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Coupled �-wave confinement-induced resonances in cylindrically symmetric waveguides
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A semianalytical approach to atomic waveguide scattering for harmonic confinement is developed, taking into
account all partial waves. As a consequence �-wave confinement-induced resonances are formed, being coupled
to each other due to the confinement. The corresponding resonance condition is obtained analytically using the
K-matrix formalism. Atomic scattering is described by transition diagrams which depict all relevant processes
the atoms undergo during the collision. Our analytical results are compared to corresponding numerical data and
show very good agreement.
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I. INTRODUCTION

Reduced dimensionality in degenerate ultracold atomic
gases plays a key role for the experimental realization and
theoretical investigation of exotic quantum phases such as
the Tonks-Girardeau gas [1]. Specifically, atomic collisions in
waveguides represent a fundamental ingredient for studying
the effects of the reduced dimensionality. Indeed, in two-body
collisions, the confinement implies significant modifications of
the scattering properties of the collisional complex. Existing
theoretical studies on bosonic collisions show that resonant
scattering can be induced by the confinement, yielding the
so-called confinement-induced resonance (CIR) effect [2,3].
A CIR emerges when the length scale of the confinement
becomes comparable to the s-wave scattering length of the
colliding bosons and it is interpreted as a Fano-Feshbach-
like resonance. An important characteristic property is that
the effective one-dimensional two-body interaction can be
controlled by adjusting the confinement parameters.

In recent years, the significant progress of quantum
technologies has led to the experimental observation and
exploration of the CIR physics in quasi-one- and quasi-two-
dimensional waveguides for both bosons [4–7] and fermions
[8,9]. Additionally, remarkable theoretical studies focus on
CIR physics and its extensions such as p-wave CIR in
spin-polarized fermions [10], dual-CIR [11], and the resonant
molecule formation [12]. Furthermore, the concept of CIR
physics has been investigated also in the case of quasi-two-
dimensional or anharmonic waveguides [13–18] and in the
case of multichannel or mixed-dimension scattering [19–21].
Higher-partial-wave interactions constitute an interesting ex-
tension within the framework of CIR physics, as was shown
in Ref. [22], since they are expected to provide novel many-
body phenomena, such as unconventional superconductivity
or superfluidity [23–26]. Nevertheless, a thorough theoretical
treatment is still needed to extend the CIR physics beyond s-
or p-wave interactions.

In this work, we present a theoretical framework for
atom-atom collisions in the presence of a harmonic waveguide,
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where all the higher partial waves are properly taken into
account for either bosons or fermions. Mainly, it consists
of a generalization of the K-matrix approach for quasi-one-
dimensional geometries presented in Ref. [10]. Our treatment
yields mutually coupled �-wave CIRs, as well as an analytical
relation for the position of all �-wave CIRs. Furthermore,
converting the “physical” quasi-one-dimensional (quasi-1D)
K-matrix into a Dyson-like form of equations allows us to
classify, in terms of specific transition diagrams, all possible
processes that the two atoms undergo during the collision.
This detailed analysis permits us to illustrate the connection
of the transitions in the manifold of the closed channels of
the transverse confinement with the Fano-Feshbach scenario
for resonant scattering. The validity of our method is verified,
showing an excellent agreement of the obtained analytical
results with numerical calculations of the transmission coeffi-
cient in a system of two bosons interacting via a Lennard-Jones
potential in the presence of harmonic confinement.

Our work is organized as follows. In Sec. II we discuss the
general aspects of K-matrix theory and present the K-matrix
approach for quasi-1D systems. Section III contains a compar-
ison of the analytical results with the numerical calculations
and a corresponding discussion. Section IV provides a brief
summary and conclusions.

II. K -MATRIX REPRESENTATION FOR
QUASI-ONE-DIMENSIONAL SYSTEMS

The K-matrix is defined as a Caley transformation of the S

matrix given by the following relation:

S = 1 + iK

1 − iK
. (1)

The form of Eq. (1) is such that the Hermiticity of the matrix
K ensures the unitarity of S. The advantage of the K matrix
with respect to the S matrix is that it possesses a simpler
pole structure. This allows for an analysis of overlapping
resonances in a straightforward manner.

Let us now consider collisions of two atoms in the presence
of an external potential, which confines the transversal degrees
of freedoms. The transversal confinement is induced by a
harmonic potential, which permits a separation of center of
mass and relative degrees of freedom. Thus, the two-body
scattering problem can be reduced to a problem of a single
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particle (relative particle) scattered by a potential (interatomic
potential) placed at the origin. The Hamiltonian of the relative
particle, expressed in cylindrical coordinates, reads

H = − h̄2

2μ
∇2 + 1

2
μω2

⊥ρ2 + Vsh(r), (2)

where μ is the reduced mass of the two colliding atoms, ω⊥
is the transversal confinement frequency, and Vsh(r) is a short-
range interatomic potential. We assume that the interatomic
and the transversal confinement potential do not depend on the
azimuthal angle φ. Consequently, the corresponding quantum
number m is conserved and throughout this paper we focus on
m = 0.

The relative Hamiltonian imposes two approximate sym-
metries in different regions of the configuration space. Near
the origin, r < r0, the interatomic potential Vsh(r) of range r0

dominates and therefore the collision process obeys spherical
symmetry. Thus, in this regime, for r ≈ r0, the relative particle
experiences a free-space collision off the interatomic potential
with the total colliding energy E = h̄2k2/2μ. This process can
be described by the following radial wave function:

�α(r) =
∑

�

F�(r,θ )δ�α − G�(r,θ )K3D
�α , (3)

where α labels the linearly independent solutions, F�(r,θ )
[G�(r,θ )] is the regular [irregular] solution, that is, spherical
Bessel j�(r) [spherical von Neumann n�(r)] functions multi-
plied by the Legendre polynomials P�(θ ), and the summation
runs over all the even (odd) � for the case of bosons (fermions).
K3D

�α are the elements of the K matrix K3D in three dimensions
encapsulating all the scattering information related to the
interatomic potential Vsh(r). Due to the short-range character
of the interatomic interactions K3D is diagonal and its elements
are equal to tan δ�, with δ� being the phase shift of the �th partial
wave.

Additionally, in the asymptotic limit, |r| → ∞, the
transversal confinement term in Eq. (2) dominates, implying
its cylindrical symmetry. The total colliding energy E can be
written as a sum of the transversal energy being determined
by the harmonic confinement and the longitudinal energy,
which involves the z component of the momentum of the
relative particle, according to the relation E = h̄2k2/2μ =
h̄ω⊥(2n + 1) + h̄2q2

n/2μ. In this region, the wave functions
are axially symmetric and can be written as

�β(r) =
∑

n

fn(z,ρ)δnβ − gn(z,ρ)K1D
nβ , (4)

where β labels the linearly independent solutions, K1D
nβ are

the elements of the K matrix K1D in quasi-1D and fn(z,ρ)
[gn(z,ρ)] is the regular [irregular] solution in the presence of
the trap with no interactions. The specific form of the regular
and irregular solutions are

(
fn(z,ρ)
gn(z,ρ)

)
= �n(ρ)

⎧⎨
⎩
( cos qn|z|

sin qn|z|
)

for bosons,

z
|z|
( sin qn|z|

− cos qn|z|
)

for fermions,
(5)

where �n(ρ) are the eigenfunctions of the 2D harmonic
oscillator for m = 0 and the functions in the curly bracket
refer to the longitudinal degree of freedom including the
symmetrization (antisymmetrization) for the case of bosons
(fermions).

So far it is clear that the scattering process of atomic
collisions in the presence of a harmonic waveguide is charac-
terized by two distinct regions in the configuration space which
possess different symmetries. Thus, the key idea is to perform
a frame transformation which will permit the matching of
Eqs. (3) and (4) yielding an expression of K1D in terms
of K3D. Obviously, a unitary frame transformation in this
case does not exist since Eqs. (3) and (4) do not fulfill the
same Schrödinger equation in complete configuration space.
However, the length scales of the interatomic potential r0

and the harmonic oscillator a⊥ = √
h̄/μω⊥ differ by orders

of magnitude, r0 � a⊥. This means that between the two
distinct regions of spherical and cylindrical symmetry there is
a region where Vsh(r) ≈ 1

2μω2
⊥ρ2 ≈ 0. Consequently, for this

configuration subspace Eqs. (3) and (4) fulfill approximately
the same Schrödinger equation, and one can perform a local
and nonorthogonal frame transformation. The idea of local
frame transformations was introduced by Harmin and Fano
[27,28] and extended later on by Greene [29].

As was shown in Ref. [29] the above-mentioned local frame
transformation does not depend on any additional parameter in
order to match the two sets of solutions, Eqs. (3) and (4). The
only condition which has to be fulfilled is r0 � a⊥ (separation
of scales), yielding the following relations, which connect
Eqs. (3) and (4):

fn(z,ρ) =
∑

�

F�(r,θ )U�n and

gn(z,ρ) =
∑

�

G�(r,θ )(UT )−1
�n , (6)

where U�n is the matrix element of the local frame transfor-
mation U given by the relation

U�n =
√

2(−1)d0

a⊥

√
2� + 1

kqn

P�

(
qn

k

)
. (7)

In Eq. (7) P�( qn

k
) is the �th Legendre polynomial and the term

d0 is �/2 or (� − 1)/2 for the case of bosons or fermions,
respectively. Note that the local transformation U connects the
� partial waves with the n modes of the transversal confining
potential. Thus, K1D with the help of Eqs. (4) and (6) takes
following form:

K1D = UT K3DU. (8)

In Eq. (8) the matrix K1D involves an admixture of all n

channels of the transversal confinement with all � partial waves
of the interatomic potential for all energies.

In our study we focus on the single-mode regime, where
the collision takes place in the ground state of the transver-
sal confinement. Thus, the total colliding energy is E =
h̄2k2/2μ = h̄ω⊥ + h̄2q2

0/2μ, yielding one energetically open
channel (n = 0) and n energetically closed channels, where
E < h̄ω⊥(2n + 1) for n 	= 0. Note that the total amount of
the open and the closed channels is N and it is related
to the principal quantum number according to the relation
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N = n + 1. However, the above-mentioned consideration
results in an unphysical asymptotic wave function �β(z,ρ).
Equation (4) is given in terms of fn(z,ρ) and gn(z,ρ), where
the motion in the z direction is described by cos qn|z| and
sin qn|z| [see Eq. (5)]. Now, the quantity qn|z| becomes
imaginary for n 	= 0 (closed channels) and, consequently, the
z-dependent terms in Eq. (5) contain exponentially diverging
subterms for z → ∞. In order to restore the correct boundary
conditions of the asymptotic wave function one has to
“renormalize” these divergences. This can be done within the
framework of multichannel quantum defect theory (MQDT)
by partitioning the wave function in open- and closed-channel
subspaces [30,31]. In general, the wave function can be
written as(

�oo �oc

�co �cc

)(
Y oo

Y co

)

=
[(

f
o

0

0 f
c

)
−
(

g
o

0

0 g
c

)(
K1D

oo K1D
oc

K1D
co K1D

cc

)](
Y oo

Y co

)
,

(9)

where “o” (“c”) indicates the open (closed) subspace referring
to n = 0 (n 	= 0), respectively, and �, Y , f , g, K are
partitioned submatrices dictated by the channel decomposition
of the considered problem. In order to eliminate the diverging
terms we choose a linear combination of Eq. (9) where Y oo =
I and Y co = −(K1D

cc − iI)−1K1D
co . Then Eq. (9) takes the

form

�phys ≡ �ooY oo − �oc

(
K1D

cc − iI
)−1

K1D
co

= f
o
− g

o

[
K1D

oo + iK1D
oc

(
I − iK1D

cc

)−1
K1D

co

]
, (10)

where �phys is the “physical” wave function which involves
only the open channels since the diverging parts of the closed
channels are removed. Moreover, the contribution of the closed
channels during the collision process is imprinted in the K

matrix K1D,phys
oo ≡ K1D

oo + iK1D
oc (I − iK1D

cc )−1K1D
co . The roots

of det(I − iK1D
cc ) provide the location of the bound states of

the closed channels in the parameter space, which energetically
lie in the continuum of the open channel.

As was shown in Ref. [10], for collisions which involve
a single partial wave, the matrix elements of the K1D ≡ K1D

�

are given by the simple relation {K1D
� }nn′ = (UT )n� tan δ�U�n′ ,

where after the diagonalization and the inversion of (I −
iK1D

cc,�) one can obtain K
1D,phys
oo,� in closed form. However,

one should note that K1D
� in this case is a rank one matrix.

Interestingly, one can rewrite K
1D,phys
oo,� in a much simpler form

by exploiting this property with the help of Ref. [32]. Then
K

1D,phys
oo,� reads

K
1D,phys
oo,� = K1D

oo,� + iK1D
oc,�

(
I + i

1 − iγ
K1D

cc,�

)
K1D

co,�, (11)

where γ = Tr(K1D
cc,�). Equation (11) provides us with all the

transitions that the two atoms undergo during the collision.
Figure 1 illustrates Eq. (11) as a transition diagram, where
the transitions are not direct, but through the �th partial
wave, which participates as an intermediate process. Thus,

FIG. 1. A schematic illustration of the transitions into N channels
which contribute in the scattering process, corresponding to the K-
matrix K

1D,phys
oo,� . The open (solid) circles indicate the open (closed)

channels, the arrows depict the transitions through the �th partial
wave, and the dots denote the N − 3 channels and their corresponding
transitions.

the first term, in both Fig. 1 and Eq. (11) indicates a
direct “open-open” (oo)-channel transition and contains, in
particular, the description of potential resonances. The second
term of Eq. (11) is related with transitions into closed channels,
which can be split into two processes. As is shown in Fig. 1 the
second term of Eq. (11) consists of two transition processes; the
first describes an “open-closed-open” (oco)-channel transition,
while the second describes an “open-closed” (oc)-channel
transition, followed by transitions from all closed channels
to all closed channels (cc) and finally a “closed-open” (co)-
channel transition. Note that a similar idea has been discussed
in Ref. [33].

The contribution of the transitions into the closed channels
during the two-body collision is significantly affected by the
factor 1/(1 − iγ ), where the parameter γ includes all the
closed-channel transitions through an effective bound state
which is supported by all the closed channels and for γ → −i

the bound state coincides with the threshold yielding a resonant
collision process. Indeed, according to MQDT this can be
justified since the parameter γ = Tr(K1D

cc,�) → −i is a root of
the relation det(I − iK1D

cc,�) = 1 − iTr(K1D
cc,�) = 0 and as we

have mentioned above these roots describe the closed-channel
bound states at given energy E. Thus, we observe that the
K-matrix approach provides us with an important insight of
CIR physics by linking in a transparent way the physical
picture of virtual excitations [2] and the Fano-Feshbach-like
scheme [3]. Additionally, an important aspect of the transition
diagram (see Fig. 1) is that it illustrates in a clear manner
the Fano-Feshbach mechanism: the first term represents the
continuum (either interacting or non-interacting) and the
second term exhibits all the cc transitions, which collectively
result to an effective closed-channel bound state and its
coupling to the continuum. By applying γ = −i for each
single � partial wave one obtains the condition for resonant
scattering of bosons or spin-polarized fermions under strong
transverse confinement. Thus, for � = 0,1,2 one will obtain
the same resonance condition as in Refs. [2,34,35], being in
agreement with pseudopotential theory.

Up to now we have been focusing on the case of a single
partial wave. By extending the K matrix K3D into an � × �

diagonal matrix, we take into account all the partial waves
compatible with the atomic species, that is, even (odd) � for
bosononic (fermionic) collisions. Consequently, by finding the
roots of det(I − iK1D

cc ) of the extended K matrix, we obtain
an expression which provides us with the positions of all the
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�-wave CIRs coupled to each other:

1 − i

∞∑
�=s0

Tr[K1D
cc,�] − 1

2

∞∑
�=s0+2

�−2∑
�′=s0

t��′ = 0, (12)

with t��′ = tan δ� tan δ�′

∞∑
i,j=1

(
Ui�Uj�′ − Uj�Ui�′

)2

and Tr[K1D
cc,�] = tan δ�

∞∑
n=1

U 2
n�. (13)

Note that for Eqs. (12) and (13) the summation with
respect to � runs over all the even (odd) � with s0 = 0

(s0 = 1) for the case of bosons (fermions). Equations
(12) and (13) represent the main result of the present
investigation.

In order to give some quantitative results in the follow-
ing we focus on low-energy bosonic collisions (q0a⊥ � 1)
considering s- and d-partial waves. Note that a similar
analysis, as is presented below, can be done also for the
case of spin-polarized fermions which involve p and f partial
waves.

For the scattering of two bosons the matrix K1D,phys
oo can be

written in terms of s- and d-wave K matrices in a similar way
as in Eq. (11), yielding the relation

K1D,phys
oo = (

K1D
oo,s + K1D

oo,d

)+ i
(
K1D

oc,s + K1D
oc,d

)(
I + g1K

1D
cc,s

)(
K1D

co,s + K1D
co,d

)+ ig2
(
K1D

oc,s + K1D
oc,d

)
K1D

cc,d

(
K1D

co,s + K1D
co,d

)
+ ig1g2

(
K1D

oc,s + K1D
oc,d

)(
K1D

cc,sK
1D
cc,d + K1D

cc,dK
1D
cc,s

)(
K1D

co,s + K1D
co,d

)
+ ig2

1g2
(
K1D

oc,s + K1D
oc,d

)
K1D

cc,sK
1D
cc,dK

1D
cc,s

(
K1D

co,s + K1D
co,d

)
, (14)

where g1 and g2 are defined as

g1 = i

1 − iTr
[
K1D

cc,s

] , (15)

and

g2 = i
(
1 − iTr

[
K1D

cc,s

])
/
(
1 − iTr

[
K1D

cc,s

]− iTr
[
K1D

cc,d

]
− Tr

[
K1D

cc,s

]
Tr
[
K1D

cc,d

]+ Tr
[
K1D

cc,dK
1D
cc,s

])
. (16)

Equation (14) is illustrated by the transition diagram in
Fig. 2, which depicts all the possible transitions that can occur
during the collision. In this case there are two intermediate
transition processes involved, which are related to the s- and
d-partial wave indicated by solid and dash-dotted arrows,
respectively. Additionally, one can observe in Fig. 2 that the
first and second simple terms describe direct oo transitions via
s- and d-partial waves, respectively. The third (fourth) term
describes cc transitions via s- (d-) partial waves which are
directly coupled to the continuum. The last two terms of the
diagram in Fig. 2 describe processes combining cc transitions
of both types (s- and d-partial-wave-mediated) coupled to the
continuum. Moreover, in the resonant scattering the factors

g1 and g2 control the contribution of the cc transitions via
s- and d-partial waves, respectively. One can observe that
for g1 → ±∞ and g2 → 0 the resonant scattering is caused
by a s-wave CIR, since the cc transitions through s-partial
wave become the main resonant mechanism. Additionally, for
g2 → ±∞ the resonant scattering is caused by a d-wave CIR,
since the cc transitions through the d-partial wave become
dominant, i.e. are much larger than the contributions of the
transitions mediated by the s-partial wave.

According to Eq. (12) the relation which predicts the
positions of s- and d-wave CIR reads

1+c1(k)
as(k)

a⊥
+ c2(k)

(
ad (k)

a⊥

)5

+c3(k)
as(k)

a⊥

(
ad (k)

a⊥

)5

= 0,

(17)

where as(k) = − tan δ�=0(k)/k, a5
d (k) = − tan δ�=2(k)/k5 are

the energy dependent s- and d-wave scattering lengths and
c1(k), c2(k), and c3(k) are constants related to the Hurwitz
ζ functions [36], which depend on the total colliding energy
according to the following relations:

c1(k) = ζ

[
1

2
,
1

2
−
(

ka⊥
2

)2]
,

c2(k) = 180ζ

[
− 3

2
,
1

2
−
(

ka⊥
2

)2]
+ 30(ka⊥)2ζ

[
− 1

2
,
1

2
−
(

ka⊥
2

)2]
+ 5

4
(ka⊥)4ζ

[
1

2
,
1

2
−
(

ka⊥
2

)2]
, (18)

c3(k) = 180

{
ζ

[
− 3

2
,
1

2
−
(

ka⊥
2

)2]
ζ

[
1

2
,
1

2
−
(

ka⊥
2

)2]
− ζ

[
− 1

2
,
1

2
−
(

ka⊥
2

)2]2}
.

For q0a⊥ � 1 ⇒ ka⊥ �

√
2 the values of these constants are c1 = −1.460 35, c2 = −24.3622, and c3 = −1.079 86.

Moreover, the “physical” K-matrix, K1D,phys
oo , in the open channels reads

K 1D,phys
oo = 1

q0a⊥

1

1 + as (k)
a⊥

c1(k)

⎛
⎝2

as(k)

a⊥
+ 10

a5
d (k)

a5
⊥

{
1 + [c1(k) − c4(k)

2

]
as (k)
a⊥

}2

1 + as (k)
a⊥

c1(k) + a5
d (k)
a5

⊥

[
c2(k) + c3(k) as (k)

a⊥

]
⎞
⎠, (19)
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FIG. 2. A schematic illustration of the transitions into N channels which contribute in the scattering process, for the case of s- and d-wave.
The open (solid) circles indicate the open (closed) channels, the solid-black (dashed-dotted) arrows depict the transitions through the s- (d-)
partial wave, while the dots denote the N − 3 channels and their corresponding transitions.

where the constant c4(k) is given by the relation

c4(k) = 12ζ (−1/2,1/2 − (ka⊥/2)2)

+ (ka⊥)2ζ (1/2,1/2 − (ka⊥/2)2). (20)

In the limit q0a⊥ � 1 the constant c4 takes the value c4 =
−5.415 33.

Equation (19) encapsulates all the information of two
bosons in a harmonic waveguide involving s- and d-partial
wave scattering. Note that K1D,phys

oo possesses two singularities
and their positions are given by the following relations:

as(k) = − a⊥
c1(k)

and ad (k) = 5

√√√√− 1 + c1(k) as (k)
a⊥

c2(k) + c3(k) as (k)
a⊥

a⊥. (21)

Singularities occur when the s- and d-wave scattering
length are approximately half of the length of harmonic oscilla-
tor a⊥ corresponding to s-wave and d-wave CIR, respectively.
Furthermore, one observes that the position of the d-wave
CIR directly depends on the ratio as(k)/a⊥. Interestingly, the
second term in the brackets of Eq. (19), which is related to the
d-wave CIR, renders the Fano profile of the s and d interfering
partial waves, where the nominator describes the width of the
d-wave CIR depending strongly on the ratio as(k)/a⊥.

As was shown in Ref. [2] the scattering of two bosons in
the presence of a harmonic waveguide can be mapped onto
an effective 1D Hamiltonian of two bosons which interact via
a 1D δ potential, V1D(z) = g1Dδ(z), where g1D = h̄2/μa1D,
with the effective 1D scattering length being defined as

a1D = a2
⊥

2as
(−1 + 1.4603 as

a⊥
). The coupling strength g1D

diverges when a1D → 0 at the position of the s-wave CIR.
This idea can be extended in such a way that the d-wave CIR
is also included in g1D, giving g1D = h̄2q0

μ
K1D,phys

oo and

1

a1D
= 1

1 + as

a⊥
c1

⎧⎨
⎩2

as(k)

a2
⊥

+ 10
a5

d (k)

a6
⊥

×
[
1 + (c1 − c4

2

)
as (k)
a⊥

]2
1 + as (k)

a⊥
c1 + a5

d (k)
a5

⊥

(
c2 + c3

as (k)
a⊥

)
⎫⎬
⎭ . (22)

III. RESULTS AND DISCUSSION

In this section we compare the analytical results of the
previous section with the corresponding numerical data. This
comparison is based on Cs atom collisions representing
an ideal system for such a study with a rich spectrum of
resonances [37,38].

First we evaluate the s- and d-wave energy-dependent
scattering lengths by solving numerically the free space
scattering of two Cs atoms interacting via a Lennard-Jones
potential, Vsh(r) = C12

r12 − C6
r6 . The dispersion coefficient C6

has been taken from [37], where the van der Waals length
is �vdW = (2μC6/h̄

2)1/4 = 202a0 (a0 is the Bohr radius) and
C12 is a free parameter, which controls the values of the s-
and d-wave scattering lengths. Then we use the scattering
lengths as an input in Eq. (19), leading to a parametrization of
the K matrix K1D,phys

oo in terms of C12. The corresponding
transmission coefficient is calculated by the relation T =
1/[1 + (K1D,phys

oo )2].
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FIG. 3. (Color online) A comparison plot for (a) analytically
calculated transmission coefficient T and (b) numerically calculated
transmission coefficient Tn of d-wave CIR for several confinement
frequencies ω⊥.

Moreover, the numerical simulations of Cs-Cs collisions
in the harmonic waveguide are based on [19,22,39], where
we employ the units mCs/2 = h̄ = ω0 = 1, with mCs being
the mass of the Cs atom and ω0 = 2π × 10 MHz. The
longitudinal energy is set to ε‖ = 2 × 10−6 and the transversal
energy is varied within the interval 2 × 10−4 � ε⊥ � 8 ×
10−4, corresponding to the experimentally accessible range
4π kHz � ω⊥ � 16π kHz for the waveguide confinement
frequency. Additionally, the corresponding range of harmonic
oscillator length is 5176a0 � a⊥ � 2588a0, fulfilling thus the
criterion of the harmonic oscillator length being much larger
than the range of the interatomic potential, a⊥ � �vdW.

In Figs. 3(a) and 3(b) we present the analytically and
numerically calculated transmission coefficients, T and Tn,
respectively, for several confinement frequencies in the vicinity
of the d-wave CIR. Notably, the agreement of the numerical
with the analytical calculations is excellent for all confinement
frequencies. Moreover, the analytical results capture the shift
of the d-wave CIR with increasing confinement frequency
and the effect of the strong asymmetric Fano line shape of
the transmission spectrum T . The latter occurs, due to the
interference of s- and d-wave CIRs, where, as it is indicated
in Eq. (19), the broad s-wave CIR serves as a background and
the narrow d-wave CIR couples to it. One should note that this
difference in the widths of the two resonances is attributed to
the centrifugal term, which is absent in the case of s-wave CIR.
Furthermore, we present in Fig. 4 a high-resolution plot for
two confinement frequencies again comparing the analytical

FIG. 4. (Color online) A high-resolution comparison of analytical
results (solid line) with numerical data (red squares) for the d-wave
CIR for two different confinement frequencies, ω⊥ = 4 × 10−4,

8 × 10−4 in (a),(b), respectively.

with the numerical results. Even in this fine scale of the C12

parameter the analytical calculations follow the numerical ones
both qualitatively and quantitatively. The small deviations
can be explained by the fact that the criterion a⊥ � �vdW

is not strongly fulfilled for large confinement frequencies
and consequently the analytical results become less accurate.
Indeed, one can observe that these small deviations in Fig. 4(b),
which refer to the case of strong confinement, become less
pronounced in the case of intermediate confinement addressed
in Fig. 4(a).

Figure 5 demonstrates the origin of s- and d-wave CIR. For
that purpose we compare the transmission coefficient T [see
Figs. 5(a) and 5(c)] with the contour plot of the expression
|det(I − iK1D

cc )|[see Fig. 5(b)]. The transmission coefficient
T and the relation |det(I − iK1D

cc )| both depend on the total
energy E = h̄2k2/2μ and the ratios as/a⊥, (ad/a⊥)5. More
specific, in Fig. 5(b) for a given energy equal to the total
colliding energy E the quantity |det(I − iK1D

cc )| has two zeros
whose position is indicated in the contour plot by the dark
shaded areas (dashed circles), where the positions of the zeros
correspond to two different pairs of ratios (as/a⊥, (ad/a⊥)5).
The latter means that the closed channels possess two distinct
bound states with energy equal to the total energy E at the
corresponding values of the pairs (as/a⊥, (ad/a⊥)5), where
one bound state is related to the s wave [(ad/a⊥)5 ≈ 0] and
the other one is related to the d wave. On the other hand,
in Figs. 5(a) and 5(c) the transmission coefficient T of the
open channel at the same energy E possesses two zeros which

042703-6



COUPLED �-WAVE CONFINEMENT-INDUCED . . . PHYSICAL REVIEW A 86, 042703 (2012)

FIG. 5. (Color online) (a) Transmission coefficient T as a function of the as/a⊥ parameter, (b) contour plot of the quantity |det(I −
iK1D

cc )|versus the parameters as/a⊥ and (ad/a⊥)5, and (c) transmission coefficient T as a function of the (ad/a⊥)5. In (b) the black dotted
lines indicate the position of the resonance with respect to the panels (a) and (c), the black dotted circles indicate the positions of the zeros of
|det(I − iK1D

cc )|, and the red dashed line shows the positions of the resonances for an arbitrary short-range interatomic potential. The inset of
(a) refers to the dashed boxed area and depicts on a logarithmic scale the second zero of the transmission coefficient (s-wave CIR).

correspond to resonant scattering. The position of the d-wave
CIR is in Fig. 5(a) at the point as/a⊥ = 0.02 and in Fig. 5(c)
at the point (ad/a⊥)5 = 0.04. Respectively, the position of
the s-wave CIR is in Fig. 5(a) (see also the inset plot on a
logarithmic scale) at the point as/a⊥ = 0.68 and in Fig. 5(c)
at the point (ad/a⊥)5 ≈ 0. Thus, we observe an exact matching
of the pairs (as/a⊥, (ad/a⊥)5) at T = 0, denoted by the dotted
vertical and horizontal lines in Fig. 5(b), with the pairs of
(as/a⊥, (ad/a⊥)5) obtained from the zeros of the relation
|det(I − iK1D

cc )|. The latter means that the s- and d-wave CIRs
occur due to the corresponding s- and d-wave bound states
of the closed channels, which couple to the continuum of the
open channel. Furthermore, due to the harmonic confinement,
s- and d-wave CIR are coupled together rendering interference
effects, i.e. a strong asymmetric Fano line shape of the
transmission coefficient T , as is depicted in Figs. 5(a) and 5(c).
Finally, in Fig. 5(b) the red dashed line indicates the position
of the d-wave CIR for any short-range interatomic potential
according to Eq. (17).

IV. BRIEF SUMMARY AND CONCLUSIONS

We have explored two-body scattering within a harmonic
waveguide taking into account all possible partial wave
excitations. Our analysis is based on the assumption that the
range of the interatomic interactions has to be smaller than the
length scale of the harmonic confinement, imposing thus two
regimes of distinct symmetries, i.e. spherical for r → 0 and
cylindrical for r → ∞. The expansion over �-partial waves
leads to an extension of CIR physics, where more � 	= 0-wave
CIRs emerge being coupled to the broad s-wave CIR predicted
in Ref. [2]. Furthermore, we obtain analytically the positions
of all �-wave CIRs [Eqs. (12) and (13)]. This general result
refers both to fermionic and bosonic collisions. Note that
it can be easily extended for more than one open channel
taking into account inelastic processes as well. Additionally,
we have demonstrated that the K-matrix approach can provide
us with a unique insight of the underlying physics which
scattering in confined geometries can undergo [Eqs. (11) and
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(14)]. More specifically, we show that the “physical” 1D K

matrix, K
1D,phys
oo , can be expanded in a Dyson-like form of

equation, where each term describes all possible transitions
which occur during the collision process. The latter permits
us to classify and thoroughly analyze all couplings which are
induced by the presence of higher �-partial waves. Moreover,
this scheme makes it possible to unravel the connection
of the two interpretations for the CIR effect introduced in
Refs. [2,3], where all the possible transitions through each
�-partial wave into the closed channels act in a collective
way, yielding an effective �-wave bound state supported by
all closed channels being coupled to the continuum of the
open channel. The latter yields an asymmetric Fano line shape
in the transmission coefficient T . Additionally, we implement
the extended analytical model in the case of two-body bosonic
collisions in the presence of a harmonic waveguide with the
scattering process involving only s- and d-partial waves, where
we observe an excellent agreement between the analytical and
numerical results. Furthermore, we analyze the d-wave CIR
being coupled to the s-wave CIR, where both resonances depict
an asymmetric Fano line shape in the transmission spectrum. A
similar behavior is expected also for the case of spin-polarized
fermionic collisions involving p- and f -partial waves and their
couplings. Nevertheless, we should mention that for higher

partial waves (� � 4) the widths of the corresponding �-wave
CIRs become very narrow, due to the pronounced centrifugal
barrier which the atoms have to tunnel through in order to
perform a �-partial wave collision. Finally, we would like to
mention that within the framework of the K-matrix approach
the origin of the narrow �-wave resonances in the presence
of confinement is a Fano-Feshbach-like. The latter is not in
conflict with the interpretation given in Ref. [22], due to the
fact that when an � 	= 0 Fano-Feshbach resonance is slightly
above the threshold, it can be seen also as a shape resonance
[40,41]. This situation occurs also in the considered system
because the energy of the maximum of the centrifugal barrier is
three orders of magnitude larger than the energy of the ground
state of the harmonic confinement; thus the atoms in the
d-wave Fano-Feshbach-like state tunnel through the barrier
exactly as if they would be in a single-channel shape resonant
state. This complex behavior can be described in a transparent
way within the K-matrix approach.
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Phys. Rev. Lett. 95, 230401 (2005).
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