκ

3/2
f i (κf ir)1/κf i−1e−κf i r

×
∑

l=0,2,...

ClYl0(r̂). (17)

The structure of this expression corresponds completely to
the asymptotic form of the wave function in the MO-ADK
model (1) and (2). From the form of the function (17), we
can conclude that the molecule tunneling ionization rate is
proportional to the Franck-Condon factor.

The equilibrium internuclear separations practically do not
depend on the isotope molecule composition for the hydrogen
molecule and its ion. We present the values of the asymptotic
constants for the hydrogen molecule,

κvar = 1.1616, C = 3.4017, C0 = 0.9954,

C2 = 0.0958, C4 = 0.0015.

The values of Cl obtained by the variational method differ
from those obtained in Refs. [19,35] by the model potential
methods. It should be noted that the authors of Ref. [19]
pointed out a possible dependence of Cl on the choice of the
model. The coefficients C2 and C4 demonstrate the electronic
configuration deviation from the spherical form. In our model
this deviation appears to be more significant compared to the
model potentials [19,35].

The values of the Franck-Condon factors are presented in
Table I. It is obvious that with an increase of the vibrational
quantum number of the neutral molecule the Franck-Condon
factors initially grow. This is explained by the fact that

TABLE I. Values of the Franck-Condon factors in the hydrogen
molecule of various isotope compositions in various vibrational states
in the absence of the external fields at vf = 0 and at the equilibrium
internuclear separation Re.

|〈f,0|i,vi〉|2

vi H2 HD D2

0 9.308 × 10−2 6.239 × 10−2 3.221 × 10−2

1 2.662 × 10−1 2.101 × 10−1 1.359 × 10−1

2 3.298 × 10−1 3.106 × 10−1 2.554 × 10−1

3 2.178 × 10−1 2.549 × 10−1 2.772 × 10−1

4 7.822 × 10−2 1.228 × 10−1 1.890 × 10−1

5 1.398 × 10−2 3.400 × 10−2 8.292 × 10−2
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the effective internuclear separation of the neutral molecule
grows with an increase of the vibrational quantum number,
approaching the equilibrium internuclear separation in the
molecular ion. A further decrease of the Franck-Condon
factors is due to an increase of the oscillation number of the
vibrational wave function in the states with larger values of vi .

It should be noted that the importance of accounting for the
Franck-Condon factors for the description of the experimental
results on the tunneling ionization of D2 molecules was pointed
out in Ref. [18]. In Ref. [19], accounting for the motion of the
nuclei in the tunneling ionization of molecules was carried
out by means of averaging the tunnel effect probability over
the internuclear separation R. The probability distribution
of R values in turn was determined from the absolute
square of the neutral-molecule vibrational wave function. The
molecular ion vibrational state was not taken into account in
Ref. [19]. Evidently, this approach should be considered as
quasiclassical.

Plotted in Fig. 1 is the difference of the results calculated
by Eq. (22) (the results of the calculation are presented below)
from the standard MO-ADK model [19] with no account taken
of the laser radiation influence on the vibrational motion, which
is considered in Sec. III B. Our model uses an experimental
value of the ionization potential Iexp. The MO-ADK model
from Ref. [19] requires the use of the Hartree-Fock ionization
potential I (R) as a function of the internuclear separation R.
It is known that the Hartree-Fock value is lower than the
experimental one, so at lower intensities our results appear
to be significantly less than those obtained within the model
from Ref. [19].

FIG. 1. (Color online) Ratio of the results calculated by Eq. (22) to
the standard MO-ADK model [19] with the improved electron wave-
function parameters [35]. Here SFC is the number of ions calculated
by Eq. (22) for ionization of a H2 molecule from the vibrational state
with a given quantum number vi to all possible states of the H2

+ ion
and SMOADK is the number of ions calculated within the MO-ADK
model [19]. The full width at half maximum (FWHM) is equal to
100 fs. The change of the nuclei vibrational motion in the laser field
(Sec. III B) is not taken into account.

B. Laser field influence on molecular vibrational motion

An external laser field modifies the parameters of the
molecule vibrations. Such an effect was taken into account
in Ref. [36] in the Born-Oppenheimer approximation in the
field of monochromatic linearly polarized laser radiation. The
response of the molecular vibrations to the external field is de-
termined by the tensor of the dynamic molecular polarizability
αij (ω,R) depending on the internuclear separation, where ω is
the frequency of the external field. For a nonrotating molecule
at the specified internuclear separation R, the change of energy
in the external monochromatic field (the quadratic dynamic
Stark effect) is given by the expression

�E(ω,R) = − 1
4 α(ω,R)F 2.

Hereinafter F is the laser field intensity amplitude

α(ω,R) = α‖(ω,R) cos2 θ + α⊥(ω,R) sin2 θ,

α‖ and α⊥ are the longitudinal and transversal components
of the tensor of the dynamic polarizability respective to the
molecule axis, respectively, and θ is the angle between the
molecule axis and the vector of radiation polarization.

In Ref. [36] it was demonstrated that the consideration
of the polarization effect of the laser field on the molecule
leads to the change of the molecule vibrational parameters. In
the adiabatic approximation, when the nuclei vibration cycle
is significantly shorter than the time of changing the laser
radiation intensity, the vibrational parameters are modified
according to the formulas

Re = R(0)
e

[
1 + α(1)F 2

4Mω2
eR

(0)
e

]
, (18)

ωe =
[
ω(0)2

e − α(2)F 2

4M

]1/2

. (19)

Here

α(ν) = ∂να

∂Rν

∣∣∣∣
R=R

(0)
e

, ν = 1,2.

The superscript (0) corresponds to the frequency ωe and the
separation Re in the absence of external fields.

The tensor components αij (ω,R) can be obtained, for
example, by the GAUSSIAN code. The Franck-Condon factors
exposed to the field begin to differ from those presented in
Table I for a field-free molecule. The largest Franck-Condon
factors from Table I give the least response to the external field.
The small Franck-Condon factors change more appreciably.
The results of the calculation of the radiation influence
on the vibrational motion and the change hereupon of the
dependence of the tunnel effect probability on the radiation
intensity are shown in Fig. 2 (the details of the calculation
are presented below). It should be noted that consideration of
the laser radiation influence on the vibrational motion leads
to a change of the curve slopes compared to the ADK-like
models. The difference between the curve slopes is greater
when the magnitude of the vibrational energy quantum is
smaller. Thus, for the H2 molecule (ωe = 2.005 × 10−2 a.u.)
the ionic yields at an intensity of 1015 W/cm2 will differ
by 1.4 times; for the D2 molecule (ωe = 1.421 × 10−2 a.u.)
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FIG. 2. (Color online) Ionization signal averaged over the ori-
entations of the H2 (top lines), HD (middle lines), and D2 (bottom
lines) molecules as a function of the peak intensity in the focus.
The ionization occurs from the ground vibrational state. The solid
lines correspond to the results obtained by taking into account
the laser field influence on the molecular vibrational parameters
(18) and (19) and the dotted lines correspond to the results
obtained without this influence. For clarity, the ionization proba-
bilities for the HD+ and D2

+ ions are reduced 10 and 100 times,
respectively.

the results will be twice as much. This difference becomes
smaller with an increase in vi . It practically vanishes in
the H2 molecule at vi = 2 and in HD and D2 molecules at
vi = 3 since the Franck-Condon factors cease to depend on
the intensity. This dependence can be revealed again upon the
further increase of vi when the Franck-Condon factors begin to
decrease.

In Ref. [37] consideration was given to the direct influence
of the laser radiation on the atomic nuclei and the subsequent
modification of the potential well in which the nuclei vibrations
take place. However, this mechanism is less effective compared
to the one connected with the influence of the field on the
molecular electrons [36].

IV. TUNNELING RATE

In a monochromatic linearly polarized laser field the
average rate of the electron tunneling from a molecule is
expressed by [19]

Wvf vi
(F,R̂) = |〈f,vf |i,vi〉|2

∑
m′

|Bm′(R̂)|2wκm′(F ). (20)

Here, according to Eq. (17),

wκm′(F ) = C2κ2

2|m||m|!
(

2κ3

F

)2/κ−|m|−3/2

exp

(
−2κ3

3F

)
,

R̂ is the unit vector in the molecular axis direction,

Bm′(R̂) =
∑

l

ClD
l
m′m(R̂)Qlm′ ,

the z axis is directed along the radiation polarization vector, m
and m′ are the projection of the tunneling electron orbital
momentum on the molecular axis and on the radiation
polarization direction, respectively, and

Qlm = (−1)|m|
√

(2l + 1)(l + |m|)!
2(l − |m|)! ,

The standard designation is introduced for the Wigner D

function. For the hydrogenic 1�g
+

term the D-function form
is significantly simplified [38],

Dl
m′m(R̂) = δm0

√
4π

2l + 1
Y ∗

lm′(R̂), l = 0,2, . . . .

The principal dependence of Eq. (20) on the vibrational
state of the original molecule is connected with the dependence
on the vibrational quantum number vi in the parameter κf i

determined by Eq. (16). Whereas in the MO-ADK model the
tunneling rate is proportional to the squared constant factor in
the asymptotic form of the wave function (2), in our model this
constant factor is multiplied by the Franck-Condon factor. The
important peculiarity of the proposed model is the dependence
of the Franck-Condon factor on the radiation intensity via the
parameters (18) and (19).

V. IONIZATION SIGNAL

Equation (20) is valid for monochromatic radiation with
a spatially homogeneous intensity distribution. A close-to-
real distribution of the axially symmetric light beam intensity
amplitude can be modeled with the Gaussian envelope over
both time and the beam diameter taking account the diffraction,

F (r,z,t) = F0r0

W (z)
e−2(ln 2)r2/W 2(z)e−2(ln 2)t2/τ 2

, (21)

where W (z) = r0

√
1 + z2/z2

0, r0 is the beam waist radius in
the focus, z0 = πr2

0 /λ is the Rayleigh range, λ is the laser
central wavelength, τ is the FWHM, r is the distance from the
observation point to the beam axis, and z is the distance from
the focus to the observation point along the beam axis.

The probability of the molecular ionization being located
at a specified point of the focal volume by the laser pulse (21)
is calculated according to the formula

P (F (r,z),R̂)

= 1 − exp

[
−

∫ +∞

−∞
Wvf vi

(F (r,z,t),R̂)dt

]
.

For a comparison with the experiment on measuring the
yield of the ions in the total focal volume it is necessary to
calculate the ionization signal

S0(F,R̂) = 2πn0

∫
P (F (r,z),R̂)r dr dz,

where n0 is the concentration of the neutral molecules in
the laser pulse front. An integration technique over the
focal volume was proposed in Ref. [39]. Two-dimensional
integration over r and z can be reduced to one-dimensional
numerical integration over strength (or intensity) and to
analytical integration on the isoenergetic surfaces inside the
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focal volume. This gives rise to the only one-dimensional
factor r4

0 n0/λ:

S0(F,R̂) = π2r4
0 n0

3λ

∫ I0

0
P (F,R̂)c(I )[3 + c2(I )]dI,

where

c(I ) =
√

I0

I
− 1

and I0 is the peak radiation intensity in the focus. Recall
that in atomic units, the intensity of the linearly polarized
monochromatic radiation is connected with the intensity
amplitude by the simple relation I = F 2.

If the orientation of molecules with respect to the polariza-
tion vector is random, then the ionization signal averaged over
the orientation of molecules has the form

S1(F ) = 1

4π

∫
S0(F,R̂)d�R.

For the hydrogen 1�g
+

term, this expression is simplified,

S1(F ) =
∫ π/2

0
S0(F,θR) sin θRdθR. (22)

Nevertheless, its value is obtained by numerical integration
only.

VI. NUMERICAL RESULTS AND DISCUSSION

The calculations of the quantity (22) have been carried
out for H2, HD, and D2 molecules at a FWHM equal to
100 fs. It should be noted that the vibrational cycle in the
molecule is ∼10 fs; therefore, the adiabatic approximation
mentioned in Sec. III B is satisfied. The possibility of the initial
neutral molecule existing in the excited vibrational state (vi =
0,1,2,3) has been taken into account. The created ion has been
considered in the ground state only (vf = 0). The ionization
signal (22) averaged over the molecule orientations has been

FIG. 3. (Color online) Ionization signal averaged over the orien-
tations of the H2 molecule (22) as a function of the radiation peak
intensity in the focus.

FIG. 4. (Color online) Same as Fig. 3 but for HD and D2

molecules. The results on H2 ionization from the ground vibrational
state are presented for comparison.

calculated as a function of the radiation peak intensity in
focus.

The results of the calculations are presented in Figs. 3 and 4.
They correspond to the ionization of an AB molecule from the
ground electronic state and a vibrational state with the quantum
number vi to the ground vibrational state of an AB+ ion. It
is evident that with a vi increase from 0 to 3 the ionization
increases (anti-Stokes enhancing). At the higher excitations
of the neutral-molecule vibrations, the effect is suppressed.
The yield of the ions stops growing and even decreases. These
graphs are not shown in the figures. This is due to the weak
overlap of the vibrational wave functions as follows from
the values of the corresponding Franck-Condon factors (see
Table I). The results of a H2-molecule ionization of HD and
D2 from the ground vibrational states are presented in the
figures for comparison.

The vibrational frequencies of the investigated molecules
are related to one another as

ωe(D2) : ωe(HD) : ωe(H2) ≈ 1 : 1.2 : 1.4

FIG. 5. Ionization signal ratio for neutral H2 molecules in excited
vibrational states to the signal for the molecules in the ground
vibrational state. The values of the vibrational quantum number vi

are indicated. All possible vibrational states of the H2
+ ions are taken

into account.
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FIG. 6. Ionization signal ratio for neutral HD and D2 molecules in
various vibrational states to the signal for H2 molecules in the ground
vibrational state. The values of the vibrational quantum number vi

are indicated. All possible vibrational states of the molecular ions are
taken into account.

due to the growth of the reduced mass while their Morse
potential depth is approximately the same [25]. If the Franck-
Condon factor is maximal for the D2 molecule at vi = 3, then
for the H2 molecule it reaches the maximum value at vi = 2
and is suppressed at higher vibrational energies (see Table I).

In an experiment the vibrational states of the resulting ion,
as a rule, are not fixed. Therefore, the rate (20) is to be summed
up over all possible quantum numbers vf ,

Wvi
(F,R̂) =

∑
vf

Wvf vi
(F,R̂). (23)

Equation (23) includes the Stokes channels and does not take
into account the dissociative ionization that we neglect.

Figure 5 demonstrates the role of the motion of nuclei at the
H2-molecule ionization. The diagram demonstrates the ratio
of the ionization signal for the neutral molecules in the excited
vibrational states to the signal for molecules in the ground

vibrational state. The ionization signal is calculated by Eq. (22)
and the ionization rate is summed up over all vibrational states
of the molecular ion according to Eq. (23).

Figure 6 presents the ratio of the ionization signal for
deuterated hydrogen molecules in various initial vibrational
states to the ionization signal for a H2 molecule in the ground
vibrational state. All vibrational states of the molecular ions
are taken into account according to Eq. (23). The results
presented demonstrate that the isotope optical separation can
be implemented by prepumping the vibrational degrees of
freedom of the deuterated hydrogen molecules.

VII. CONCLUSION

In the present paper sequential consideration is given to the
nuclei vibrational motion influence on molecule tunneling ion-
ization. The change of the equilibrium internuclear separation
in the field owing to the molecular electronic polarizability
dependence on the internuclear separation is taken into
account. The possibility of the vibrational ion quantum number
changing compared to the vibrational quantum number of
a neutral molecule is also taken into account. This effect
allows one to set up the ionization of molecules of a specified
isotope composition provided the excitation of the vibrational
quantum states of the neutral molecules of the required isotope
composition by the IR radiation is carried out beforehand.
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