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Low-energy elastic positron cross sections for H2 and N2 using an ab initio target polarization
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Using an ab initio model to account the polarization effects of molecules in the presence of slow positrons,
we have obtained low-energy positron cross sections for H2 and N2 molecules. The polarization model proposed
here is calculated with the expected values of the positron-electron interaction operator in the polarized target
wave function for each fixed distance of the positron. Together with the electrostatic potential, this polarization
describes the interaction potential in a static-polarization approximation. Within this interaction level, we have
obtained differential and integral cross sections that are in good agreement with recent measurements of the
Trento group and other theoretical approaches.
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I. INTRODUCTION

The positron interaction with molecular targets is a very
interesting problem. To consider the interactions correctly in
the elastic regime, one must be able to represent the direct and
polarization interactions. Temkin and Vasavada [1] showed
that the scattering of electrons from molecular species is
strongly dependent on polarization effects, which suggests
that in the scattering of positrons these effects should be
important. In this paper, we report a model potential with
an ab initio technique to take into account the polarization
effects. Many methodologies have been proposed to treat it
and the results obtained so far are still matter of discussion
[2–4].

Using the polarization correlation potential (PCOP) model
[3], we were able to successfully obtain reliable differential and
integral cross sections for positron scattering with CO, N2O,
and H2O molecules [5–7]. All of them are polar molecules,
therefore the dipole term presents a very strong contribution
and dominates the characteristics of the scattering dynamics.
In our most recent work [8], vibrational resolved cross sections
for positron collisions with N2 molecules were reported, and
an interesting feature became noticeable: the integral cross
section for this molecule using the PCOP model presented
a minimum structure, which does not appear in any mea-
surements [9–11] or in any theoretical results obtained using
different methodologies for the polarization effects [2,12–18].
Among these methodologies we quote the ab initio R matrix
[12,19], Kohn variational [13,20–22], Schwinger multichannel
method (SMC) [14,23], and the models PCOP [3], dis-
tributed positron model [24], and semiclassical formulations
[25].

Actually, this minimum is not a particularity of positron N2

scattering, since a similar phenomenon was observed in the
case of positron H2 scattering [26] and in CH4 and SiH4 [27].
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To date, this minimum has not been attributed to well-known
effects such as the Ramsauer minimum, for example.

Recognizing the fact that the PCOP can generate unphysical
structures in the cross sections of nonpolar molecules, we
propose a potential model that is able to take into account both
short- and long-range interactions properly, so the minimum
presented in the theoretical scattering cross sections disappear
in agreement with the experimental data. Our objective is
to go beyond the PCOP and other polarization models. In
order to perform such a task, we must identify the physical
characteristics of the polarization model which could be the
cause of the structures in the cross sections. First, we notice
that the choice of the cutoff radius in the PCOP model is
absolutely arbitrary. In that model, the first coordinate at which
the polarization curve crosses the correlation curve defines the
cutoff radius. The idea is that beyond that point the polarization
term would be more relevant to describe dynamic effects of
the target particles in the presence of the positron, even if
the cutoff radius is located inside the molecular electronic
cloud. Second, the correlation potential curve represents the
polarization of a free electron gas in the presence of a
positron [28], so using this potential curve is equivalent to
considering the molecular orbitals as a free electron gas. The
third aspect is that the polarization term (Vpol) of the PCOP
curve should contribute only for very large distances from
the molecule. Therefore, for coordinates located between the
minimum of the interaction potential and the region where
Vpol is valid, the behavior of the interaction should be slightly
different.

Considering these aspects, we can propose an interaction
model which is more realistic in the description of the
polarization potential. Once the interaction is determined,
we will be able to use the method of continued fractions
(MCF) [29] to solve the scattering equations in order to obtain
differential and integral cross sections. A comparison between
our results and other recent theoretical and experimental data
can be elucidative in the sense of understanding important
physics in the polarization potential.
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II. THEORY

We write the interaction potential in the static-polarization
approximation

Vint(�ri,�rp, �R) = Vstat(�ri,�rp, �R) + Vpol(�rp, �R), (1)

where the static term is the Coulomb potential

Vstat(�ri,�rp, �R) = −
∑

i

1

|�ri − �rp| +
∑

j

Zj

| �Rj − �rp| . (2)

In order to fully describe the interaction we must determine
the polarization term Vpol in such a way that, for large distances,

Vpol(�rp → ∞) = −1

2

(α0

r4
+ α2

r4
P2 [cos (θ )]

)
, (3)

and, in the short-range region, Vpol(�rp, �R) must be associated
with the response effects of the target particles in the presence
of a positron, a feature better known as the positron correlation
potential. Some approximations have been made to consider
these effects [2,3,24,25,30]; however, the obtained results were
not satisfactory when compared to experimental data [8,26,
27].

To overcome this difficulty, we propose a potential model
to treat the polarization effects in the molecular target in the
presence of a positron. We can represent the positron wave
function based on the methodology of Assafrão et al. [31] and
calculate the target molecular ground-state wave function in
the presence of the positron φ

pol
0 , for each distance between

the positron and the molecule. With this target wave function
we can obtain the energy differences in the electronic cloud as
we fix the positron in different positions, obtaining a function
Vpol which is parametrically constructed as

Vpol(�rp, �R) = 〈
φ

pol
0

∣∣h1

∣∣φpol
0

〉 − 〈φ0|h|φ0〉, (4)

where φ
pol
0 is the positron-molecule bound-state wave function

computed as in Ref. [31] as stated above, the operator h1 is

h1 = −1

2

∑
i

∇2
i −

∑
i

∑
j

Zj

|ri − rj | −
∑

i

1

|ri − rp| , (5)

which represents the positron-molecule Hamiltonian without
electron-electron interactions, and h is the same operator as h1

for large positron molecule distances

h1(rp → ∞) = h. (6)

Since the target wave function is explicitly dependent on the
electron coordinates [φpol

0 = φ
pol
0 (ri ; rp,R)], the integration in

Eq. (4) is carried out in those coordinates, implying that the
polarization function depends parametrically on the positron
distance from the molecule and on the internuclear distances
which are maintained fixed during the calculations. This
integral represents the expected value of the interaction energy
between the positron and electrons related to the positron-
molecule composite wave function. In order to construct Vpol,
the energy of the composite disregarding electron-electron
interactions is subtracted from the first term, within the
hypothesis that only the positron-electron interactions gives
rise to polarization effects.

Considering that Eq. (4) describes the polarization inter-
action in a good approximation, the problem now lies in the
determination of the positron continuum wave function ψ by
the scattering equation

|ψ〉 = |s〉 + G0Vint |ψ〉 . (7)

In order to solve it, we employ the method of continued
fractions [29]. Only a brief description of the referred method
is explicitly shown here. The reader is directed to the original
article of Horaček and Sasakawa for technical details. It was
applied to treat positron-molecule scattering for the first time
by Arretche et al. [5]. In this method, the interaction potential
is weakened in each iteration, so it can be considered as
negligible when it does not interfere anymore in the scattering
wave function. Considering that the K matrix in the first
Born approximation is not zero, let us write this weakened
interaction potential (for simplicity Vint = V ) as

V (1) = V − V |s〉 〈s| V
〈s| V |s〉 , (8)

where s is the same plane wave of Eq. (7). Inserting Eq. (8)
into Eq. (7), we obtain that

|ψ〉 = |s〉 + (1 − G0V
(1))−1G0V |s〉 〈s|V |ψ〉

〈s|V |s〉 , (9)

using the orthogonality between Eq. (8) and |s〉. In order to
rewrite Eq. (9) in the same form as Eq. (7), we define the
functions

|s1〉 = G0V |s〉 (10)

and

|ψ1〉 = (1 − G0V
(1))−1|s〉, (11)

so it follows that

|ψ1〉 = |s1〉 + G0V
(1)|ψ1〉. (12)

To solve Eq. (12), we write the potential V (1) as a new
weakened potential

V (2) = V (1) − V (1)|s1〉〈s1|V (1)

〈s1|V (1)|s1〉 , (13)

and follow the same procedure as above, finding a new
equation in the same form as Eq. (7):

|ψ2〉 = |s2〉 + G0V
(2)|ψ2〉. (14)

We can repeat this until the potential V (n) is sufficiently weak,
so that the scattering equation simply becomes

|ψn〉 ≈ |sn〉, (15)

and then we can recursively construct the scattering wave
function ψ , solving Eq. (7). However, it is easier to obtain the
scattering amplitude than the scattering wave function itself.
If we define the reactance matrix Kn as

Kn = 〈sn−1|V (n−1)|ψn〉, (16)

we can obtain it iteratively by using

Kn = 〈sn−1|V (n−1)|sn〉 + 〈sn|V (n)|sn〉2

〈sn|V (n)|sn〉 − Kn+1
. (17)
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Once the reactance matrix K is obtained, we can calculate
the transition matrix T through the expression

T = − 2iK

(1 − iK)
. (18)

The scattering amplitude is related to the transition matrix
through the relation

f = −2πT, (19)

and then the differential cross section for elastic positron
molecule scattering averaged over the orientations of the
molecule is calculated with

dσ

d�
= 1

8π2

∫
|f |2dα sin βdβdγ, (20)

where (α,β,γ ) are the Euler angles associated with the
principal axes of the molecule.

III. NUMERICAL DETAILS

The parameters used in the calculations are presented in
Table I. The internuclear distances were kept constant along
the calculations. For the description of the ground state of the
H2 and N2 molecules, we employed the Gaussian-type basis set
from Dunning [32,33], with augmented functions as described
in Table I.

All calculations were carried out in a 600-point radial
grid, where the maximum value for the radial coordinate
used was rmax = 26a0. It was chosen this way to provide the
normalization of the valence orbital both in H2 and N2. The
highest partial wave considered in the K-matrix expansion was
l = 6 and a maximum number of 10 iteration were needed to
obtain convergence.

IV. RESULTS AND DISCUSSION

The construction of the present model allows the determina-
tion of the polarization potential for all distances between the
positron and the molecule. Using the numerical parameters
given in Table I, we evaluate Eq. (4) for each position in
the radial grid for H2 and N2 molecules. In the following
sections, we present the results obtained for those molecules
and compare them with other available data.

A. H2

H2 is the simplest neutral diatomic molecule, working
as a model problem in the positron-molecule research field.

TABLE I. Numerical parameters used in the calculations.

H2 N2

Internuclear distance 1.041a0 [49] 2.0744a0 [49]
Dipole polarizability 5.4142a3

0 [50] 11.7442a3
0 [51]

Basis set [33] [32]
Augmented s functions 0.0653, 0.0213
Augmented p functions 0.0449, 0.0123
Augmented d functions 0.3730
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FIG. 1. (Color online) Spherical component of the positron H2

interaction potential. The solid blue line represents the result obtained
in the present work. The dashed red line represents the interaction
potential obtained within the PCOP approximation. The green and
golden points are, respectively, the position of the hydrogen atoms
and the cutoff radius. Inset shows the magnification of the curves
from 1a0 to 4a0 showing the cutoff region (r = 2.4a0). The points in
this figure are connected by a cubic spline.

Because of that, the literature is rich with studies of positron-
H2 collisions. Many theoretical approaches have been made
[12,23,25,26,34–40] and four experimental sets in the 1 to
10 eV energy range are available [9,41–43].

Considering the experimental studies, only the most recent
measurement of Zecca et al. [41] provides data for the energy
range from 0.1 to 1.0 eV. This is what we classify as the
very-low-energy regime. For our potential this is the most
striking test, since that in this energy range the polarization
effects are the dominant ones.

In Fig. 1 we show our potential (solid blue line) computed
according to Eq. (1) by using the static and the polarization
potentials as respectively described in Eqs. (2) and (4),
compared to the PCOP [3] curve (dashed red line) generated
in the same radial grid. As we can see, these potentials have
similar behaviors for distances greater than ∼3a0 from the
molecular center, but they exhibit different dependencies as
we approach the molecular target. The green and golden dot
points given in the figure represent the position of the hydrogen
atoms and the PCOP cutoff radius (∼2.4a0), respectively.
From the inset in Fig. 1, we can see that the present model
potential is more attractive in the region closer to the molecular
border and has a larger range. The PCOP curve has a “knee”
structure followed by a minimum. This inflexion point comes
from the functional form of the correlation potential used
in the construction of the PCOP. For more details about
this theme, we recommend the references given in Ref. [3].
The minimum present in the PCOP model comes from the
matching of the correlation with the polarization potential at
the cutoff radius (∼2.4a0). On the other hand, our potential is
constructed with no “matching schemes.” It has no “cutoff”
radius and no adjustable parameters such as the molecular
polarizability, for example. As the positron coordinates are
parametrically generated, the potential is calculated for each
positron position. It follows that the minimum present in
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FIG. 2. (Color online) Integral elastic cross sections for positrons
colliding with H2. (a) Present work compared with other theoretical
approaches. The solid blue line represents the present obtained results.
The dotted maroon line is the result obtained using the PCOP. Other
theoretical approaches are those of Reid et al. [25] (dashed red line),
Zhang et al. [12] (dash-double-dotted golden line), Arretche et al.
[23] (double-dash-space black line), Biswas et al. [36] (dash-dotted
green line), and Mukherjee and Sarkar [34] (four-dashed-space purple
line). (b) Present work compared with the available experimental sets:
Zecca et al. [41] (purple squares), Zhou et al. [42] (red diamonds),
Hoffmann et al. [9] (black dots), and Charlton et al. [43] (green
triangles).

our potential comes exclusively from the positron-molecule
interaction and does not depend, as stated above, from the
choice of any arbitrary cutoff point. Once the polarization
effects dominate the scattering in the low-energy regime,
a reasonable description of the interaction potential in the
valence region of the molecule is very important to determine
the cross sections.

In Fig. 2 we show the integral cross sections obtained for
positron H2 compared with different [Fig. 2(a)] calculations
and [Fig. 2(b)] experimental data. The first feature we
wish to highlight is that our cross section (solid blue line)
does not show the minimum structure present in the PCOP
model (dotted maroon line). In fact, our results have good
agreement with the calculations reported by Zhang et al. [12]
(dash-double-dotted golden line) and Arretche et al. [23]
(double-dash-space black line) using respectively the R-matrix

and Schwinger multichannel methods. Both are ab initio
methodologies that deal explicitly with the many-body aspect
of the problem. Considering methods that treat the problem
as the scattering of a single particle by a potential, we see
that the calculation of Reid et al. [25] (dashed red line)
has the same energy dependence as ours but in a smaller
magnitude. We attribute it to the fact that the polarization
potential was described in a semiclassical model, constructed
to make Vpol → 0 as r → 0; that is, as the positron position
coincides with the molecular center, the polarization potential
vanishes in their approach. We also note that Reid et al. [25]
includes the inelastic channels through an absorption potential.
The first inelastic threshold in this case is the positronium
formation channel. It becomes energetically open at ∼8.2 eV.
As a consequence, their cross section starts to grow above this
energy. Mukherjee and Sarkar [34] (four-dash-space purple
line) considered rovibrational excitations using the PCOP
model to describe polarization. It is easy to see that the
magnitude and the dependence of the reported cross section are
similar to ours. The work of Lino and Christ [38] and Lino [39]
employed an alternative form of polarization interaction with
the Schwinger multichannel method and obtained reasonable
results. Liu et al. [37] and Sun et al. [40] both employed
optical potential approaches; however, their results together
with those from Refs. [38,39] are not shown in Fig. 2(a). In
Fig. 2(b) we compare our cross section to the experimental
ones. In the lower scattering energies, below ∼1.5 eV, the
agreement between our results and the data of Zecca et al. [41]
is remarkable. This strongly suggests that our methodology
to treat the polarization effects is in the right direction. For
energies above ∼1.5 eV our results get lower in magnitude
than the results obtained in Zecca et al. [41] but are very similar
to the Hoffman et al. [9] data until ∼5 eV. As we can visualize
in Fig. 2(a), other theoretical methods follow the same trend.
Synthesizing the scenario described above, our cross section
agrees very well with the data of Zecca et al. below 1 eV and
with the data of Hoffman et al. above 1 eV.

As stated above, the description of the polarization effects
plays a fundamental role in the determination of the low-energy
cross sections. However, the present work is so far limited
to describe exclusively the elastic electronic channel, as the
inelastic rotational and vibrational cross sections should not
contribute significantly to the cross-section magnitude. This
is apparent when we compare the rovibrational results of
Mukherjee and Sarkar [34] with the present elastic calculation
and with measurements of Zecca et al. [41]. This means
that, even if the rovibrational excitations were considered
in the present work, the results would not be as high as the
measurements in the 2 to 10 eV range. Another consideration
regarding the calculations of Mukherjee and Sarkar [34] is
that they employed the PCOP model to account polarization
effects and did not observe a minimum in the integral cross
section. The previous work of Mukherjee et al. [26] showed
that rotational resolved cross sections would not have such a
minimum, so the rovibrational cross sections of Mukherjee
and Sarkar [34] are expected to not have the minimum as
well. Looking at the cross sections of Reid et al. [25], we
see that those results are lower than the present ones in the
whole elastic scattering range, as stated above. Since the
behavior of the low-energy positron molecule cross sections is
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strongly dependent on the polarization effects, we quote that
this difference should be attributed to the polarization model.

The monotonic decrease in the present elastic cross section
from the point it begins to diverge from the measurements
until the positronium formation threshold, can be addressed to
the monochannel nature of our calculations. Above ∼2 eV up
to the positronium threshold 8.6 eV, the cross section of the
most recent measurement is practically constant, with values
of about 1.5 × 10−16 cm2 [41]. We notice that the two-channel
calculation of Biswas et al. [36] provides the best theoretical
comparison with the measurements of Zecca et al. [41] in
this range. Biswas et al. [36] did not consider polarization
effects, and this affects their very-low-energy cross sections;
however, their calculation showed that the coupling between
elastic and positronium formation scattering channels impacts
over the cross sections in the vicinity of the opening channel.
By adding the present cross sections with those calculated
by Biswas et al. [36], we obtain an interesting curve, which
even overestimated, gives a reasonable approximation to the
measurements of Zecca et al. [41]. This suggests that, in a
multichannel formulation, our results would agree with the
measurements in the whole low-energy range. Even being in
a monochannel approach, the present work is a considerable
advance in the study of polarization effects over scattering in
the very-low-energy range, where the coupling between elastic
and positronium formation channels should not interfere in the
cross sections. This analysis can be extended for the case of
positron scattering with N2.

Of course, polarization will interfere with the differential
cross-section shape; therefore, comparing such curves will
give us better insight into understanding the polarization
effects. Figures 3(a) and 3(b) show the obtained differential
elastic cross sections (solid blue lines) compared to those
of Reid et al. [25] (dashed red lines) and Lino et al. [35]
(dash-dotted green lines) for an impact energy of 4.5 and
6.9 eV, respectively. Overall, the agreement is satisfactory,
but some divergences should be noted. It is interesting to
observe the difference in all those curves in the midangle
region, showing how the description of the polarization effects
modifies the cross sections, as the calculations of Lino et al.
[35] are performed within the same methodology of Arretche
et al. [23]. The position of the minimum in the differential cross
sections is different for each result; however, in the present
calculations, this minimum is shifted towards higher angles.
In the absence of experimental differential cross sections, it
is not possible to state the correct position of the minimum.
Nevertheless, there are such data for positron collisions with
N2 [44]. Table II brings other DCS values for H2 in other
energies to be compared with the results of Refs. [24,25,35].

B. N2

The N2 is a very interesting diatomic nonpolar molecule
to study, for the same reasons cited for H2. There are several
available theoretical works of positron elastic collisions with
the nitrogen molecule with different methodologies [2,14,15,
17,45]. In the experimental frontier, we identify four works
which reported total cross sections [9–11,46]. As in the H2

case, Zecca et al. [46] is the main set of data in the “very-low-
energy range” with good energy resolution and small error
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FIG. 3. (Color online) Differential elastic cross sections for
positrons colliding with H2. (a) Incident energy equal to 4.5 eV.
(b) Incident energy equal to 6.9 eV. The solid blue lines represent the
results of the present calculations. The dashed red lines are the results
of Reid et al. [25]. The dash-dotted green lines are the results of Lino
et al. [35].

bars. As far as we know, Przybyla et al. [44] reported the
only set of experimental differential cross sections (DCSs) for
positron N2.

Comparing all the experimental cross sections, we clearly
notice that no minimum structure is visible. This means that,
if some minimum appears in the calculated cross sections,
it should be attributed to difficulties in the determination of
the interaction potential. There is a relatively good agreement
between the measurements of Zecca [46] and Karwasz [11]
as higher measurements. The data of Hoffman [9] and Sueoka
[10] agree as well; however, their results seem to be under-
estimated when compared to the more recent one which can
be attributed to lower angular resolution in the measurement
apparatus. To date, there are no theoretical approaches which
reproduce quantitatively the most recent measurements.

As for the H2 system, we constructed the interaction curve
as described in Eq. (4) and compared it with the PCOP
model reported by Mazon et al. [8]. Curves representing
both potentials are displayed in Fig. 4 for comparison. The
captions are the same as those in Fig. 1. The minimum structure
originated in the cutoff radius (∼2.9a0) of the PCOP model is
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TABLE II. Differential cross sections (units of 10−16 cm2) for
positron collisions with H2. The energies are selected to be compared
with those of Gibson [24], Reid et al. [25], and Lino et al. [35]. The
notation a(b) represents a × 10b.

Angle 2.72 eV 3.5 eV 4.08 eV 5.44 eV

0 0.4641 0.4682 0.4704 0.4729
10 0.4438 0.4434 0.4424 0.4377
20 0.3900 0.3784 0.3696 0.3482
30 0.3185 0.2940 0.2768 0.2396
40 0.2435 0.2092 0.1868 0.1428
50 0.1746 0.1364 0.1134 7.2826(−2)
60 0.1174 8.1110(−2) 6.1344(−2) 3.1111(−2)
70 7.3985(−2) 4.3696(−2) 2.9216(−2) 1.1300(−2)
80 4.3438(−2) 2.1095(−2) 1.2314(−2) 5.3604(−3)
90 2.3590(−2) 9.3549(−3) 5.6192(−3) 6.8076(−3)
100 1.1865(−2) 4.7901(−3) 4.9612(−3) 1.1276(−2)
110 5.9328(−3) 4.5928(−3) 7.4617(−3) 1.6354(−2)
120 3.9552(−3) 6.8948(−3) 1.1421(−2) 2.1085(−2)
130 4.4378(−3) 1.0387(−2) 1.5799(−2) 2.5174(−2)
140 6.1045(−3) 1.4060(−2) 1.9859(−2) 2.8476(−2)
150 7.8992(−3) 1.7114(−2) 2.3020(−2) 3.0795(−2)
160 9.1758(−3) 1.9105(−2) 2.4991(−2) 3.2052(−2)
170 9.8354(−3) 2.0108(−2) 2.5944(−2) 3.2534(−2)
180 1.0031(−2) 2.0402(−2) 2.6515(−2) 3.2641(−2)

visible for this molecule as well, and in the present calculated
interaction potential the minimum originates exclusively from
differences among the static and polarization potentials at the
molecular border. The attractive part of the N2 potential clearly
has a larger range when compared to the similar one for H2

(see the inset in Fig. 1), so we expect larger positron-N2 cross
sections when compared to the positron-H2 cross sections.

In Fig. 5 we show the integral cross sections obtained for
positron collisions with N2 (solid blue line) compared with
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FIG. 4. (Color online) Spherical component of the positron N2

interaction potential. The solid blue line represents the result obtained
in the present work. The dashed red line represents the interaction
potential obtained within the PCOP approximation. The green and
golden points are, respectively, the position of the hydrogen atoms
and the cutoff radius. Inset shows the magnification of the curves
from 2a0 to 6a0 showing the cutoff region (R = 2.9a0). The points in
this figure are connected by a cubic spline.
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FIG. 5. (Color online) Integral elastic cross sections for positron
colliding with N2. (a) Present work compared with other theoretical
approaches. The solid blue line represents the present obtained results.
The dashed red line is the result obtained using the PCOP [8]. Other
theoretical approaches are those of Elza et al. [2] (dotted maroon
line), Gianturco and Mukherjee (BFVCC) [45] (two-dash-space black
line), De Carvalho et al. [14] (dash-dotted green line), Mukherjee
et al. (rotationally unresolved) [26] (dash-double-dotted golden line),
and Danby and Tennyson [17] (four-dashed-space purple line). (b)
Present work compared with the available experimental sets: Zecca
et al. [46] (purple squares), Karwasz et al. [11] (red diamonds),
Hoffmann et al. [9] (black dots), and Sueoka and Hamada et al. [10]
(green triangles).

different [Fig. 5(a)] calculations and [Fig. 5(b)] experimental
data. We start by paying attention to Fig. 5(b), where we can
compare the “state of the art” of the experimental measure-
ments. Clearly, no minimum is present in any experimental
dataset. Taking it as the genuine physical condition, we assume
that, if some minimum structure appears in the calculated cross
section, it must be attributed to difficulties in the construction
of the interaction potential, as stated above.

Considering the results presented in Fig. 5(a), our result
(solid blue line) does not have any minimum structure, in
contradiction to the calculations of Mazon et al. (dashed
red line), Mukherjee et al. [26] (dash double-dotted golden
line), Gianturco et al. (double-dashed black line), and Danby
and Tennyson [17] (four-dashed purple line). We identify the
calculations like those of De Carvalho et al. [14] (dash-dotted

042706-6



LOW-ENERGY ELASTIC POSITRON CROSS SECTIONS . . . PHYSICAL REVIEW A 86, 042706 (2012)

green line) and Elza et al. [2] (dotted maroon line) as mono-
tonically increasing toward lower energies. All PCOP model
[8,26,45] elastic calculations clearly exhibit the undesired
minimum structure. It is also present in the R-matrix result of
Danby and Tennyson [17]. In the case of ab initio methods like
R matrix and SMC, the generation of the interaction potential
must be carefully considered. Both, as said before, attack the
problem in the many-body context. It happens that, under
these circumstances, the many-body basis set used can present
overcorrelation, undercorrelation, and also linear-dependence
problems. The RMPS (R-matrix with pseudostates method) is
designed to go beyond the static plus polarization approxima-
tion and take into account the correlations effects. For further
details, see Tennyson [47]. We are not aware of any recent
results obtained with the R-matrix method for positron N2

since the former reported by Danby and Tennyson [17]. On
the other hand, a fair representation of the polarization effects
in the context of SMC is still not clear. An illustration of how
the lack of polarization of the scattering basis set can affect the
calculated cross sections can be found in Sanchez et al. [48]
and in references therein. Despite this, calculations of De
Carvalho et al. [14] for positron N2 present good agreement
with older experimental data [9–11]. The model employed by
Elza et al. [2] is not ab initio or even complicated and presents
a higher magnitude compared with the results of De Carvalho
et al. [14] or Danby and Tennyson [17]. Our results are higher
than all other theoretical approaches. This suggests that the
interaction potential used in our calculation has a larger range
than those considered by other methods.

The comparison of the present results with experimental
data is interesting, because we observe good agreement with
the most recent measurements. Our results clearly favor the
recent data of Karwasz et al. [11] and Zecca et al. [46]. For
very low energies, the agreement between the present results
and measurements of Zecca et al. [46], as obtained for the H2

molecule, indicates that the polarization interaction is fairly
described. For the entire range, the present results follow the
measurements of Karwasz et al. [11] and Zecca et al. [46],
which do not hold true for H2 molecule comparison with data
of Zecca et al. [41]. We attribute this to the electronic structure
of the molecules, as the nitrogen is more polarizable than
hydrogen. The outermost orbital of the N2 molecule is more
responsive to the presence of a positron, so Eq. (4) describes
the polarization interaction in a more accurate way to this
molecule than to H2, hence the description of the peripheral
region of the N2 molecule is better than that for H2.

The calculated differential cross sections for positrons
colliding with N2 are presented in Figs. 6(a) and 6(b) for
the incident energies of 6.75 and 10.0 eV, respectively. For
the selected energies, comparison is made with theoretical
available data of Elza et al. [2] (dotted maroon line), Mazon
et al. [8] (dashed red line), the SMC calculation of De
Carvalho et al. [14] and the quasielastic relative measurements
of Przybyla et al. [44] as presented in Ref. [8]. In both
presented energies, the presented differential cross sections
show interesting features in the low-angle region. First, we
observe that the decrease from low angles to the position of
the minimum agrees very well with the measured point. This
is a very clear difference in the theoretical cross sections.
The position of the minimum is in better agreement with the
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FIG. 6. (Color online) Differential elastic cross sections for
positrons colliding with N2. (a) Incident energy equal to 6.75 eV.
(b) Incident energy equal to 10.0 eV. The solid blue lines represent
the results of the present calculations. The dashed red lines represent
the same calculation using the PCOP approximation to account for
polarization effects [8]. The dash-dotted green lines are the results of
de Carvalho et al. [14]. The dotted maroon line in panel (b) is the result
of Elza et al. [2]. The black dots are the the relative measurements of
Przybyla et al. [44] normalized as in Ref. [8].

measurements than other results, which once again will be
attributed to the polarization model, as pointed out by Mazon
et al. [8].

The description of the cross sections in mid and high angles
seems to be independent of the polarization model and, partic-
ularly for an incident energy of 6.75 eV, the available results
still do not agree perfectly with the measured cross sections
in this angular region. In the DCS for an incident energy of
10.0 eV this is not an issue, since the previous calculations
already showed a good agreement with the measurements;
however, we must point out that the present results reproduce
the position of the minimum with better quality than previous
calculations. Considering all these points, the present work
shows a good progress in understanding the effects of polar-
ization in a positron molecule scattering problem. Table III
brings other DCS values for N2 in other energies to be
compared with the results of Refs. [2,8,14,44].
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TABLE III. Differential cross sections (units of 10−16 cm2) for
positron collisions with N2. The energies are selected to be compared
with the calculations of Elza et al. [2], Mazon et al. [8], De Carvalho
et al. [14], and Przybyla et al. [44]. The notation a(b) represents
a × 10b.

Angle 1.0 eV 4.0 eV 5.25 eV 6.0 eV

0 3.0496 3.0171 2.9302 2.8617
10 2.9443 2.6682 2.5177 2.4216
20 2.6513 1.8270 1.5663 1.4303
30 2.2288 0.9344 0.6582 0.5386
40 1.7473 0.3299 0.1694 0.1264
50 1.2705 8.1645(−2) 7.9237(−2) 0.1136
60 0.8470 6.7796(−2) 0.1663(−2) 0.2313
70 0.5072 0.1427 0.2519 0.3112
80 0.2624 0.2226 0.3074 0.3308
90 0.1086 0.2802 0.3212 0.3209
100 3.0413(−2) 0.3116 0.3150 0.3007
110 7.8320(−3) 0.3173 0.2923 0.2708
120 2.0328(−2) 0.3011 0.2551 0.2303
130 5.0271(−2) 0.2724 0.2134 0.1883
140 8.4624(−2) 0.2438 0.1804 0.1580
150 0.1153 0.2238 0.1632 0.1454
160 0.1384 0.2144 0.1602 0.1471
170 0.1524 0.2123 0.1641 0.1548
180 0.1571 0.2123 0.1667 0.1589

V. CONCLUSIONS

This work presents an ab initio model potential, designed
to take into account the polarization effects in the low-energy
elastic scattering of positrons by nonpolar molecules. As a first
application, we considered the positron scattering by H2 and
N2, since recent total cross section measurements are available
for these targets. For H2, we observe that our elastic cross
sections agree with the Zecca et al. [41] data for energies
below ∼1.5 eV and with the Hoffman et al. data [9] for higher
energies. For N2, our elastic cross sections clearly favor the
more recent data of Karwasz et al. [11] and Zecca et al. [46]
in the whole energy range. The computed differential cross
sections have the midangle minimum shifted to higher angles.
We attribute it to the polarization potential used, since in the
previous work of Mazon et al. [8] exactly the same method
was employed to solve the scattering equations, but with the
PCOP model potential [3]. Further investigations will reveal
if the model potential proposed is able to treat with success
other nonpolar molecules.
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