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Photon emission and electron-positron photoproduction processes
in the planar field of a bent single crystal
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The process of photon emission by a high-energy electron or positron moving in a bent single crystal with
a constant curvature is considered. The relations for differential energy losses of particles and polarization
of emitted photons are obtained. Corrections due to multiphoton production are found. The comparison of
calculations with existing experimental data is carried out. The process of photoproduction of electron-positron
pairs in a bent single crystal is also studied. The differential probabilities of the process taking into account the
photon polarization are presented. Equations are obtained which determine the variation of the Stokes parameters
of γ quanta, and their solutions are given.
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I. INTRODUCTION

In the recent years a number of experiments devoted to the
interaction of ultrarelativistic particles with bent single crystals
were performed [1–4]. In particular, the process of photon
emission by electrons and positrons volume-reflected in planar
electric fields of a bent silicon crystal was investigated [5,6].
The comparison of results of these measurements with the
calculations [7] has shown satisfactory agreement between
them. The calculations were carried out on the basis of the
quasiclassical approach developed in Ref. [8]. This approach
has a complicated enough mathematical form, and there are
difficulties in the two-dimensional integration of strongly
oscillating functions. Then, a simple method of calculation
was proposed [9,10]. The method stands on the well-known
theory of coherent bremsstrahlung in straight single crystals.
Really, at large enough bending radii and on a short part of the
trajectory, the radiation of a particle moving in a bent crystal is
the same as in a straight one. The sum of such radiation energy
losses from short parts should give the total energy losses
from the whole of the trajectory. Despite the successful usage
of the method [10] for simulations of the experiment [11],
it is desirable to obtain a more rigorous consideration of the
process. Apart from the rigor of treatment, such consideration
can give limitations on the use of the method and describe the
radiation process at small bending radii.

The present paper is devoted to provide a more evident
and complete study of the radiation of over-barrier positrons
and electrons moving in planar electric fields of bent single
crystals. In a similar manner, another electromagnetic process
(i.e., e± photoproduction) at similar conditions was also
investigated. As a result, a detailed mathematical description
of the processes was obtained, which is in agreement with the
existing experimental data and may be used for calculations
at various conditions. In addition, below we will compare our
description with results of Refs. [12,13], in which the photon
emission in bent single crystals was also considered. Below
we will discuss the main results.

The attention to experiments with bent single crystals
is motivated by new interesting possibilities for aims of

collimation of accelerated beams in ring [Large Hadron
Collider (LHC)] and [International Linear Collider (ILC)].
Additional feasible applications are pointed out in Ref. [7]
(see also Refs. [14–17]).

The paper is organized as follows: In Sec. II we give
a detailed description of photon emission by over-barrier
charged particles in bent single crystals. In Sec. III we obtain
differential probabilities of e± photoproduction in bent single
crystals. Section IV is devoted to specific illustrations of
investigated electromagnetic processes and Sec. V provides
a discussion and a summary of the results.

II. RADIATION OF PARTICLES IN BENT SINGLE
CRYSTALS

A. Motion in bent single crystals

One can describe the motion of ultrarelativistic particles in
bent single crystals with the help of the following equations
[18]:

E0β
2v2

r /(2c2) + U (r) + E0β
2(R − r)/r = E = const.,

(1)

dy/dt = vy = const., (2)

vz = rdφ/dt ≈ c

(
1 − 1

2γ 2
−

(
v2

r + v2
y

)
2c2

)
. (3)

These equations take place for the cylindrical coordinate
system (r,φ,y). Here, vr is the component of the particle
velocity in the radial direction, vy is the component of
the velocity along the y axis, vz is the tangential component
of the velocity, R is the bending radius of a single crystal,
E0 and γ are the particle energy and its Lorentz factor,
respectively, E is the constant value of the radial energy, U (r)
is the one-dimensional potential of a single crystal, c is the
velocity of light, and β is the ratio of the particle velocity to
the velocity of light. In this paper we consider the planar case,
when the scattering is due to the interaction of particles with
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the set of the crystallographic planes located normal to (r,φ)
plane. In practice it means that vy/c � θac but vy/c � 1 for
ultrarelativistic particles, where θac is the critical angle of axial
channeling.

One can transform Eq. (1) into the following form:

E0β
2v2

x/(2c2) + U (x) + E0β
2x/R = E, (4)

where x is the local Cartesian coordinate which is connected
with the cylindrical coordinate r through the relation x = R −
r and vx = vr . We also changed the r value in the denominator
of Eq. (1) on R. For a real experimental situation it brings a
negligible mistake (of the order of x/R). In Eq. (4) the E value
means the transversal energy.

The equations considered here describe the three-
dimensional motion of particles in a bent single crystal in the
cylindrical coordinate system. Let us introduce the Cartesian
coordinate system in which the xy plane is coincident with the
front edge of a single crystal. Now we can calculate x and y

components of the velocity in this system:

Vx = Ẋ = vx cos φ + vz sin φ ≈ vx + vzφ, (5)

Vz = Ż = −vx sin φ + vz cos φ. (6)

Figure 1 illustrates the geometry of proton beam volume
reflection and different coordinate systems which will be used
in our consideration.

Furthermore, we will study the ultrarelativistic case and put
β = 1. From Eq. (4) we can get

ẍ = −dU (x)

dx

c2

E0
− c2

R
. (7)

Then, taking into account that φ ≈ ct/R, we obtain [from
Eqs. (5)–(7)] for the transversal acceleration

Ẍ = c2

E0
eE(x(t)), (8)

FIG. 1. Scheme of the volume reflection process. XYZ is the
Cartesian coordinate system at the entrance in a single crystal,
xyz is the local Cartesian coordinate system connected with the
current location of a particle. The Y axis is directed normally to
the plane of the figure. θ and α are the initial and volume reflection
angles, respectively. AB and BC lines are the incoming and outgoing
directions of a particle, respectively.

where e is the positive elementary charge and E is the
interplanar electric field.

The effect of volume reflection takes place when particles
with initial incoming angles larger than the critical channeling
angle (over-barrier particles) have a tangency point with
respect to the bent crystallographic planes inside the crystal
volume. The critical point xc (i.e., the point where the one-
dimensional velocity is equal to zero) is determined by the
equation

E − U (xc) − E0β
2xc/R = 0. (9)

The process of volume reflection was studied in Ref. [18] (see
also Ref. [19]). In particular, the angle of volume reflection as
a function of the transversal energy has the form

αvr (E) = 2c

R
T (x0,xc), (10)

where

T (x0,x) =
∫ x

x0

[
1√

2c2

E0β2 [E − U (x) − E0β2x/R]

− 1√
2c2

E0β2 [E − U (xc) − E0β2x/R]

]
dx. (11)

This relation is written for the symmetric case of particle
passage through a single crystal. In this case |x0 − xc| ≈
z2

0/(8R), where z0 is the thickness of a single crystal. In
Ref. [18] it is also shown that the mean and mean square
angles of volume reflection follow from the equations

〈αvr〉 = 1

δE

∫ E+δE

E

αvr (E)dE, (12)

σ 2
vr = 1

δE

∫ E+δE

E

[αvr (E) − 〈αvr〉]2dE. (13)

It is easy to understand [due to the periodicity of U (x)] that the
angle αvr (E) is a periodic function of the transversal energy
with the period δE = E0β

2d/R. Note that the angle αvr (E) is
a periodic function of the initial coordinate x0 and the square
of the initial angle θ0 = vx(t = 0)/c. These periods are equal
to d and 2d/R, respectively.

From Eqs. (4) and (11) we can write (see also Ref. [18])

x − x0 = ṽ(x0)[t − T (x0,x)] − c2

2R
[t − T (x0,x)]2, (14)

where

ṽ(x0) = c

√
θ2

0 + 2[U (x0) − U (xc)]/(E0β2) = cθb ≈ cθ0.

(15)

At T (x0,x) = 0 Eq. (14) describes the free (noninteracting
with the interplanar potential) motion of a particle. At the
conditions x � xc and x � xc, T (x0,x) ≈ 0 and T (x0,x) ≈
αvrR/(2c), respectively. As was demonstrated in Ref. [18], a
noticeable variation of the T (x0,x) value takes place in the
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vicinity of the xc point. Our calculations show that, due to the
T (x0,x) term, the coordinate x undergoes weak vibrations at
the motion of particles. From here we obtain the equation for
x averaged over these vibrations:

x = x0 + ṽ0(x0)t − c2t2/(2R) if t � tc, (16)

x = x0 + ṽ0αvrR/c − α2
vrR/2 + (ṽ0 − αvrc)t

− c2t2/(2R) if t > tc, (17)

tc = Rṽ0

c2
− αvrR

2c
. (18)

The value ẋ/c is the angle θ with respect to crystallographic
planes, hence we can write

θ = ṽ0

c
− ct

R
= θb − ct

R
if t � tc, (19)

θ = ṽ0

c
− αvr − ct

R
= θb − αvr − ct

R
if t > tc. (20)

From these equations it follows that x is a continuous function
of time and the θ angle has a breaking at t = tc.

B. Preliminary study of problem

It is well known that the process of radiation of a
relativistic particle undergoing quasiperiodic motion may
be characterized with the help of the parameter [8] ρ =
2γ 2〈[v(t) − vm(t)]2〉/c2, where v(t), vm are the current (as
a function of time t) and mean transversal velocities of a
particle, respectively, and the brackets 〈· · ·〉 denote averaging
over time. The radiation process has a dipole (interference)
character when ρ � 1 and a synchrotron-like character when
ρ � 1. ρ ∼ 1 is an intermediate case.

In the case of over-barrier motion ultrarelativistic particles
intersect a set of parallel crystallographic planes and, because
of this, their transversal velocities oscillate. The peculiarities
of such a motion are the aperiodicity and amplitude variations
of oscillations. However, on a short part of the particle
trajectory these variations of period and amplitude are
insignificant (for large enough bending radii). It allows us
to calculate the ρ parameter for every oscillation. These
calculations [for 120 GeV positrons moving in the (110)
silicon plane] show that the ρ parameter is smaller than 2
and exceeds 1 only for several oscillations in the vicinity
of a critical point. At the decreasing of the particle energy
the maximal value of ρ slowly decreases. Furthermore, we
suggest that the radiation process has a dipole character. For
estimating the ρ parameter one can use the equation

ρ ≈ 〈U 2(x)〉 − 〈U (x)〉2

2m2c4
[
θ2
c + 2(x0 − x)/R

] . (21)

where 〈U (x)〉 and 〈U 2(x)〉 are the mean and mean square
of the planar potential, respectively. This relation is violated
in the region close to the critical point; in this region, in fact,
a more exact calculation yields a result larger by about a

factor of two. Note that 〈U 2(x)〉 − 〈U (x)〉2 = 42.3 eV2 for
the silicon (110) plane.

In the case of dipole photon emission the equation for
calculation of energy losses has the form Ref. [20]

dEγ = e2ωγ dωγ

4πc3

∫ ∞

δ

dω

ω2

[
E2

0 + E′2

E0E′ − 4δ

ω

(
1 − δ

ω

)]

× |Ẍ(ω)|2, (22)

δ = ωγ m2c4

2E0E′ , Ẍ(ω) =
∫ ∞

−∞
Ẍ(t)eiωtdt, (23)

where m is the particle mass, ωγ is the photon frequency, and
E′ is the particle energy after emission.

Thus, we see that the Fourier components of the accelera-
tion [see Eq. (8)] should be found. For this aim, it is convenient
to present the interplanar electric field as a Fourier series over
reciprocal vectors of a crystallographic structure [21]:

E(x) = i8π2eZ̃

�d

∞∑
N=−∞

U (N )N exp(−iN2πx/d), (24)

where Z̃e is the nuclear charge, d is the interplanar distance,
� is the volume of the fundamental cell of the structure, and

U (N ) = S(g)
1 − F (g)

g2
exp(−Ag2/2), (25)

where F is the atomic form factor, S is the structure factor,
A is the mean square radius of thermal atomic vibrations, and
g is the reciprocal vector of the crystallographic lattice. For a
structure with the cubic fundamental cell g = 2π

a
(N1i + N2j +

N3k), with i, j, and k unit vectors directed along the main sides
of cube. The interplanar distance for the plane defined by the
Miller indices (k1,k2,k3) reads

d = a

Ns

√
k2

1 + k2
2 + k2

3

, (26)

where the numbers N1, N2, N3 are equal to N1 = Nk1, N2 =
Nk2, N3 = Nk3, and Ns is the smallest positive number which
satisfies the condition S(g(Nsk1,Nsk2,Nsk3)) 
= 0. Thus, we
get g = GN , G = 2π/d.

Now we transform this relation in the following form, which
is more convenient for calculations:

E(x) = i8π2eZ̃

�d

∞∑
N=1

U (N )N [exp(iNGx) − exp(−iNGx)].

(27)

Such a representation has positive as well as negative sides.
The negative one is the loss of correspondence, when every
term corresponds to one vector of the reciprocal space, the
positive one includes the possibility of a more compact writing
of results, and other advantages.
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Then, we find the Fourier components of the transversal
acceleration

Ẍω =
∫ tc

0
ẍ(t) exp iωt = i(16π2)e2Z̃

�d

∞∑
N=1

U (N )NJ (N,ω),

(28)

ẌωẌ∗
ω = Z̃2e464π4

m2γ 2�2d2

∞∑
N=1

N2U 2(N )J (N )J ∗(N )

+
∞∑

N=1

∞∑
M=1,
=N

NMU (N )U (M)J (N )J ∗(M), (29)

where

J (N,ω) =
∫ tc

0
(exp {iNG[v0(x0)t − c2t2/(2R)]}

− exp {−iNG[v0(x0)t − c2t2/(2R)]})eiωtdt.

(30)

Here we take the x(t) function from Eqs. (16) and (17). With
the help of the relation Y = θb − θ [see Eqs. (19) and (20)] we
get

J (N ) = R

c

∫ θb−θc

0
{exp [iNG(θbYR − RY 2/2)]

− exp [−iNG(θbYR − RY 2/2)]}e iRYω
c dY. (31)

Here, terms like exp iNGx0, were omitted because they do
not give a contribution in the result. These components were
calculated for the period of time from 0 to tc. The case when
t > tc will be considered below. Then we represent J (N,N >

0) = I1(N ) + I2(N ), where

I1(N ) =
√

2R

NGc2
exp

(−iRC2
1

) ∫ Z1

Z0

exp(iZ2)dZ, (32)

Z0 =
√

R

2NG

(
ω

c
− NGθb

)
, (33)

Z1 =
√

R

2NG

(
ω

c
− NGθc

)
, (34)

C1 =
√

2

NG

(
ω

c
− NGθb

)
, (35)

I2(N ) =
√

2R

NGc2
exp

(
iRC2

2

) ∫ Z3

Z2

exp(−iZ2)dZ, (36)

Z2 = −
√

R

2NG

(
ω

c
+ NGθb

)
, (37)

Z3 = −
√

R

2NG

(
ω

c
+ NGθc

)
, (38)

C2 =
√

2

NG

(
ω

c
+ NGθb

)
. (39)

Then, we get

I1(N )I ∗
1 (N ) = dR

πNc2

[
F2

C(Z0,Z1) + F2
S (Z0,Z1)

]
, (40)

FIG. 2. Curves 1–4 illustrate (Z) function at
A = 100, 60, 76, 25.5 and B = 10, 50, 74, 26.5, respectively.
For better presentation, curves 3 and 4 were shifted.

where FC(Z0,Z1) = ∫ Z1

Z0
cos(Z2)dZ and FS(Z0,Z1) =∫ Z1

Z0
sin(Z2)dZ. For I2(N )I ∗

2 (N ) we obtain a similar
expression.

Let us consider the expression (Z) = F2
C(Z0,Z1) +

F2
S (Z0,Z1) at Z0 = Z − A, Z1 = Z − B as a function of the

Z variable. We see in Fig. 2 that, at the condition |A − B| � 1,
(Z) is an oscillating function (around the ordinate equal to
π ) in the range from B to A. Outside this region the function
is close to zero.

Let us assume for simplicity that θb > θc > 0. Then,
[I1(N ) + I2(N )][I ∗

1 (N ) + I ∗
2 (N )] ≈ I1(N )I ∗

1 (N ). This con-
clusion follows from the corresponding behavior of the 

functions. One can see that the frequency interval which brings
the main contribution is ω

c
≈ 2πNθc/d–2πNθb/d. The terms

in the double sum of Eq. (29) have the following form:

J (N )J ∗(M) + J ∗(N )J (M)

= 2dR

πc2
√

NM
{cos ϕ[FC(N )FC(M) + FS(N )FS(M)]

+ sin ϕ[FC(N )FS(M) − FS(N )FC(M)]}, (41)

where angle

ϕ = R
[
C2

1 (M) − C2
1 (N )

]

= Rd

4π

(
1

M
− 1

N

)
ω2

c2
+ πR

d
(M − N )θ2

b . (42)

In these equations the FC and FS functions have the same
arguments Z0 and Z1 (they are omitted) but they differ by the
indices N and M . From Eq. (41) one can see that the result
is a strongly oscillating function of ω (due to cos ϕ and sin ϕ

multipliers). Below we will show that these terms give results
close to zero.

It should be noted that, for brevity, we use in the equations
throughout the paper the notation U 2(N ). However, for the
case of a complex structure factors, U (N )U ∗(N ) should be
used instead of U 2.
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C. General equations

Now we can write the final equation for radiation energy
losses

dEγ = 8πnσ0R
2δ2dEγ

c2Na�

{
[1 + (1 − x)2]ψ1 − 2

3
(1 − x)ψ2

}
,

(43)

where x = Eγ /E0, Eγ is the energy of the emitted photon with
the frequency ωγ , n = Na/� is the atomic density of a single
crystal with Na atoms in its fundamental cell, σ0 = αQEDZ̃2r2

e

is the characteristic cross section and αQED is the fine structure
constant, re = e2/(mc2). In this equation the coefficient 2/3
was introduced for comparison with the standard theory in
straight single crystals. The other functions are defined by the
following equations:

ψ1 =
∞∑

N=1

U 2(N )�1(N ), ψ2 =
∞∑

N=1

U 2(N )�2(N ), (44)

where

�1(N ) =
∫ ∞

1

�(w,N )dw

w2
, (45)

�2(N ) = 6
∫ ∞

1

(
1

w3
− 1

w4

)
�(w,N )dw, (46)

�(w,N ) =
[
F2

C

(
w − NGθbc

δ
,w − NGθcc

δ

)

+F2
S

(
w − NGθbc

δ
,w − NGθcc

δ

)]
, (47)

where

FC

(
w − NGθbc

δ
,w − NGθcc

δ

)

=
∫ w− NGθcc

δ

w− NGθbc

δ

cos(WminZ)2dZ, (48)

FS

(
w − NGθbc

δ
,w − NGθcc

δ

)

=
∫ w− NGθcc

δ

w− NGθbc

δ

sin(WminZ)2dZ, (49)

Here we introduced the variable w = ω/δ and the value

Wmin = 1
2

√
Rd
πN

δ/c.
The contribution of the sum with terms containing

U (N )U (M) values with different N and M numbers [see
Eq. (29)] in the total differential energy loss is close
to zero. Let us consider the terms defined by Eqs. (41)
and (42). We should make the change ω = wδ and then we
find the period of variation of the function ϕ(w2) in Eq. (42).
The order of magnitude of this period is approximately
Tw ∼ 32π2[λ2

c/(dR)](E2
0/E

2
γ ). One can see that, due to the

factor λ2
c/(dR), we have for the period Tw � 1. It means

that integrals of the type
∫ ∞

1 sin ϕf (w)dw [where f (w) is
a weakly varied function, such as, for example,f (w) = 1/w2;
see Eq. (45)] are approximately equal to zero.

Besides, the angle of volume reflection is a function of
the transversal energy. Because of this, the averaging over the
period of the result [see Eq. (43)] for the transversal energy is

also needed. Then we get〈
dEγ

dEγ

〉
= 1

δE

∫ E+δE

E

dEγ (αvr )

dEγ

dE. (50)

However, the angle of volume reflection depends weakly on
the transversal energy, for large enough bending radii. Hence,
in this case there is no necessity for the averaging.

Now we can consider the case when t > tc or, in other
words, when the particle crosses the area where the critical
point is located. In this case, the resulting differential losses
are the sum of losses from t = 0 to tc and from tc to te.
Interferences between these regions are practically absent,
as it is easy to show by a direct calculation of the values
J (N,t < tc)J ∗(N,t > tc) + J ∗(N,t < tc)J (N,t > tc).

The case when t < tc is obvious: instead of the angle θc the
angle θ < θc should be used, according to Eq. (19).

D. Approximation equations

In the range of variation of the w variable between
NGθbc/δ and NGθcc/δ, the function �(w,N ) is approxi-
mately constant, at the condition

κ =
√

πRN

d
(θb − θc) � 1. (51)

This constant is equal to π/W 2
min. Then, taking the integrals

in Eqs. (45) and (46) we get the approximate relation for
differential energy losses of the particle:

dEγ = 16π2nσ0RδdEγ

c�Na

{
[1 + (1 − x)2]ψ̃1 − 2

3
(1 − x)ψ̃2

}
,

(52)

ψ̃1 =
∞∑

N=1

U 2(N )

(
1

θmin
− 1

θb

)
η

(
θb − δ

NGc

)
, (53)

ψ̃2 = 6
∞∑

N=1

U 2(N )

[
δ

2(NGc)

(
1

θ2
min

− 1

θ2
b

)

− δ2

3(NGc)2

(
1

θ3
min

− 1

θ3
b

)]
η

(
θb − δ

NGc

)
. (54)

Here, η(x) is the step function [η(x) = 0 if x < 0 and
η(x) = 1 if x > 0], θmin(N,ω) = δ/(NGc) if N � NF and
= θc if N > NF , where NF is the integer part of the value
dδ/(2πcθc).

In the report [10] coherent radiation in bent single crystals
was considered. This consideration was based on the intuitive
idea that, at large enough bending radii, the radiation process
on a short distance of the particle trajectory is close to the
radiation process in straight single crystals. Mathematically,
this idea reads

dEγ

dEq

(Eq) = R

∫ −θmin

θ1

dI

dEq

(θ̃ )dθ̃ + R

∫ θ2

θmin

dI

dEq

(θ̃)dθ̃,

(55)

where θ1 < −θmin and θ2 > θmin are the entrance and exit an-
gles, respectively. In the case when t2 < tc (t1 > tc), one plain
integral should be used. Here, dI (θ )/dEq is the well-known
intensity of coherent bremsstrahlung (in the straight crystals)
[8,22–24]. Equation (52) may be applied for calculations of
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the energy losses in a straight single crystal, if one replaces
the bending radius R by the crystal thickness z0 and takes the
following ψ̃1 and ψ̃ functions:

ψ̃1 =
∞∑

N=1

U 2(NG)

θ2
η

(
θ − δ

NGc

)
,

(56)

ψ̃2 = 6
∞∑

N=1

U 2(NG)δ

NGc

(
1

θ3
− δ

NGcθ4

)
η

(
θ − δ

NGc

)
,

where θ is a constant angle relative to the plane. If we substitute
this intensity (the energy losses divided by z0) into Eq. (55)
and take the integrals then we get Eqs. (52)–(54). Thus, the
above-mentioned intuitive idea is true and Eq. (51) reflects
the condition of validity for such a consideration. Our specific
calculations (see below) also support this approach. From this
fact, some important conclusions follow:

(1) At the coherent radiation process, a particle transfers
to a single crystal discrete quantities of momentum which are
equal to h̄GN .

(2) Coherent radiation in a bent crystal is accompanied by
incoherent photon emission which is approximately as in a
straight one; the total differential energy losses are equal to

dET
γ = dEC

γ + dEA
γ , (57)

where the first term on the right-hand side is a coherent
contribution [see Eq. (52)] and the second term is an incoherent
one.

(3) The polarization of the radiation in a bent crystal on a
short distance is approximately the same as in a straight one
and it is defined by the angle θ . One can write for the total
linear polarization P of the radiation

P(x)dET
γ = 16π2nσ0RδdEγ

c�Na

2(1 − x)ψ̃3, (58)

where

ψ̃3 =
∞∑

N=1

U 2(N )
δ

3(GNc)

(
1

θ3
min

− 1

θ3
b

)
η

(
θb − δ

GNc

)
.

(59)

Here we did not multiply numerical coefficients for compari-
son with corresponding relations in a straight crystals.

E. Total characteristics

In this section we present the total (integrated over the
energy) characteristics of the radiation process. They are
calculated only for the coherent part of the process.

The total coherent cross section of photon emission in a
straight single crystal is equal to

σc = σ0Bu2G2E0λc

4mc2

∞∑
N=1

U 2(N )�(u/N ), (60)

where u = 2mc2/(GE0θλc), B = 16π2/(Na�),
λc = h̄/(mc), and the function �(x) is defined by the

equation

�(x) =
(

1

2
− x

2
− x2

4

)
ln

(
1 + 4

x

)
+ 2 + 2x − x3/8

x + 4
+ x

2

+ x2

8
− 4

(x + 4)2
. (61)

The integral of the cross section over the angle θ has the form
∫ θ2

θ1

σc(θ )dθ = σ0BG

2

∞∑
N=1

U 2(N )N |�1(u1/N)

−�1(u2/N )|, (62)

where u1 = 2mc2/(GE0θ1λc) and u2 = 2mc2/(GE0θ2λc) and
function �1(x) is

�1(x) = x2

2
+ 4

4 + x
+ 5

3
(x + 4) − (x + 4)2

6

+ 2 ln

(
x + x2

4

)
+

(
x + 4

2
− x2

4
− x3

12

)

× ln

(
1 + 4

x

)
− 4

3
ln

(
1 + x

4

)
. (63)

Note that for correct usage of this equation the angles θ1 and
θ2 should be of the same sign. At θ = 0 the cross section
tends to infinity. Besides, dz ≈ cdt ≈ Rdθ . The total coherent
probability to emit one photon on a thickness z0 (z0 = R|θ2 −
θ1|) is equal to nR

∫ θ2

θ1
σc(θ )dθ . This relation is valid at small

enough z0 (see below).
The total coherent intensity of radiation in a straight single

crystal is

I = σ0nBu2G2E2
0λc

4mc2

∞∑
N=1

U 2(N )ξ (u/N ), (64)

where

ξ (x) = 1

4 + x
(−2 + 2x + x2)

+ ln

(
1 + 4

x

)(
1

2
− x

2
− 3x2

8

)
+ (2 + x)2

(4 + x)2
+ x

2

− 32

3(4 + x)3
. (65)

The integral of intensity over the angle θ has the form∫ θ2

θ1

I(θ )dθ = σ0nBGE0

2

∞∑
N=1

U 2(N )N |ξ1(u1/N )

− ξ1(u2/N )|, (66)

ξ1(x) = x2

2
− 4

4 + x
− x

8
(−4 + 2x + x2) ln

4 + x

x

+ 16

3(4 + x)2
. (67)

The total coherent energy losses in a bent single crystal are
EC

γ = R
∫ θ2

θ1
I(θ )dθ .

F. Taking into account multiphoton production

In order to take into account the multiphoton production
from a single particle, we employ the correspondence between
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electromagnetic processes in bent and nonbent single crystals.
The emission process of a single photon can be described by
the following equation:

dNe

Ne

= −nσγ (ε,E0,z)dz, (68)

where Ne(z) is the flux of electrons (positrons) which emitted
one photon on a thickness from z = 0 up to z, and σγ (ε,E0,z)
is the cross section of coherent bremsstrahlung on the current
coordinate z = ct of a crystal. This cross section has a form
σγ (ε,E0,z) = ∫ E0

ε

dσγ (E0,z)
dEγ

dEγ and takes into account the
radiation of photons in the energy range from ε up to E0. The
value nσγ (ε,E0,z)dz is the probability for an electron to emit
one photon in the thickness dz in the energy range from ε up to
E0. It is connected with the intensity on the same coordinate
[see Eq. (55)] by the relation ndσγ /dEγ = 1

Eγ
dI/dEγ . As

was already shown, over a short distance dz we can take the
required relations as in a straight single crystal. The necessity
of introducing the minimal energy ε is as follows: The coherent
bremsstrahlung cross section may be represented as the sum
dσγ = dσc + dσa , where dσc and dσa are the coherent and
incoherent parts of the process. The total coherent cross
section σc is a finite value (if angle θ 
= 0) and the incoherent
cross section is similar to the analogous cross section in an
amorphous medium, and at small photon energies it tends
to infinity. Introducing the energy ε allows us to remove the
low-energy part of radiation from our consideration, because
these photons weakly influence the spectrum in the energy
range of interest. By integration of Eq. (68) we obtain

Ne = N0

(
1 − exp

[
−n

∫ z0

0
σ (ε,E0,z)dz

])
, (69)

where N0 is the initial number of electrons and z0 corresponds
to a crystal thickness. Furthermore, we put N0 = 1 or, in other
words, our calculation will be done per one initial electron.

It is obvious that Eq. (69) is valid only for thin enough
single crystals, when the probability of emission of two or
more photons by one electron is small in comparison with 1. In
this case our description of energy losses should be corrected.

The distribution of the photon radiation over the coordinate
can be described by the following expression:

d2Ne

dzdE+
(ε,E+,z) = exp

(
−n

∫ z

0
σγ (ε,E0,z)dz

)

× nσγ (ε,E0,z)ρ(ε,E0,E+,z), (70)

where the function

ρ(ε,E0,E+,z) = 1

nσγ (ε,E0,z)

dσγ (ε,E0,E+,z)

dE+
, (71)

represents the normalized distribution over the energy of a
secondary electron E+ (Eγ = E0 − E+).

Then we get

dN1e

dE+
(ε,E+,z0) =

∫ z0

0

d2Ne

dzdE+
(ε,E+,z)

× exp

(
−n

∫ z0

z

σγ (ε,E+,z)dz

)
dz,

(72)

dN2e

dE
′ (ε,E

′
,z0) =

∫ z0

0

∫ E0−ε

E
′+ε

d2Ne

dzdE+
(ε,E+,z)

×
{

1 − exp

(
−n

∫ z0

z

σγ (ε,E+,z)dz

)}

× ρ(ε,E+,E
′
,z)dE+dz, (73)

where E
′

is the energy of the electron which has energy
E+ before photon emission and the function ρ(ε,E+,E

′
,z)

is similar to the case of Eq. (70). Here, N1 is the number of
electrons emitting one photon with energy >ε and N2 is the
number of electrons emitting two photons with energies >ε.
Now we can write, for the relation for radiation energy losses:

dE
dE

′ (ε,E
′
,z0)

= (E0 − E
′
)

[
dN1e

dE
′ (ε,E

′
,z0) + dN2e

dE
′ (ε,E

′
,z0)

]
. (74)

For small thickness [when n
∫ z0

z
σγ (ε,E

′
,z)dz � 1] Eq. (74)

gives the result

dE
dE

′ (ε,E
′
,z0) = n(E0 − E

′
)
∫ z0

0

dσγ

dE
′ (ε,E0,E

′
,z)dz. (75)

At the condition n
∫ z0

z
σγ (ε,E

′
,z)dz ∼ 1 we should use

Eqs. (72)–(74) for calculations. This consideration allows one
to take into account (1) the nonlinear (exponential decrease)
character of the process as a function of thickness and (2)
the multiplicity of photon emission by one electron. Our
consideration works for the case when no more than two
high-energy photons may be emitted. Of course, it is easy to
obtain the analogous relations for higher multiplicity, but there
are difficulties of calculations of multidimensional integrals.
The correct choice of ε cutting and other problems will be
discussed below. Note that, in this section, for brevity of
writing, we employ the integration over z. However, in reality,
the integration over the angle θ is more suitable for calculations
[see Eq. (55)].

III. e± PHOTOPRODUCTION IN BENT SINGLE CRYSTALS

A. Creation of e± pairs

In Ref. [8] a simple method was proposed which allows one
to obtain the relations for the e±-photoproduction process,
provided the relations for photon emission by a positron
(electron) are known. With the help of the method we get, for
the differential probability of e± production by high-energy
unpolarized photon moving in the planar electric field of a
bent single crystal, the following relation:

dW
dy

= 1

2

(
dW||
dy

+ dW⊥
dy

)

= 8πnσ0R
2δ2

c2Na�

{
[y2 + (1 − y)2]ψ1 + 2

3
y(1 − y)ψ2

}
,

(76)

where y = Ee/Eγ and Eγ is the photon energy, Ee is
the energy of the positron or the electron, W||, W⊥ are
the probabilities of photoproduction for a photon with the
parallel and orthogonal linear polarizations relative to the
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crystallographic plane. The ψ1 and ψ2 functions are defined
by Eqs. (44)–(49) in which the δ value should be changed to
the value

δ = ωγ m2c4

2Ee(Eγ − Ee)
. (77)

Here ωγ is the photon frequency. The relations describing the
motion of a photon in a bent single crystal was obtained in
Ref. [25]. The variation of the angle θ (i.e., the direction of
photon propagation relative to the crystallographic plane) is
described by a relation similar to Eqs. (19) and (20). It means
that we should take θb equal to the initial angle θ0, and θc can
reach the zero angle (breaking is absent). For the case when
the entrance and exit angles have different sign, we should take
the sum of the terms [see Eq. (55)].

In the case when κ � 1 [see Eq. (51)] these relations may
be simplified:

dW
dy

= 16π2nσ0Rδ

c�Na

{
[y + (1 − y)2]ψ̃1 + 2

3
y(1 − y)ψ̃2

}
,

(78)

where the functions ψ̃1 and ψ̃2 have the form of Eqs. (53)
and (54), with the corresponding value of δ [see Eq. (77)].

Now we can find the difference of differential probabilities:

1

2

(
dW||
dy

− dW⊥
dy

)
= 16π2nσ0Rδ

c�Na

2(1 − x)ψ̃3, (79)

where the ψ̃3 function is defined by Eq. (59).
Note that Eqs. (76) and (78) describe the coherent contri-

bution in the process. The incoherent contribution is the same
as in a straight single crystal.

B. Propagation of photons

Equations (76)–(79) are valid in thin crystals while
W||, W⊥ � 1. As known, the propagation of photons in a
medium is determined by its permittivity tensor εij , i,j = 1–3.
For high-energy photons propagating in a straight single
crystal, this tensor was found in Refs. [26,27]. The process is
determined primarily by the transverse part of the permittivity
tensor, while the longitudinal components of the tensor are
higher-order infinitesimals in the interaction constant. The
derivation of the tensor is based on the theory of coherent
e± pair production [8,22]. Thus, we can employ these results
for bent single crystals. It means that, on a short distance of the
photon trajectory, the components of the tensor are functions of
the θ angle. The correct description of the photon propagation
in a medium includes equations for losses of photon flux
and variations of Stokes parameters, which define a current
polarization state of the beam. References [26,27] contain such
a description for straight single crystals, when the components
of the permittivity tensor are not changed along the photon
trajectory. One can assume that the differential form Ref. [28]
of these equations gives the description of the propagation
process in bent single crystals. It should be noted that it is
more convenient to employ the tensor ηαβ(α, β = 1, 2), which

is the inverse tensor of εij . Then we can write

c

ωγ

dJγ

dz
= −Jγ (−G − Fξ1 − Cξ2 − Bξ3), (80)

c

ωγ

dξ1

dz
= F

(
1 − ξ 2

1

) − Cξ1ξ2 − Bξ1ξ3 − Aξ2 − Dξ3, (81)

c

ωγ

dξ2

dz
= C

(
1 − ξ 2

2

) − Fξ1ξ2 − Bξ2ξ3 + Aξ1 − Eξ3, (82)

c

ωγ

dξ3

dz
= B

(
1 − ξ 2

3

) − Fξ1ξ3 − Cξ2ξ3 + Dξ1 + Eξ2, (83)

FIG. 3. Comparison of calculations of positron differential energy
losses performed with the help of exact Eqs. (43)–(49) (curves 1)
and approximated Eqs. (52)–(54) (curves 2). The conditions for
calculations are E0 = 120 GeV, θb = 110 μrad, θc ≈ 14 μrad; the
values of bending radii and κ are equal to 10 m and 40 (a), 1 m and
12.5 (b) and 0.1 m and 4 (c), respectively. The incoherent part of the
losses is not presented.
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FIG. 4. Positron differential energy losses in a thin (0.06 mm)
silicon single crystal performed with the help of Eqs. (43)–(49)
(curve 1) and Eqs. (52)–(54) (curve 2). The incoherent part of the
losses is not presented.

where

A(z) = (η′
11 − η′

22)/2, B(z) = (η′′
11 − η′′

22)/2, (84)

C(z) = (η′
12 − η′

21)/2, D(z) = (η′′
12 − η′′

21)/2, (85)

G(z) = (η′′
11 + η′′

22)/2, (86)

E(z) = (η′
12 + η′

21)/2, F(z) = (η′′
12 + η′′

21)/2, (87)

where ηαβ = η′
αβ + iη′′

αβ . Besides, we assume that |ηαβ −
δαβ | � 1, where δαβ is the Kroneker δ function. Thus, the
propagation process is described by the system of differential
equations of the first order at the initial conditions J (0) =
1, ξ1(0) = ξ1,0, ξ2(0) = ξ2,0, ξ3(0) = ξ3,0. Note that (−G −
Fξ1 − Cξ2 − Bξ3) � 0 for any real medium.

Taking into account the possible expansion of the calcu-
lation method, we wrote equations in a more common form
than is needed for the planar case of the crystal orientation.
So, for the case under consideration E = 0, F = 0. Besides,
C = 0, D = 0 if we choose the principal axes of the symmetric
tensor along or parallel to the crystallographic plane.

FIG. 5. Positron differential energy losses at different crystal
thickness. The condition for calculations are E0 = 120 GeV, R =
10 m. The curves 1–5 correspond to 0.25, 0.5, 1, 1,5, 2 mm of
thickness (see text).

The solution of the system has the following form:

J (z) = J (0)[cosh b(z) + ξ3(0) sinh b(z)]e−w0(z), (88)

ξ1(z) = ξ1(0) cos a(z) − ξ2(0) sin a(z)

cosh b(z) + ξ3(0) sinh b(z)
, (89)

ξ2(z) = ξ1(0) sin a(z) + ξ2(0) cos a(z)

cosh b(z) + ξ3(0) sinh b(z)
, (90)

ξ3(z) = ξ3(0) cosh b(z) + sinh b(z)

ξ3(0) sinh b(z) + cosh b(z)
, (91)

where

w0(z) = ωγ

2c

∫ z

0
G(z)dz = WT (z), (92)

a(z) = ωγ

c

∫ z

0
A(z)dz, (93)

b(z) = ωγ

c

∫ z

0
B(z)dz = 1

2
[W||(z) − W⊥(z)]. (94)

Here WT = W + WA, where W is defined by Eq. (78) and WA is the incoherent contribution [25,26], W||, W⊥ are the same
probabilities as in Eqs. (78) and (79). For the integration we should employ the following connection: θ = θ0 − z/R (for
simplicity we put the initial angle θ > 0). For completeness we write the following relations [26]:

A = −Bnσ0λc

8π

∞∑
N=1

U 2(N )z2
NF ′

1(zN )(GN )2, (95)

where zN = 2mc2/(Eγ GNλcθ ) and the F ′
1 function is

F1
′(z) =

⎧⎨
⎩

[√
1 − z + z

2 ln 1+√
1−z

1−√
1−z

]2 + [√
1 + z − z

2 ln
√

1+z+1√
1+z−1

]2 − π2z2

4 , 0 < z � 1

−[√
z − 1 − z arctan 1√

z−1

]2 + [√
1 + z − z

2 ln
√

1+z+1√
1+z−1

]2
, z > 1

. (96)
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FIG. 6. (a) Averaged over transversal energy distributions of energy losses of positrons (1, 2) and electrons (1′, 2′). The conditions for
calculations are E0 = 120 GeV, crystal thickness is equal to 1 mm, bending radii are equal to 10 m (1, 1′) and 5 m (2, 2′). (b) The volume
reflection angle for positrons (1, 2) and electrons (1′, 2′) as a function of the relative transversal energy. The functions are shown for one period.

IV. EXAMPLES OF CALCULATIONS

The aim of the examples presented here is the demonstration
of various peculiarities of photon emission by light leptons
moving in over-barrier states in bent planar electric fields. In
parallel we will try to illustrate the possibilities to calculate
the process with the help of different equations of the paper.
Most of the calculations were carried out for the energy of
particles equal to 120 GeV and the (110) planar fields of silicon
single crystals, because the recent CERN experiment [11] was
carried out for these conditions. Note that all calculations
were performed at room temperature, for atomic form factors
derived from x-ray experiments [18,21]. The comparison of
calculations of volume reflection characteristics obtained on
this basis with the corresponding experimental data [29,30]
gives a measurably better result than with the use of the Moliere
atomic form factors. Due to the squared dependence of the
coherent radiation process on the interplanar potential (electric
field), the correct choice of atomic form factors is important.

Figures 3 and 4 give an estimate of the mutual proximity
of exact Eqs. (43)–(49) and approximate Eqs. (52)–(54). We
see a rather good agreement, up to small enough κ parameters.
In addition, Fig. 4 demonstrates that on a short distance the
spectral energy losses are close to such losses in a straight
single crystal. This fact supports results of the paper [10].
Besides, the use of Eqs. (52)–(54) [instead of Eqs. (43)–(49)]
strongly simplified calculations [for example, see Eqs. (72)–
(74), which take into account the multiphoton production].

Figure 5 illustrates the behavior of differential energy losses
at various thicknesses of a single crystal. The calculations were
made for the so-called symmetric orientation of a crystal. It
means that the entrance and exit angles have the same absolute
value but different signs [see Eqs. (19) and (20)]. The absolute
value of the angle is equal to θc + z0/(2R). For θc we take one
half of the mean volume reflection angle (αvr ). We see that
the form of the spectra is changed with thickness variations.
This behavior differs from the similar one for straight single
crystals, if the multiple scattering is not taken into account.

FIG. 7. Probabilities of photon radiation by positron as functions of a crystal thickness. For additional information see text.
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Particles with the same entrance angle have different
transversal energies [18] (defined by the initial coordinate x0).
According to Eq. (50), the correct value of radiation losses
is a result of averaging over transversal energies [see Eq. (4)].
Figure 6 presents the calculations carried out in such a manner
for a symmetric orientation. The choice of the entrance
angle was made with the help of the relation θb = 〈αvr〉/2 +
z0/(2R). Due to the dependence of the volume reflection
angle on the transversal energy, the outgoing particle beam
gets some angle spread [see Eqs. (12) and (13)]. The absolute
value of the exit angle for every particle can be found with
the help of equation θe = z0/R − θb − αvr (E). Figure 6(b)
illustrates the behavior of the αvr (E) functions. Thus, these
data are sufficient for finding the averaged spectra [see
Eq. (50)]. As a result, we can conclude that it is not necessary
to use the averaging procedure procedure for large enough
bending radii (see Fig. 5, curve 3, and Fig. 6, curve 1, for
comparison). The corresponding condition for bending radii
is R > E0d/U0, where U0 is the interplanar potential barrier.

Comparing the corresponding results for electrons and
positrons in Fig. 6 shows a small excess of losses for electrons
in the soft part of the spectrum. It is easy to explain the smaller
value of the mean volume reflection angle for electrons.

The form of the spectrum in Figs. 5 and 6 is clear. The
first harmonic (N = 1) brings the main contribution in energy
losses. In a straight single crystal the form of spectrum is
defined by the θ angle. The photon spectrum begins from
very small energies and reaches a maximal value which can be
found from the relation Gcθ = δ [see Eq. (56)]. The maximum
of energy losses corresponds to the maximal photon energy (at
fixed θ angle). Upon decreasing θ the maximal photon energy
is also decreased. In a bent single crystal the θ angle is changed
at the particle motion. Equations (19)–(20) show the area (of z

or t variables) of stable motion in which |θ | < αvr/2 is absent.
This fact is equivalent to the suppression of the soft part of
the spectrum, and we can write the condition for the photon

FIG. 8. Positron total energy losses as functions of a crystal
thickness. The curves 2 and 4 correspond to pure coherent total
energy losses. Bending radii are equal to 10 m (curves 1 and 2)
and 5 m (curves 3 and 4).

energy which corresponds to the maximal value of energy
losses: Gc〈αvr〉/2 = δ. From here we get

xm = Eγ

E0
= D

1 + D
, (97)

where D = λcγG〈αvr〉. One can obtain a similar estimate for
the breaking of the spectral curve at high photon energies
(from the condition Gcθb = δ) Taking into account that αvr is

FIG. 9. Calculations of radiation energy losses [(a), (b)] and linear
polarization (c) of 120 GeV positrons in the (110) plane of a silicon
single crystal (2 mm of a thickness) as functions of energy. In panels
(a) and (b) curves 1 present results of calculation of the total energy
losses in the experiment (crystal + background), while the curves 2
correspond to a pure crystal. In panel (c) curves 1 and 2 present the
linear polarization as functions of photon energy for bending radius
11 and 4.7 meters, respectively. For other explanations see text.
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proportional to
√

E0 (at large enough bending radii), we get
that xm ≈ D ∼ √

E0.
Equation (69) describes the probability of emission Ne/N0

of a single photon as a function of a crystal thickness.
This probability for a small crystal thickness has the form:
pl(z0) = n

∫ z0

0 σγ (ε,E0,z)dz (in the linear approximation of
the exponent in the equation). Figure 7 illustrates the behavior
of these probabilities as a function of the thickness for two
bending radii [10 m in Fig. 7(a) and 5m in Fig. 7(b)]. The
curves 1 and 2 correspond to the linear probability pl(z0) for
two cases: (1) the cross section is a sum of the coherent and
incoherent (at ε = 0.01E0) cross sections (curve 1); (2) the
cross section is a purely coherent one (curve 2) and ε = 0. We
employed Eqs. (72)–(74) for calculations. The curves 3 and 4
are the probabilities equal to 1 − exp[pl(z)] for cross sections
as in the curves 1 and 2, correspondingly. One can see that for
10 m bending radius, both values pl are about 1 at z0 ≈ 2 mm.
It means, first, that the linear approximation does not work
correctly at these thickness and, second, the probability of
photon emission is close to 1 at a crystal thickness larger than
2 mm. Really, the curves 3 and 4 reach values of about 0.75 at
2 mm. For a crystal with 5 m bending radius the same situation
takes place at a thickness about 4 mm.

Figure 8 illustrates the total energy losses of positrons as a
function of the crystal thickness. We use Eqs. (66) and (67) for
the calculation of the coherent contribution in the total losses.

Figure 9 presents the comparison of our calculations
with the results of the recent CERN experiment [11]. The
experiment was performed at a positron energy equal to
120 GeV. The silicon single crystal with the (110) orientation
and 2 mm thickness was used in measurements, for two values
of the bending radius (4.7 and 11 meters). Figure 9 illustrates
the calculated spectra [Figs. 9(a) and 9(b) for bending radii
11 m and 4.7 m, respectively] and the degree of linear polar-
ization [Fig. 9(c), the curves 1 and 2 for bending radii 11 m and

4.7 m, respectively]. The calculations are based on Eqs. (72)–
(74) and so take into account the multiphoton production
process.

The curves 1 and 2 correspond to two cases. The first
case is the calculation for a pure crystal in the beam and the
second one is for the sum of the crystal and the background
from an additional substance in the beamline. Measurements
(without crystal and with a nonoriented crystal) give a value
equal to ≈0.7 for the ratio of energy losses. The circles
and squares are the results of measurements for oriented
and nonoriented positions. The curves 1 and 2 in Figs. 9(a)
and 9(b) are the result of averaging over the angle divergence
of the positron beam, which was ±50 and ±173 μrad
relative to the central coming angle, respectively. Note that
our calculation shows that averaged spectra are close to the
spectra calculated for the central angle. This is also true for
the polarization dependencies. The curves 3 [in Figs. 9(a) and
9(b)] are (multiplied by 0.65 and 0.85, respectively) the energy
losses calculated with the help of Eq. (75) and hence do not
take into account multiphoton production.

Besides, for a correct working of the method, the value
ε should be defined correctly. Our choice of this value can
be understood from the following simple arguments. In the
experiment only energy losses larger than 2 GeV were fixed.
Besides, the momentum spread of the positron beam was about
1 percent. It allows us to select ε equal to 1.2 GeV. Thus, we
do not take into account the emission of low-energy photons.
Results of calculations should be practically independent of
the ε value. Really, for variations of ε in the range from 0.12
up to 1.2 GeV, the calculated spectra of energy losses are very
close to one another. Our method is true for ε � 0.12, but
for the correctness of the use, the consideration of more than
two-photon emission is needed. Besides, in the experiment
the energy losses are determined mainly by the coherent part
of the cross section, which has a finite value. Calculations

FIG. 10. Calculations of radiation energy losses of positrons (a) and electrons (b) in the (111) planes of silicon single crystals. The curves
marked as 1 are new calculations, the curves 2 are previous ones [6]. Symbols are measurements.
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FIG. 11. Propagation of 1000 GeV photons through the (110)
plane of a bent silicon single crystal. The curves 1–4 correspond to
the Stokes parameters (ξ1, ξ2, ξ3) and intensity (J ), respectively. The
bending radii and thicknesses are equal to 1000 m and 8 cm (a) and
100 m and 2 cm (b). The symmetric case of passage of beam is
considered. The curves 2a, 2b, 2c demonstrate the transformation of
the ξ2 parameter by a sequence of several bent silicon crystals. The
initial Stokes parameters are ξ1 = 0.7, ξ2 = 0, ξ3 = 0.

with zero incoherent cross section (and ε = 0) demonstrate
insignificance and difference of results.

Additional amorphous material (besides the investigated
single crystal) was present in the beamline and can give
radiation energy losses of positrons which are not connected
with the studied process. It is the usual situation in similar
experiments. In such experiments, when the probabilities
of interaction for both processes (i.e., the investigated and
the background ones) are �1, then these processes can be
separated by a simple subtraction of the background one.
In the case when the investigated process has large enough
energy losses, this method does not work. Due to this fact we
made approximate calculations of the influence of additional
material on energy-losses spectra. As was mentioned above,
the total differential cross section of the investigated process
is the sum of the coherent dσc and dσa terms. We believe
that the additional material may be taken into account by a
corresponding increase of dσa .

We applied the method proposed here for the calculation of
energy losses of 180 GeV positrons and electrons [6]. Figure 10
illustrates these calculations.

We made calculations of e± photoproduction probabilities
with the help of Eq. (70) and the approximation Eq. (78)
and found good agreement between them. One can find
some illustrations of this process in Ref. [25]. Figure 11
demonstrates the propagation of 1000 GeV photons through
a bent single crystal. Simple estimates show that a sizable
variation of the Stokes parameters is possible only for high
photon energies and for large enough crystal thicknesses. The
figure shows also the possibility of using a sequence of several
bent silicon crystals [31].

V. DISCUSSION

As mentioned above, the radiation in bent single crystals
was considered in Refs. [12,13] In Ref. [12] the study of
photon emission in bent crystals is based from the outset on
the coherent bremsstrahlung mechanism. Because of this, a
straight line particle motion (without any breaking at small
angles) was assumed. The authors transform the relations for
coherent bremsstrahlung into the cylindrical coordinate system
with the use of the corresponding choice of the structure
factors. The derived relations have a form similar to Eq. (55),
with the introduced angle cutting parameter θmin which is
equal to δ/(Gc) (in our notation). One can see that this
parameter depends on the photon energy, and it is unrelated
to the volume reflection angle. Unfortunately, in the paper
specific calculations of the effect are not presented, but one
can see from the equations that the characteristic maximum
in the energy loss spectrum should be absent (θmin → 0 when
ωγ → 0).

In the papers [13,32,33] radiation energy losses are calcu-
lated for the case when the mean angle of volume reflection is
equal to zero. This assumption is in conflict with experiments
[29,30]. As a result of such consideration the spectra of energy
losses (at orientations in the area of volume reflection) have
a maximum at zero energy (see also Ref. [32]). According to
Ref. [33] the linear polarization of the radiation is independent
of the bending radius, and it has maximal value (≈50%) in
the soft part and tends to zero at the end of spectrum. Our
calculations on the basis of Eq. (58) give another description
(see Fig. 9). Note that some conclusions of Ref. [13] are
in agreement with our description. The connection of the
emission process in bent and unbent single crystals, the
breaking of spectra at large energies are in agreement with
our predictions.

It should be noted that multiple scattering of particles in a
body of a crystal can change the probability of radiation if the
scattering angle θm is close or exceeds the characteristic angle
(which is equal to 1/γ ) of photon emission on the formation
length. However, simple estimations performed for particle
energies up to 200 GeV show that θm < 1/γ by several times.
It means that multiple scattering does not disturb strongly
photon emission on a short part of the particle trajectory. One
can expect that the degree of perturbation depends on the initial
particle energy and crystal thickness. The report [9] contains
some results of the problem which was obtained by the Monte
Carlo method. From here it follows that for a single crystal with
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a thickness about 1 mm and an energy larger than 10 GeV the
influence of multiple scattering is not strong.

Our calculations show that at a crystal thickness of about
1–3 mm the probability of photon radiation (see Fig. 7) is rather
high (>0.7). A comparison of our simulations which take into
account the multiphoton production with experimental data
demonstrates good agreement (see Figs. 9 and 10). As shown in
Fig. 9 there is the clear maximum of energy losses. The location
of the maximum is shifted to higher photon energies than
follows from Eq. (97). We explain this fact by a multiphoton
production mechanism.

The propagation of high-energy photons in a straight single
crystal (for orientations corresponding to coherent photopro-
duction) was studied, in particular, in Refs. [8,27,34–38]. In
Refs. [39,40] the propagation was considered for the case of
magneto pair production. As shown in Fig. 11 the initial linear
polarization of the photon beam is transformed into a circular
one. This phenomenon is due to interaction of the photon with
the electron-positron field (vacuum polarization). There are
two approaches to studying the phenomenon in crystals. The
first one stands on the method of the electrodynamic of the
continuous media and the second one stands on the methods of
diagram calculations which allow one to obtain amplitudes of
photon scattering at the interaction with crystal electric fields.
In Ref. [41] the connection between these approaches was
found: the relations between the permittivity (dielectric) tensor
and the polarization tensor were established. The feature of
the description of the propagation in bent single crystals is
the coordinate (angle) dependence of the components of the
permittivity tensor. The solution of this problem obtained in the
paper has a rather common form and may be applied to similar
ones. For example, in Refs. [42,43] variations of the Stokes
parameters of high-energy photons going through a laser
bunch was investigated for a constant photon density of bunch.

Equations (88)–(91) give the solution for this case for variable
density. Note that in the experiment [38,44], the indications on
vacuum polarization in crystals were obtained. In principle,
the bent single crystals may be used for investigations in this
field.

We think that our consideration of electromagnetic pro-
cesses my be extended to the axial case [45] of particle motion
in bent single crystals. In the axial case we propose to use
[instead Eq. (55)] the following equation:

d2E
dEq

= dI

dEq

(θh(t),θv(t))cdt, (98)

where θh and θv are the angles which define the direction of
motion in the local coordinate system xyz (see Fig. 1). Here, I
is the well-known intensity of the coherent bremsstrahlung in a
straight single crystal. Similar equations may be applied for an
axial photoproduction process. The most promising result can
be expected for the photon propagation, because the coefficient
a(z) [see Eq. (93)] should be 4–5 times larger than in the planar
case [35].

In conclusion we can note that the description of electro-
magnetic processes in bent single crystals proposed here is in
a good agreement with the existing experimental data and may
be useful for different calculations in wide ranges of particle
energies and crystal parameters (such as thickness, bending
radius, sort of plane and others).
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