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A theoretical study is presented on the orientation-dependent retarding force experienced by a slow
homonuclear linear trimer moving at arbitrary alignment with the direction of its flight in a three-dimensional
degenerate electron gas of metallic densities. We apply a standard multiple-scattering method for elastic scattering
of independent electrons off a three-center system in a screening environment. These centers are modeled by
short-range auxiliary potentials and thus they are characterized by an effective s-type phase shift η. Within
this framework for the orientation-dependent retarding force, the interplay of wave interference and multiple
scattering is analyzed in a comparative manner for a realistic set of the input parameters. By allowing a restricted
variation in the polar angle between the linear multicenter orientation and its velocity direction, a reasonable
agreement with data obtained by a slow carbon trimer is established.
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I. INTRODUCTION AND MOTIVATION

A recent experimental study [1] on stopping power, con-
ducted with slow C+

2 and C+
3 ions traversing self-supporting

carbon-foil targets without fragmentation, shows notable neg-
ative proximity effects. This effect, characterizing deviations
from stopping additivity, is the conventional stopping-power
(S) ratio RN , reading

RN = 1

N

SN

S1
(1)

for an N -atomic homonuclear intruder moving at a given
velocity. The data [1] result in values of about R2 = (1/2) and
R3 = (2/3). These numbers provide a further definite measure
for the so-called efficiency ratio via

RN,M ≡ SN

SM

, (2)

of separate trimer (N = 3) and dimer (M = 2) stopping
powers. One gets R3,2 = 2 using data. Thus, an independent-
atom model for slow composite intruders is far from reality,
since it would give values of R2 = R3 = 1 and R3,2 = (3/2).
The applicability of an united-atom model, where SN ∝ N2, is
also questionable in our case, since it would result in R2 = 2
and R3 = 3, and thus in R3,2 = (3/2)2 > 2. Clearly, one
should go beyond these models that are, according to Sigmund,
mostly qualitative and based on intuitive arguments [2].

However, already with a monatomic trimer one has to select
possible molecular geometries for the penetrating objects
which are reasonable [3–5] not only from the energetic but,
equally importantly, from the allowed-space point of view as
well. The aim of this theoretical study is to investigate the
capability of a treatment for linear trimers, by extending a
nonperturbative method applied [6] to interpret the data [1,7–9]
for C+

2 and H2
+. That theory gave remarkable agreement with

independent experimental findings with these intruders.
Thus, in this work, we consider a linear intact trimer which

moves with a given low speed in the direction of its velocity
vector through carbon foils. The target is modeled [10] as
a degenerate electron gas of fixed density n0. This a priori

presumed linearity of a traversing trimer would correspond to
a complete-alignment situation. As was pointed out by Arista
[10], a well-aligned case at low velocities could be due to
coherent multiple scattering of intruder constituents with target
atoms. This orienting mechanism in penetration seems to be
a reasonable one in those cases where the composite intruder
(with strong interatomic binding) and the target consist of the
same type of atoms, as in the case with carbon.

Before presenting the details of our approximation in
Sec. II, we are tempted to interpret the experimental [1]
findings based on the theoretical results obtained [6] for carbon
dimers. Since the aligned-dimer stopping power was almost
perfectly equal to the stopping power of a single carbon atom,
in nice harmony with the experiment, we may image a perfect
shadow for the second atom behind the leading one. But
a simple extension of this classical shadow picture to the
third constituent (see the solid curve in Fig. 2 of Sec. II B)
of a linear trimer would give an R3 = 1/3 estimation, with
R3,2 = 1. On the other hand, by treating the trimer stopping as
a formal sum of two independent dimer stoppings, we would
get R3 = (2/3) and R3,2 = 2 ratios. To understand, at least
partially, the physics behind this perfect estimation we extend
our method [6] to the case of linear-trimer intruders.

The rest of the paper is organized as follows. Section II
is devoted to the theoretical details and the obtained results.
These results are discussed in a comparative manner, by
exhibiting them in illustrative figures as well. Finally, Sec. III
contains our summary and an outlook. Hartree atomic units,
h̄ = me = e2 = 1, are used throughout.

II. THEORY AND RESULTS

As in the previous work [6] for carbon dimers, we use
a well-known [11,12] theoretical framework in order to get
the complex scattering amplitude Fk,k′ for elastic (|k| =
|k′| = kF ) electron scattering off the field of a slow linear
homonuclear trimer. Considering the outgoing part of the
scattered-electron wave function, we can write

1

f
Fk,k′ = �1 eik′ ·d + �2 + �3 e−ik′ ·d, (3)
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in terms of the complex single-center scattering amplitude
(1/f ) ≡ ik(1 + i cot η). The positions (rl) of trimer con-
stituents (l = 1,2,3) are measured, conveniently [13], from the
middle-atom position r2 = 0, as (r2 − r1) = d and (r2 − r3) =
−d. The effective phase shift η(kF ) will be fixed below. The
complex �l functions encode the important modulating effects
of multiple scattering. They are the solutions [6,12] of coupled
algebraic equations

�l = eik·rl + f
∑

j

�j

eik|rl−rj |

|rj − rl| , (4)

with the obvious constraints of j �= l and 1 � l � 3 in our
case, where r2 = 0. In the simple impulse approximation,
in which positions of r1 = −d and r3 = d are considered in
Eq. (4) only at d → ∞, the solutions for �l are plane waves,
i.e., they are given by the first terms of the above equation. In
such a case, the resulting (approximate) amplitude in Eq. (3)
is a simple superposition of plane waves. This decoupling at
d → ∞ allows an analytical evaluation of the corresponding
perturbative stopping, as we will show below in Eqs. (8)
and (9). Beyond this approximation, the a1,2 = a2,3 ≡ eikd/d

and a1,3 ≡ ei2kd/(2d) complex quantities encode the important
effect of multiple scattering at realistic values of d.

The orientation-dependent stopping power of an electron
gas, i.e., the retarding force in the velocity direction of slow
(v < vF ) linear trimers is determined [14,15] from

S(α) = n0 kF v [cos2(α) σ
‖
tr (kF ) + sin2(α) σ⊥

tr (kF )], (5)

in terms of the parallel (‖) and perpendicular (⊥) transport
cross sections. The density of the degenerate electron gas is
n0 = k3

F /(3π2), and α is the polar angle between the linear-
trimer orientation and its velocity direction. The perpendicular
force component which may lead to trajectory deflection
[14] is proportional to [σ ‖

tr (kF ) − σ⊥
tr (kF )] sin α cos α. This is

maximal at α = π/4. Clearly, for a close-to-parallel trimer
penetration, smaller α values are desirable, especially when
the difference of partial cross sections is appreciable.

The cross sections to Eq. (5) are [6] given by the following
expressions:

σ
‖
tr (kF ) = 3

4π

∫
d�kF

∫
d�k′

F

(
cosθkF

− cos θk′
F

)
× cos θkF

|F (kF ,k′
F )|2, (6)

σ⊥
tr (kF ) = 3

4π

∫
d�kF

∫
d�k′

F
sin2 θkF

× cos2 ϕkF
|F (kF ,k′

F )|2. (7)

Angle averaging is performed by d�k = dϕk sin θkdθk, where
ϕk ∈ [0,2π ] and θk ∈ [0,π ]. The above expressions are valid
at low velocities, v < vF , where the spherical modeling of
a single-center field is reasonable since neither the charge-
changing [16,17] nor the wake [18] effects are important there.
Furthermore, as was analyzed earlier in detail, the proximity
effect in stopping ratios is well characterized by an s-type
scattering off such a center [6].

A. Impulse approximation: Role of wave interference

When the a1,2 = a2,3 ≡ eikd/d and a1,3 ≡ ei2kd/(2d) com-
plex quantities in Eq. (4) are taken equal to zero (impulse
approximation), the whole calculation becomes quite simple
for a linear trimer N = 3. The results derived within our
framework for the ratio functions are denoted as R

‖
N at α = 0,

and R⊥
N at α = π/2. In the impulse approximation they are

R
‖
N = 1 + 6

N

N−1∑
n=1

(N − n)

[
j 2

0 (nx) − j 2
1 (nx)

− 2

nx
j0(nx)j1(nx)

]
, (8)

R⊥
N = 1 + 6

N

N−1∑
n=1

(N − n)
1

nx
j0(nx)j1(nx), (9)

for arbitrary N in a linear chain. Here we introduced x ≡ kF d

and the Bessel functions jl of the first kind. At a prefixed
x = π value, we can analytically derive from Eq. (8) the form

σ
‖
tr �

[
N

(
4π

k2
F

)
sin2 η

](
1

N
ln N

)
, (10)

in leading-order for N � 1. This, only logarithmic, behavior
corresponds to d = λF /2, in terms of the de Broglie
wavelength λF = 2π/kF of an electron with Fermi wave
number kF .

The other component, and thus the average, behaves as
σ⊥

tr ∝ N , at x = π . It is tempting to interpret, a priori,
a complete alignment together with the resulting reduced
stopping in Eq. (10) above, as a probable realization of the
geometrical and energetic intactness. It should be noted that
a growing reduction found in the RN functions by growing
N is common in perturbative consideration of the scattering
process. Qualitatively similar effects are shown in Fig. 5 in
Ref. [1] and Fig. 6 in Ref. [2] for angle-averaged quantities.

Now, we use N = 3 and N = 2 in Eqs. (8) and (9) to
get a perturbative trimer and dimer comparison. In Fig. 1 we
exhibit the ratio functions Ri

N . Their properly averaged sum
[see, Eq. (5)] characterizes the random situations. The upper
panel refers to N = 3, while the lower one to the N = 2
case. All curves are based on the above-outlined impulse
approximation. One can see that in the formal x → 0 case,
which must correspond to the kF → 0 mathematical limit at a
physically reasonable finite d value, one gets from Eqs. (8)
and (9) simply the number N of independently treated
constituents. In the realistic range, where x ∈ [1.5,4], the R

‖
N

ratios show strong reductions, i.e., notable negative proximity
effects.

Unfortunately, at the x � 3 value, which fits [6] to the
experimental [1] situation with carbon trimer (d � 2.46 and
kF � 1.2), we get (R‖

3/R
‖
2) � (2/3) and R3,2 � 1. These

values are in disagreement with the data outlined in Sec. I.
Thus, at this level of understanding, we have to conclude
that wave-interference effects alone are not enough to get
realistic estimations for low-velocity trimer intruders. Within
the framework of the applied theoretical method, we should
go further in order to get more reliable a posteriori statements
on the capability of a strong-scattering treatment employed to
a linear multicenter intruder.
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FIG. 1. Illustrative dimensionless ratios Ri
N showing the orienta-

tion dependence of renormalized stopping powers of a degenerate
electron gas for a slow homonuclear linear trimer (N = 3) and
dimer (N = 2) under parallel (‖) (solid curves) and perpendicular
(⊥) (dashed curves) conditions of traversing the target material.
The curves are exhibited for the x ∈ [0,7] mathematical range,
where x = kF d . They are calculated from Eqs. (8) and (9), i.e., by
neglecting the effect of multiple scattering, but considering wave
interference.

B. Role of multiple-electron scattering and interference

Now we investigate the combined effect of wave interfer-
ence and multiple-electron scattering. Our computation rests
on a properly designed code, with N , a1,2, a1,3, kF , d, and
η as input parameters, that allows a case-to-case study. In
Fig. 2, we exhibit the obtained results by using the same
notation (Ri

N ) for the ratio functions as in Fig. 1. Unlike in the
case of independent electron scattering, where for the formal
x → 0 limit the number of constituents N is obtained, here
the behavior is drastically altered. The reason for that stems
from the fact that inclusion of multiple-electron scattering
[see the second terms in Eq. (4)] strongly modulates the
independent-event character of the impulse approximation.
Furthermore, in Ref. [6] it was analytically shown for the case
of a dimer that the cross sections alone tend to a constant value
for fixed d and η at vanishing scattering momenta kF . Thus,
dividing such cross sections by the product NS1 ∝ N/k2

F

one gets zero values for the ratios. For carbon intruders and
at the realistic x = 3 value, we get (R‖

3/R
‖
2) � (0.7) and

R3,2 � 1, i.e., about one-half of the data. The comparison
of solid curves show the shadow effect discussed in the
Introduction.

However, as we mentioned in the Introduction, we have to
allow an angle variation in a realistic case with linear trimer of
about (2 × d) � 5 a.u. length. With a geometrically reasonable

FIG. 2. Dimensionless ratios Ri
N showing the orientation depen-

dence of renormalized stopping powers of a degenerate electron gas
for a slow linear carbon trimer (N = 3) and dimer (N = 2). The
conventions of Fig. 1 are used. The dotted curve in the upper panel
is based on Eq. (11). The curves are computed by considering wave
interference and multiple scattering simultaneously. The shadowed
area around the dotted curve brackets the α ∈ [π/8,π/4] angle
interval. The effective [6,19] phase shift employed is η = 2.3. The
experimental data (with error bars) are exhibited by filled squares.
See the text for further details.

α = π/6 value, we get for the linear-trimer stopping

S(α = π/6) = n0 kF v
[

3
4σ

‖
tr (kF ) + 1

4σ⊥
tr (kF )

]
. (11)

The ratio S(α = π/6)/[3(4π/k2
F ) sin2 η] is exhibited on Fig. 2

(upper panel) by a dotted curve. The agreement with ex-
perimental data, which is roughly 2/3 at x = 3, becomes
quite reasonable. The experimental data presented here are
obtained after averaging three values plotted in Fig. 4 of
Ref. [1]. The shadowed area around the dotted curve, for the
realistic x ∈ [1.5,4] range, marks the corresponding range in
the stopping ratio for the α ∈ [π/8,π/4] range. Clearly, by
allowing a physically constrained range in this angle, we are
still around the experimental prediction on trimer stopping.
Data with smaller error bars would allow for a better constraint
on the angular orientation in our present modeling. With a
carbon dimer, an intact transmission is feasible without further
geometrical constraint.

The remarkable constancy of the parallel component over
a large range of x could have an impact on the proper
interpretation of interesting experimental findings [7,9] with
H2

+ intruders. The accurate (with error bar) data sets in Fig. 4
of Ref. [7] for v � 0.5 and in Fig. 3 of Ref. [9] for v � 1.5 show
a robust velocity independence of the stopping ratio. We argue
that the mentioned constancy found within our nonperturbative
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framework could play a decisive role in theoretical modeling
of such a behavior in velocity. Indeed, when the dimensionless
variable becomes x = vr d, where the relative [20] velocity
is given by vr (x) = vF [(x + 1)3 − |x − 1|3]/(6x) with x =
(v/ve) and ve ∈ [0,vF ], the important parallel component
would still be small. For instance, vr (x = 1) = (4/3)vF only.

III. SUMMARY AND OUTLOOK

In this theoretical study we have applied a standard
multiple-scattering method in order to quantify the retarding
force components experienced by a slow linear carbon trimer
moving through a degenerate electron gas. The comparison
of results obtained in the impulse approximation within
the framework of the method with those obtained without
this additional restriction shows that realistic, quantitative
estimations cannot be based on oversimplified perturbative
approximations. The interference of single-center scattered
waves and the role of complex translation operators encoding
the modulating effect of multiple scattering are found to
be important. The proper weighting of the such obtained
orientation-dependent scattering characteristics, governed by
an obvious geometrical constraint in the case of a solid-state

target, gives a quite reasonable agreement with experimental
data.

Based on stationary scattering methods, currently we are
working on the two-dimensional (2D) extension of the under-
lying [21] framework for in-plane chains of atoms as well.
The controllable depositions and orientation manipulations of
multicenters on close-packed noble metal surfaces represent
a direct and real challenge of broad technological relevance.
Clearly, the 2D version of the remarkable minimal behavior
found for the parallel situation in the present three-dimensional
modeling could be vital not only in 2D transport on noble
metals but also in the new class of materials [22] with
topologically protected 2D surface states. The same scattering
characteristics which determine the retarding force in slow-
projectile motion in an electron gas are behind the resistivity
in transport situations.
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