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Nonperturbative electron-ion-scattering theory incorporating the Møller interaction
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Relativistic distorted-wave studies by Fontes et al. [Phys. Rev. A 47, 1009 (1993)] demonstrated that the
generalized Breit interaction (equivalently, the Møller interaction) can affect electron-impact excitation cross
sections of hydrogenlike U91+ by more that 50% in comparison to calculations that employ the Coulomb
interaction alone. We present calculations that investigate the effects of both the Møller interaction and close
coupling in the calculation of electron-impact excitation cross sections. Electron scattering from U91+ is used as
a test case. The relativistic convergent close-coupling (RCCC) method is nonperturbative and we emphasize the
restrictions and subsequent limitations associated with employing the Møller interaction in the RCCC method.
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I. INTRODUCTION

The first-order relativistic distorted-wave calculations of
electron-impact excitation of highly charged ions by Walker
[1], Fontes et al. [2], and Moores and Pindzola [3] have shown
that the generalized Breit interaction (equivalently, the Møller
interaction) can significantly affect cross sections by up to
50% in comparison to Coulomb-only interaction calculations.
For the case of electron-impact ionization, experiment [4] has
confirmed the theoretical predictions that the Møller interac-
tion can increase cross sections by up to 50% [5,6]. Recent
years have seen further demonstration of the importance of
Møller interaction effects in reconciling experimental results
and theory in dielectronic recombination in highly charged
ions [7–9], and in the polarization of x rays emitted by highly
charged ions excited by electron impact [10,11].

An important consideration that remains to be investigated
is the incorporation of the Møller interaction in close-coupling
scattering calculations. Close-coupling (nonperturbative) cal-
culations are required to resolve resonance features in electron-
impact excitation cross sections; resonant features are absent
in first-order perturbative calculations and yet such resonances
can provide a significant contribution to effective collision
strengths obtained by integrating over Maxwellian distribu-
tions of electron velocities corresponding to temperatures
found in astrophysical and torrential fusion plasmas [12,13].

The early quantum electrodynamics research of the Nobel-
prize-winning physicist Nambu [14] indicated that employing
the Møller interaction beyond a first-order calculation is
fraught with conceptual difficulties, and that the concept of
a potential as a whole begins to lose its meaning in a fully
covariant quantum field theory. In the next section, we outline
some of the historical and conceptual aspects associated with
the use of the Møller interaction in quantum electrodynamics
and its use beyond first order. In Sec. III, we provide an
overview of the relativistic convergent close-coupling (RCCC)
method and the approximations that have been made in
employing the Møller interaction in the RCCC method.
Section IV contains results for electron-impact excitation cross
sections of U91+ that exhibit resonant features obtained with
the close-coupling formalism.
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II. THE MØLLER AND GENERALIZED BREIT
INTERACTIONS

In 1929, Breit [15–17] used classical arguments to include
relativistic corrections to the Coulomb potential for helium
fine-structure calculations. In the Coulomb gauge, the Breit
interaction between two electrons (denoted 1 and 2) is of the
form

V B
12 = e2

r12

[
−α1 · α2 + 1

2
(α1 · ∇1)(α2 · ∇2)r2

12

]
, (1)

and must be added to the Coulomb potential. In 1931, Møller
[18] performed a first-order time-dependent perturbation-
theory calculation applied to the relativistic scattering of two
electrons. Møller utilized an unquantized electromagnetic field
Aμ in the Lorenz gauge (often incorrectly referred to as the
Lorentz gauge) to obtain an interaction potential:

V Møller
12 = e2

r12
(1 − α1 · α2)eiKr12 , (2)

where K = |E − E′|/h̄c, and E and E′ denote the initial and
final energies, respectively, of one of the electrons. The Møller
interaction includes the Coulomb interaction. Moiseiwitsch
[19] provided an English translation of Møller’s original
derivation.

In 1932, Fermi [20] taught a generation of physicists
how to perform quantum electrodynamic calculations in
the Coulomb gauge. Using the Coulomb gauge techniques
presented in Fermi’s 1932 paper, Bethe and Fermi [21] in the
same year derived a first-order expression for the interaction
between electrons in which the electromagnetic field Aμ is
quantized. Bethe and Fermi [21] worked in momentum space
and the corresponding coordinate space representation of the
interaction takes the form

V GBI
12 = − e2

r12
α1 · α2eiKr12 + e2

(
α1 · ∇r12

)(
α2 · ∇r12

)

× eir12K − 1

K2r12
. (3)

Following a trend set by Mann and Johnson [22], Eq. (3) is
often referred to as the generalized Breit interaction (GBI). In
the limit of low-energy photons transferred between electrons
(cK = ω → 0), it can be shown [23] that the generalized
Breit interaction reduces to the Breit interaction given by
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Eq. (1). Furthermore, Hata and Grant [24] have shown that
the Møller [Eq. (2)] and generalized Breit [Eq. (3)] forms
for the interaction have equivalent matrix elements provided
that the wave functions used in the calculations are derived
from a local potential.

The use of the Møller interaction (or GBI) in first-order per-
turbation techniques is warranted because the interaction was
originally derived by Møller using first-order time-dependent
perturbation theory, but what is the quantum electrodynamic
potential between two electrons for higher-order terms? The
first thorough analysis of the problem using the manifestly
covariant quantum-field-theory techniques of Tomonaga [25]
and Schwinger [26,27] was performed by Nambu [14] in an
important paper titled “Force potentials in quantum theory.”
Nambu derived the Breit and Møller interactions (i.e., first-
order interactions) from covariant quantum-field-theory tech-
niques, but when analyzing higher-order terms in this covariant
framework, he came to the following conclusion: “We may say
that the concept of potential cannot enjoy a wide and practical
extension beyond the classical and nonrelativistic form” [14].

In the introduction to their treatise on quantum electrody-
namics, Berestetskii et al. [28] reinforce the conceptual ten-
sions that arise when translating concepts from nonrelativistic
quantum mechanics to quantum field theory: “At first sight
one might expect that the change to a relativistic theory is
possible by a fairly direct generalization of the formalism of
nonrelativistic quantum mechanics. But further consideration
shows that a logically complete relativistic theory cannot be
constructed without invoking new physical principles.”

This holds relevance for the relativistic convergent close-
coupling method [29], which is an attempt at a relativistic
generalization of the successful nonrelativistic CCC method
[30]. The RCCC method involves solving a relativistic version
of the Lippmann-Schwinger equation [31] based on the Dirac
equation, and therefore since it is nonperturbative involves
all orders of interaction between the electron. Bethe and
Salpeter [32], Mann and Johnson [22], and Sucher [33] have
reiterated the now “ancient” (as Sucher phrases it) caveat that
the use of the Breit (or Møller) interaction beyond first order in
atomic physics calculations can lead to problems due to matrix
elements taken between the positive- and negative-energy
states that appear in the solution of the Dirac equation. Sucher
[33] advocates working in the no-virtual-pair approximation.
Despite receiving criticism in the literature [34], it is in this
approximation that we work when employing the RCCC
method. It does not vindicate the use of the first-order Møller
interaction in the nonperturbative RCCC method; however, we
do so in the spirit encouraged by Dirac in his 1966 lectures
on quantum field theory [35] in which he stated, “The systems
of approximations I shall use will be somewhat similar to
the approximations that engineers use in their calculations.
Engineers have to get results and there are so many factors
occurring in their problems that they have to neglect an awful
lot of them; they don’t have time to study everything seriously
and they develop a sort of feeling as to what can be neglected
and what can’t. I believe that physicists working in QFT
will have to develop a similar sort of feeling as to what can
be neglected and what can’t. The final test is whether the
resulting theory is coherent and in reasonable agreement with
experiment.”

We note that the present calculations for electron scattering
on U91+ are in the low-energy region just above the excita-
tion thresholds, which is well below the threshold for pair
production (≈1 MeV). In order to accommodate variation in
particle numbers during scattering (due to electron-positron
pair creation), formal quantum-field-theory techniques must
be employed. Dyson’s 1951 lecture notes on quantum electro-
dynamics [36] provide an excellent introduction to techniques
developed by Tomonaga [25], Schwinger [26,27], and Feyn-
man [37–39] which provide the suitable frameworks. Dyson’s
lectures also explicitly highlight the issues associated with
the Dirac equation and associated hole theory. The Appendix
A contains further information pertaining to the conceptual
inconsistencies associated with hole theory that can only be
circumvented with quantum field theory.

III. THE RCCC METHOD

A complete description of the RCCC method, including
the incorporation of the Breit and Møller interaction matrix
elements, can be found in Ref. [40], and only a brief overview
is provided in this section. There are two main parts to the
RCCC method for electron scattering on hydrogenlike targets:

(1) The Dirac Hamiltonian for the target is diagonalized
using a Dirac L spinor basis [41].

(2) The target states generated are then used in the
formulation of a relativistic Lippmann-Schwinger equation for
the T -matrix elements of the electron-target scattering system.

In this latter step, the relativistic Lippmann-Schwinger
equation has the following partial-wave form:

T �J
f i (kf κf ,kiκi)

= V �J
f i (kf κf ,kiκi)

+
∑

n

∑
κ

∑∫
dk

V �J
f n (kf κf ,kκ)T �J

ni (kκ,kiκi)

E − εN
n − εk′ + i0

. (4)

The notation in Eq. (4), the matrix elements, and the method
of solution using a hybrid open-multiprocessing–message-
passing-interface (OpenMP-MPI) parallelization suitable for
high-performance supercomputing architectures is given in
Ref. [40]. The T -matrix elements obtained from the solution
of the relativistic Lippmann-Schwinger equation are then used
to calculate differential cross sections and other observables
of interest.

For the off-shell matrix elements of the Møller interaction,
we follow the method adopted by Fontes et al. [2] and use the
operator derived by Mittleman [42–44],

V Møller
12 = 1/2

[
V Møller

12 (KAC) + V Møller
12 (KBD)

]
, (5)

where KAC = |EC − EA|/c and KBD = |ED − EB |/c. Fontes
et al. [2] have performed calculations that show that the effect
of dropping the imaginary part in (5) is negligible and is of the
order of 2–3% for 1s–2s, 1s–2p1/2, and 1s–2p3/2 excitation
cross sections for a very highly charged Z = 100 hydrogenlike
target. Thus, only the real part of the Møller interaction is used
in the calculations.

Several other approximations are employed: the uranium
nucleus is treated as a point nucleus and therefore the finite
size and large quadrupole moment of the nucleus [45] are
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TABLE I. Calculated energy thresholds for U91+.

State Energy (keV)

1s1/2 0.000
2s1/2 98.065
2p1/2 98.065
2p3/2 102.630
3s1/2 117.612
3p1/2 117.612
3p3/2 118.973
3d3/2 118.973
3d5/2 119.321

neglected. Furthermore, radiative correction terms, such as
electron self-energy, vacuum polarization, and vertex correc-
tions, are neglected in the RCCC method. The Lamb shift
for the U91+ ground state is of the order of 500 eV [46],
which is not insignificant, but is only a fraction of a percent
compared to the magnitude of the 132 keV ground-state
energy. Electron energy losses due to Bremsstrahlung are
also neglected; however, these are negligible for the projectile
energies considered [47]. Finally, as discussed in the previous
section, we also neglect the negative-energy states that appear
in the diagonalization of the hydrogenlike target and work in
the no-virtual-pair approximation [33].

A nine-state RCCC calculation was used for electron
scattering on U91+ in order to compare with the nine-state
Dirac R-matrix calculation of Kisielius et al. [13]. The results
of Kisielius et al. [13] pertain only to the Coulomb interaction,
and not the Møller interaction. The energy levels of the states
used in the RCCC calculation are indicated in Table I.

IV. RESULTS

In Figs. 1–3, we present the electron-impact excitation cross
sections for the 1s1/2 → 2s1/2, 1s1/2 → 2p1/2, and 1s1/2 →
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FIG. 1. (Color online) 1s1/2 → 2s1/2 electron-impact excitation
RCCC-calculated cross section (solid blue line: Coulomb interaction;
dashed red line: Møller interaction) compared with the R-matrix nine-
state calculation of Kisielius et al. [13] (dotted black line) and the
first-order relativistic distorted-wave calculations of Fontes et al. [2]
(black triangle: Coulomb interaction; black circle: GB interaction).
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FIG. 2. (Color online) 1s1/2 → 2p1/2 electron-impact excitation:
see Fig. 1 for description of results.

2p3/2 transitions in hydrogenlike U91+ in the ≈20 keV region
above the thresholds. Also shown are the Dirac R-matrix close-
coupling calculations of Kisielius et al. [13], which included
only the Coulomb interaction, and the first-order relativistic
distorted-wave calculations of Fontes et al. [2]. Several pieces
of information can be gleaned from the data. First, the main
effect of the close coupling is to superimpose a sequence of
resonant peaks (associated with the formation of temporarily
bound resonant states) on top of a smooth background. As
expected, the magnitude of the smooth background can be
determined very accurately from first-order calculations. The
second important point is that the Møller interaction affects the
optically forbidden 1s1/2 → 2s1/2 transition by a significant
amount, i.e., on the order of 50%. For optically allowed
transitions, the effect of the Møller interaction is approximately
15% in the energy range considered.

A comparison of our Coulomb-only results in the three
figures indicates that some of the resonance peaks align well
with those in the data of Kisielius et al. [13]; however, there
are also differences in the position and magnitude of the
Coulomb-only results for the two theories. The calculations
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FIG. 3. (Color online) 1s1/2 → 2p3/2 electron-impact excitation:
see Fig. 1 for description of results.
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were performed with same energy mesh grid as that used
by Kisielius et al. [13]. The important feature of the Møller
interaction results is that the overall magnitude of the cross
section is determined by the first-order calculation, and
the effect of close coupling with the Møller interaction is
simply to introduce very sharp resonance peaks on top of
the background. We find that generally the resonance peaks
obtained with the Møller interaction coincide with those
obtained employing the Coulomb interaction.

V. CONCLUSION

We have highlighted some of the conceptual issues that
surround the use of Møller interaction in a nonperturbative
quantum theory. In the theme of Dirac’s “engineering ap-
proach” required to obtain practical results, we have incor-
porated the Møller interaction in a relativistic close-coupling
scattering formalism, as it is only within a close-coupling
formalism that resonant features in electron-excitation cross
sections can be obtained. The Møller interaction can have a
significant effect on electron-impact excitation cross sections.
We have found that the effects of close coupling are simply to
introduce sharp resonances on top of an overall background
cross section, the magnitude of which can be obtained with a
first-order calculation. Therefore, the dominant rise in the cross
section due to the Møller interaction can be obtained with a
first-order calculation. Application of the present method to
larger energies, particularly where pair creation becomes an
important reaction channel, does not look internally consistent
within the framework of the RCCC method. In this case, a
formulation based on quantum field theory should be invoked.
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APPENDIX: INTERNAL INCONSISTENCIES
WITH HOLE THEORY

Problems arise in theories based on the Dirac equation and
associated hole theory, as opposed to the full apparatus of
relativistic quantum field theory. It is well known that the
Dirac-Coulomb Hamiltonian for two or more electrons suffers
from “problems” associated with “continuum dissolution”
[48]; any positive-energy bound state of a two-electron system
is degenerate with the state in which one electron is in
a high-lying positive-energy continuum state and the other
electron is in a negative-energy continuum state. Switching on
the interaction between the electrons can lead to the bound
state making a transition to the continuum state described.
Sucher [33] highlights that working in the no-virtual-pair
approximation is a means to implement the boundary condition
of a filled sea of negative-energy states. Surrounding the
Dirac-Coulomb Hamiltonian with projection operators for
free-particle positive-energy states can enforce this boundary
condition. Interestingly, Heully et al. [49] highlight that the
use of unsuitable projection operators can actually introduce
negative-energy states into the Hamiltonian of interest rather
than remove them. Johnson [50] discusses the care that must
be exercised when projection operators are employed.

Broyles [51] has indicated how the problems can be averted
with the aid of Feynman’s propagator approach to QED.
Dyson [36] outlines how more formal quantum-field-theory
techniques can be employed to address the issues with Dirac’s
hole theory. The conceptual problems underlying hole theory
are clearly highlighted by Weinberg [52] in his treatise on
quantum field theory: “How can we interpret the antiparticles
of charged bosons, such as the π± mesons or W± particles,
as holes in a sea of negative-energy states? For particles
quantized according to Bose-Einstein statistics, there is no
exclusion principle, and hence nothing to keep positive-energy
particles from falling down into the negative-energy continuum
states, occupied or not. And if the hole theory does not
work for bosonic antiparticles, why should we believe it for
fermions?”
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