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Self-energy of a bound electron for excited states
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The method for the evaluation of the self-energy of bound electron is proposed. The integration over four-
momenta of virtual photons is done in a way that preserves manifest Lorentz invariance. The resulting expression
can then be decomposed into high- and low-energy parts in a Lorentz invariant fashion. The high-energy part
depends only on the behavior of the wave function of the reference state in the immediate vicinity of the nucleus
and can be calculated analytically. The low-energy part depends on further details of the atomic structure and
has to be calculated numerically. The results accurate at least up to α(Zα)6 are obtained for non-S states and
normalized difference n3�En − �E1 of the S states. The method is applied to the states with the principal
quantum number n ranging from 2 to 10, with the orbital quantum number l ranging from 0 to 3 and with
the nuclear charges Z ranging from 1 to 30. In the cases that were already considered in literature a very
good agreement with previous calculations is found, especially for the atoms with lower nuclear charges. The
advantages of the present method over the previous ones are pointed out.
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I. INTRODUCTION

The renormalized expression for the self-energy in the non-
recoil limit reads (for notation and units used see [1])

�E = 〈O − �m〉 = 〈ψ |γ0(O − �m)|ψ〉, (1)

where �m stands for the electromagnetic mass of the electron.
The regularized mass operator O reads

O = α

π

∫ �2

0
dλ

∫
d4kF

(k2 − λ)2
γμ

1

γ · (	 − k) − m
γμ (2)

and the wave function ψ of the reference state is a solution of
the stationary Dirac equation with the energy E,

(γ · 	 − m)ψ = 0, (3)

where 	 is the physical four-momentum of the particle in
the external time-independent electromagnetic field. The self-
energy effect is the dominant contribution to the Lamb shift of
the hydrogenlike atoms [2–4]. Therefore,considerable effort
has been devoted to the evaluation of Eq. (1) for the case of
the Coulomb external field

	0 = E + Zα

R
, �	 = �P (4)

for the reference states with different principal and orbital
quantum numbers n and l and different nuclear charges Z

[5–20]. We multiply 1/[γ · (	 − k) − m] in Eq. (2) by [γ ·
(	 − k) + m]/[γ · (	 − k) + m] from the right. Using Dirac
equation and properties of γ matrices [1], we get

〈O〉 = α

π

∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

×
〈
γμ

1

k2 − 2k · 	 + H
(2	μ − k · γ γμ)

〉
. (5)

Here the second-order Hamilton operator H [8] reads

H = (γ · 	 + m)(γ · 	 − m) = 	 · 	 − m2

+ 1
4 [	μ,	ν][γμ,γν]. (6)

To evaluate the expression (5) we use the spectral de-
composition of the Hamilton operator H . Equation (5) then
presents an eleven-dimensional integral: four integrations over
variables of virtual photon, three plus three integrations in
electron coordinate space when evaluating the matrix elements
of γμ and (2	μ − k · γ γμ) between reference and intermediate
states, and one integration (summation) over continuous
(discrete) part of the electron intermediate states. The difficulty
in the evaluation of the self-energy effect even for the atoms
with low nuclear charges arises from the presence of several
important scales. The frequency ω of the virtual photon can
be of the order of the electron mass m or of the order of the
atomic energies m(Zα)2. The wave number ke of the electron
in the intermediate state can be of the order of the electron
mass m or of the order of the atomic momentum m(Zα).
Consequently, there are four important regions: the region I,
where ω � m(Zα)2, ke � m(Zα), the region II, where ω � m,
ke � m(Zα), the region III, where ω � m(Zα)2, ke � m, and
the region IV, where ω � m, ke � m. This can be illustrated
on the expansion of the self-energy in powers of Zα,

�E = mα(Zα)4

πn3
F (Zα), (7)

where

F (Zα)=A41 ln(Zα)−2 + A40 + A50(Zα) + (Zα)2

× [A62 ln2(Zα)−2 + A61 ln(Zα)−2 + A60] + · · · .

(8)

Coefficients A were calculated in Refs. [5–14] and are
summarized in several places, e.g. [2,3,17]. It is convenient
to write the self-energy effect on the general S state as

�En = n3�En − �E1

n3
+ �E1

n3
, (9)

where the first and the second terms on the right member will
be referred to as the state-dependent and the state-independent
parts, respectively. The difference n3�En − �E1 will be
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called the normalized difference of the S states. For the
state-independent part of the S states the coefficient A41 comes
from region I, A40 from regions I and II, A50 from region IV,
A62 from region III, A61 from regions I and III, and A60 from
regions I, II, and IV. For the state-dependent part of the S

states and non-S states, the situation is considerably simpler:
the coefficients A41, A50, and A62 vanish, the coefficient
A61 comes from region I, and the coefficients A40 and A60

come from regions I and II. Clearly, the contribution of the
intermediate electron states with very large electron wave
numbers is significantly suppressed in these cases.

In view of the foregoing discussion it appears to be a
hopeless task to find a single approximation that would give
after a finite number of terms the exact values of the coefficients
in Eq. (8). This is indeed the shared wisdom in the field;
see, e.g., the discussion in Refs. [3,10]. Therefore, modern
approaches [10,12–14] broke up calculation at least into two
regions and matched the contributions from these regions.

In Refs. [21,22] we suggested expanding the electron
propagator as follows:

1

k2 − 2k · 	 + H

= 1

k2 − 2k · ε + H
+ 1

k2 − 2k · ε + H
2k · (	 − ε)

× 1

k2 − 2k · ε + H
+ 1

k2 − 2k · ε + H
2k · (	 − ε)

× 1

k2 − 2k · ε + H
2k · (	 − ε)

1

k2 − 2k · ε + H
+ · · · ,

(10)

where

ε = (m,0,0,0). (11)

This expansion has been motivated by the following considera-
tions. First, as shown by Bethe [5], the dominant contribution to
the self-energy of the bound electron for low values of nuclear
charge comes from the integration over low frequencies of
the virtual photon. To get this contribution right, the Hamilton

operator H has to be kept at the leading approximation of
the propagator. Second, when the wave number ke of the
electron in the intermediate state is of the order of atomic
momentum m(Zα), the electron four-momentum 	 in the
electron propagator is dominated by the rest mass of the
electron.

As discussed in [21], for the state-independent part of the
S states this single expansion yields after a finite number of
terms the exact values of the coefficients A41, A40, A62, and
A61. The exact values of coefficients A50 and A60 are obtained
only when an infinite number of the terms are considered [22].
However, a very good approximation to these exact values is
obtained just by considering a few terms [22].

The purpose of this paper is to apply the expansion (10) to
the evaluation of the self-energy effect for the state-dependent
part of the S states and non-S states. We show that in these
cases only very few terms of the single expansion (10) have
to be considered to get results that are exact at least up to the
order α(Zα)6. Furthermore, the suppression of the electron
intermediate states with very large wave numbers results in
considerable simplification of the calculation and a part of the
calculation can be carried out analytically, as noted already in
Refs. [12–14].

The paper is organized as follows. In Sec. II the integration
over four-momentum of virtual photon is performed. Operator
expression resulting from the integration is further simplified
and put into computationally useful form in Sec. III. The results
obtained are discussed in Sec. IV; Sec. V contains conclusions.
Most of the derivations needed in Sec. III are skipped in
the main text and left to Appendixes A and B. Appendix A
also contains details needed for practical evaluation of the
expression given in Sec. III. Appendix C contains derivation
of the coefficients A41 and A61 in Eq. (8).

II. INTEGRATION OVER FOUR-MOMENTUM
OF VIRTUAL PHOTON

First we introduce some convenient notation and rewrite
Eq. (10) as follows:

1

k2 − 2k · 	 + H
= 1

k2 − 2k · ε + H
+ 2k · (	 − ε)1

(k2 − 2k · ε + H01)(k2 − 2k · ε + H12)

+ 2k · (	 − ε)12k · (	 − ε)2

(k2 − 2k · ε + H01)(k2 − 2k · ε + H12)(k2 − 2k · ε + H23)
+ · · · . (12)

The components of the operators (	 − ε) do not mutually commute. The subscripts of these operators then indicate the ordering
in which they act on a bra-vector. The Hamilton operator H does not commute with the operators (	 − ε). The subscript of this
operator then indicates where the operator appears with respect to the operators (	 − ε). For example, in the last displayed term
on the right member of Eq. (12) H01 acts on a bra-vector before the two operators (	 − ε), H12 acts between the two operators
(	 − ε), and H23 acts after the two operators (	 − ε). Clearly, by endowing the Hamilton operators H with the subscripts, we
keep the track of their position with respect to the operators (	 − ε). Thus the operators H with the subscripts can be treated as
numbers.

For an integration over four-momentum of virtual photon it is advantageous to rearrange the expansion (12) as follows:

1

k2 − 2k · 	 + H
= 1

k2 − 2k · ε + H
− 2k · (	 − ε)1D1

[
1

k2 − 2k · ε + H

]

+2k · (	 − ε)12k · (	 − ε)2D2

[
1

k2 − 2k · ε + H

]
+ · · · , (13)

042514-2



SELF-ENERGY OF A BOUND ELECTRON FOR EXCITED STATES PHYSICAL REVIEW A 86, 042514 (2012)

where

D1[f (H )] = f (H01)

H01 − H12
+ f (H12)

H12 − H01
, (14)

D2[f (H )] = f (H01)

(H01 − H12)(H01 − H23)

+ f (H12)

(H12 − H01)(H12 − H23)

+ f (H23)

(H23 − H01)(H23 − H12)
(15)

and so on. Further, by means of the identities [see Sec. 4.5,
Eqs. (71)–(73) of Ref. [21] for a detailed discussion]

− 2kμ

k2 − 2k · ε + H
= H

∫ 1

0
dw

∂

∂εμ

1

k2 − 2k · ε + wH
,

(16)

2kμ2kν

k2 − 2k · ε + H
= H 2

∫ 1

0
dw(1 − w)

∂2

∂εμ∂εν

× 1

k2 − 2k · ε + wH
, (17)

and so on, we convert calculation of all the integrals over
photon variables k arising in the expansion (10) to the
calculation of the only integral [see, e.g., Eq. (74) of Ref. [21]],∫ �2

0
dλ

∫
d4kF

(k2 − λ)2

(1,kν)

k2 − 2k · ε + wH

= −1

4

∫ 1

0
dy(1,yεν){ln(ε2y − wH ) − ln[�2(1 − y)/y]}.

(18)

Note that the expressions (16), (17) appear inside the expres-
sions (14), (15). Therefore, H enters the expressions (16), (17)
with the subscripts and can be treated as a number.

Furthermore, for an arbitrary function f depending only on
ε2 and function N depending on the components of ε linearly,
we have

∂(Nf )

∂ελ

= N2ελ

∂f

∂ε2
+ ∂N

∂ελ

f, (19)

∂2(Nf )

∂ελ∂ερ

=
(

∂N

∂ελ

ερ + ∂

∂ερ

(ελN )

)
2

∂f

∂ε2
+ 4ελερN

∂2f

∂(ε2)2
,

(20)

and so on. After we insert Eqs. (13)–(20) into Eq. (5), subtract
from the expression (5) the contribution to the electromagnetic
mass of the electron [see, e.g., Eq. (80) of [21]]

�m〈1〉 = − α

2π

∫ 1

0
dy

〈
γμ{ln(m2y) − ln[�2(1 − y)/y]}

×
(

	μ − y

2
	 · γ γμ

)〉
, (21)

and identify m with the observable mass of the electron, the
observable effect of the self-energy can then be written as

�E = − α

2π

〈
γμ

(
G4	μ − m

2
G · γ γμ

)〉
, (22)

where

G4 = φ0(H ) + (	 − ε)1λελD1[φ′
2(H )] + (	 − ε)1λ

× (	 − ε)2λD2[φ2(H )] + · · · (23)

and

Gν = ενφ
′
1(H ) + (	 − ε)1νD1[φ1(H )] + εμεν(	 − ε)1μ

×D1{[φ3(H )]′′} + · · · . (24)

Here the prime denotes differentiation with respect to H and
the functions φ are given as

φ2q(H ) = 2qH 2q

(2q − 1)!

∫ 1

0
dw(1 − w)2q−1 ∂q

∂(ε2)q

×
∫ 1

0
dy[ln(ε2y − wH ) − ln(m2y)]

∣∣∣∣
ε2=m2

= m2qh2q 2q(−1)q−1(q − 1)!

(2q − 1)!

∫ 1

0
dw(1 − w)2q−1

×
∫ 1

0
dy

yq

(y + wh)q
(25)

and

φ2q+1(H ) = 2qH 2q+1

m(2q)!

∫ 1

0
dw(1 − w)2q ∂q

∂(ε2)q

×
∫ 1

0
dy y[ln(ε2y − wH ) − ln(m2y)]

∣∣∣∣
ε2=m2

= m2q+1h2q+1 2q(−1)q−1(q − 1)!

(2q)!

∫ 1

0
dw(1 − w)2q

×
∫ 1

0
dy

yq+1

(y + wh)q
(26)

for q > 0 and

φ0 = h

∫ 1

0
dy

∫ 1

0
dw

1

y + wh
(27)

and

φ1 = −mh2
∫ 1

0
dy y

∫ 1

0
dw

1 − w

y + wh
(28)

for q = 0. Here the scaled Hamilton operator

h = − H

m2
(29)

has been introduced.

III. INTEGRATION OVER ELECTRON VARIABLES

A. Covariant separation into low- and high-energy parts

In the case of the greatest interest, that of the Coulomb
external field, Eq. (4), the second-order Hamilton operator H

is at least of the order (Zα)2, see Eqs. (A26) and (A37) below,
so it is tempting to consider the expansion of the functions φ

in powers of H :

φ2 = H 2

m2
+ φ̃2, φ4 = − H 4

6m4
+ φ̃4, (30)

φ1 = − H 2

2m3
+ φ̃1, φ3 = H 3

6m3
+ H 4

12m5
+ φ̃3, (31)
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φ6 � H 6

45m6
, φ5 � − H 5

60m5
− H 6

90m7
, φ7 � H 7

630m7
. (32)

By virtue of the identities

D1[H ] = 1, D1[H 2] = H01 + H12, D2[H 2] = 1,
(33)

D2[H 3] = H01 + H12 + H23

or, more generally,

Dn[Hn] = 1, Dn[Hn+1] =
n∑

j=0

Hj,j+1 (34)

following from the definitions (14), (15), the terms involving
only the powers of H can be evaluated rather simply. For
example, we have

εμεν(	 − ε)1μD1

[(
H 3

6m3
+ H 4

12m5

)′′]
+ (ελgμν + εμgλν + ενgμλ)(	 − ε)1μ(	 − ε)2λD2

[(
H 3

6m3
+ H 4

12m5

)′]

+ (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3ρD3

[
H 3

6m3
+ H 4

12m5

]

= εμεν(	 − ε)1μ

(
1

m3
+ H01 + H12

m5

)
+ (ελgμν + εμgλν + ενgμλ)(	 − ε)1μ(	 − ε)2λ

(
1

2m3
+ H01 + H12 + H23

3m5

)

+ (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3ρ

(
1

6m3
+ H01 + H12 + H23 + H34

12m5

)
= 	̃2	ν

6m3
+ 	ν	̃2H

12m5
.

(35)

Here, we introduced notation

	̃2 = 	 · 	 − m2 (36)

and the bar denotes the sum over all possible permutations of the orderings of the operators involved.
Following the nomenclature used in Refs. [10,12–14] we shall call the contribution of the terms in Eqs. (30)–(32) containing

only the power terms of H the high-energy part. This contribution comes from the hard photon region. As shown later, it depends
only on the behavior of the reference wave function ψ in the immediate vicinity of the nucleus. It can be evaluated in the closed
form.

The contribution of φ0 and the remaining terms in Eqs. (30) and (31), those denoted generically as φ̃, will be called the
low-energy part. As discussed in detail below, it is sensitive to the details of the atomic structure. It has to be evaluated
numerically by using spectral decomposition of the second-order Hamilton operator H .

Further, the terms in Eq. (22) can be rewritten into the form

〈γμG4	μ〉 = 1
2 〈γμG4	μ + 	μG4γμ〉 = m〈G4〉 − 1

2 〈[	μ,[γμ,G4]]〉 (37)

and

− 1
2 〈γμG · γ γμ〉 = − 1

4 〈γμ{Gν,γν}γμ〉 = 1
2 〈{Gν,γν}〉 − 1

8 〈{γν,[γμ,[γμ,Gν]]}〉. (38)

The second terms in these equations are in the case of the Coulomb field (4) by the factor (Zα)2 smaller than the first. By
inserting Eqs. (30)–(32) and Eqs. (37) and (38) into Eqs. (22)–(24) we obtain the self-energy in the form

�E = �Elow + �Ehigh. (39)

The low-energy part reads

�Elow = − α

2π

〈
γμ(φ0 + (	 − ε)1λελD1[φ̃′

2] + (	 − ε)1λ(	 − ε)2λD2[φ̃2])	μ + m(εμεν(	 − ε)1μ(	 − ε)2νD2[φ̃′′
4 ]

+ (ελgμν + εμgλν + ενgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3νD3[φ̃′
4] + (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)1μ

× (	 − ε)2λ(	 − ε)3ρ(	 − ε)4νD4[φ̃4]) − 1

8
{γν,[γμ,[γμ,ενφ̃

′
1 + (	 − ε)1νD1[φ̃1]]]} + γν(ενφ̃

′
1 + (	 − ε)1νD1[φ̃1]

+ εμεν(	 − ε)1μD1[φ̃′′
3 ] + (ελgμν + εμgλν + ενgμλ)(	 − ε)1μ(	 − ε)2λD2[φ̃′

3]

+ (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3ρD3[φ̃3]) + · · ·
〉
. (40)

The high-energy part reads

�Ehigh = − α

2π

〈
	̃2

m
− 	̃4

6m3
+ 	̃6

45m5
− 1

4m2
{γν,{	ν,H }} + 1

16m2
{γν,[γμ,[γμ,{	ν,H }]]} + γν

	̃2	ν

6m2

+ 1

24m4
{γν,	ν	̃2H } − 1

96m4
{γν,[γμ,[γμ,	ν	̃2H ]]} + γν

(
−	̃4	ν

60m4
− 	̃4	νH

90m6
+ 	̃6	ν

630m6

)
+ · · ·

〉
. (41)
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Note that in contrast to Refs. [10,12–14] the separation into
high- and low-energy parts is done here in Lorentz-invariant
fashion and was achieved without breaking of the integration
over a virtual photon into separate pieces.

For the state-independent part of the S states the low-energy
part, Eq. (40), yields the exact values of coefficients A41 and
A62 and parts of coefficients A40, A50, A61, and A60 [21,22].
The terms involving the function φ̃4 and its derivations have to
be evaluated between Schrödinger wave functions, otherwise
they diverge. (The Dirac wave function of the S states has
the logarithmic singularity at the origin. Thus evaluation of an
operator expression between the Schrödinger wave functions
could yield a finite result even when evaluation between the
Dirac wave functions leads to a divergent result.) The first
two terms of the high-energy part yield the remaining part
of the coefficient A40. The second term has to be evaluated
between Schrödinger wave functions; otherwise, it diverges.
The remaining terms of the high-energy part diverge even
when evaluated between Schrödinger wave functions. These
divergencies are connected to the separations (30) and (31)
and the expansions (32). If these separations and expansions
are avoided and the functions φ are considered in full the
divergencies disappear [21].

For the state-dependent part of the S states and non-S states
the low-energy part yields the exact value of the coefficient
A61, see Appendix C, and a part of coefficients A40 and
A60. The high-energy part yields the remaining parts of
these coefficients. Some of these terms have to be for the
state-dependent part of the S states and P states evaluated
between Schrödinger wave functions; otherwise, they diverge.

One can consider further expansion of the functions φ̃

defined by the separations (30) and (31) in powers of h. This
is, however, not at all advantageous. The expansion of the
functions φ̃ yields the terms proportional to ln(h). Such terms
have to be evaluated numerically, in the same way as Eq. (40),
so from a practical point of view nothing is gained by such
an expansion. On the contrary, one then loses the contribution
of the intermediate electron states with large wave numbers
contributing at the order α(Zα)7 and further terms of the Zα

expansion. This results in significant loss of accuracy for the
atoms with higher nuclear charges. Further, the convergence
properties of the terms containing only the terms proportional
to ln(h) is significantly worse than those appearing in Eq. (40);
see text below Eq. (49) for further discussion of this point.
The only thing that is missed by avoiding the expansion of
the functions φ̃ in series in h is that the contribution to the
coefficient A60 cannot be isolated. We checked [23] that by
performing such an expansion the same value of the A60

coefficient is obtained from Eqs. (40) and (41) as that found in
Ref. [12]. However, the proof is not too illuminating and will
not be presented here.

B. Evaluation of low-energy part

Up to this point, the discussion has been valid for an
arbitrary time-independent electromagnetic field. From now
on, we shall narrow our focus on the case of the Coulomb
field (4).

In Eq. (40) the operator H appears with the subscripts.
To evaluate Eq. (40) as it stands we have to use the spectral

decomposition of the operator H many times. Fortunately, by
means of the operator identities derived below, the number of
the spectral decompositions of the operator H can be always
reduced to one.

It follows from the definition (14) and identity

Pj = i

2
[Xj,H ] (42)

that

(Pj )1D1[φ(H )] = i

2
(Xj )1(H12 − H01)

×
(

φ(H01)

H01 − H12
+ φ(H12)

H12 − H01

)

= i

2
(Xj )1[φ(H12) − φ(H01)]

= i

2
[Xj,φ(H )]. (43)

Further, it follows from the definition (15), identities (42),

[XjXk,H ] = (−2i)(PjXk + XjPk)

= (−4i)PjXk + 2δjk = (−4i)XjPk − 2δjk, (44)

and an elementary observation

lim
H12=H01=H

φ(H12) − φ(H01)

H12 − H01
= φ′(H ) (45)

that

(Pj )1(Pk)2D2[φ(H )] = i

2

X1jP2kφ(H01) + P1jX2kφ(H23)

−H01 + H23

+ 1

4
X1jX2kφ(H12)

= −1

8
[Xj,[Xk,φ(H )]] + δjk

4
φ′(H ).

(46)

Furthermore, it follows from the definition (14), identity

	0 − m = H + m2 − Em

E
+ i

2E
[ �X · �P ,H ], (47)

and Eq. (45) that

(	0 − m)1D1[φ(H )] = H + m2 − Em

E
φ′(H )

+ i

2E
[ �X · �P ,φ(H )]. (48)

These examples show how the subscripts of the operators 	

and H can be eliminated. Elimination of the subscripts leads
generally to the expressions involving multiple commutators
of the operators �X, �X · �P , and functions φ(H ). For actual
evaluation of Eq. (40) to the desired accuracy the only identities
necessary to use are Eqs. (43), (46), and (48). There are
simplifications resulting from the Dirac equation and neglect of
some of the terms that contribute at a higher order than α(Zα)6.
These are described in considerable detail in Appendix A.
Taking full advantage of these simplifications allows us to
bring the expression (40) for the low-energy part into a
computationally useful form (recall that the prime denotes
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differentiation with respect to H ),

�Elow = − α

2π

{
−

〈
Pi

(
φ0

m
+ mφ̃2

H 2

)
Pi

〉
+

〈
[σi,σj ][Pi,	0]m2

(
− φ̃′

1

H 2
+ 4φ̃1

H 3
− φ0

2m3H

)
[Pj ,	0]

〉
0

+
〈
Pj

[
− 1

8

[
Xi,

[
Xi,

φ̃2

m
+ φ̃4

H 2

]]
+ 3

4

(
φ̃2

m
+ φ̃4

H 2

)′]
Pj

〉
0

+ 2

〈
Pi

[
− 1

8

[
Xi,

[
Xj,

φ̃4

H 2

]]
+ δij

4

(
φ̃4

H 2

)′]
Pj

〉
0

−
〈
Pj

(
1

2E

[
r

∂

∂r
,φ̃′

2 + m2φ̃′
4

H 2

]
+ H + m2 − Em

E

(
φ̃′

2 + m2φ̃′
4

H 2

)′)
Pj

〉
0

+
〈
Pj

(
Hφ0

2m3
+ φ̃′

2

2m
− φ̃1

H
− m2φ̃′

3

H 2

)
Pj

〉
0

−
〈
(	0 − m)

i

2

[
Xi,2

φ̃2

H
+ 2m2 φ̃′

4

H 2

]
Pi

〉
0

+
〈
(	0 − m)

(
φ0

m
+ mφ̃2

H 2
+ 2mφ̃′

2

H
+ m3φ̃′′

4

H 2

)
(	0 − m)

〉
0

}
, (49)

where

〈O〉0 = 〈ψ0|O|ψ0〉 (50)

and ψ0 stands for the Schrödinger limit of the Dirac wave func-
tion ψ . The replacement ψ → ψ0 in Eq. (49) is accompanied
by the replacement of the second-order Hamilton operator H

by its nonrelativistic limit,

H � 2m(	0 − m) − �P · �P . (51)

Henceforth it is understood that notation (50) implies that
the exact Hamilton operator, Eq. (6), is replaced by the
approximate one, Eq. (51). The expression (49) is evaluated
by calculating the explicit form of the functions φ̃ and then
using the spectral decomposition of the Hamilton operator
H . The method is essentially the same as that described
in Ref. [21]. Further extensions and simplifications of that
method are described in Appendix A.

The functions φ̃ can be brought to the form that involves
the calculation of the inverse of the operator y + wh, i.e.,
the Green function of the hydrogen [22]. Thus an alternative
way of the evaluation of Eq. (49) is to use a known form of
the Green functions [24]. Such an approach was followed in
Refs. [12,13] for the calculation of the Bethe logarithm and its
relativistic corrections. However, such an approach seems to
be limited to the states with principal quantum number n lesser
than 9; see the remark in Ref. [14]. The evaluation based on
the spectral decomposition of the Hamilton operator H that is
followed here does not possess such a restriction.

The dominant contribution to the low-energy part comes
from the first term in Eq. (49). If the function φ0/m + mφ̃2/H

2

is expanded in the powers of h one obtains at the leading order
mh[13/18 − 2 ln(h)/3], where the second term corresponds
to the well-known Bethe logarithm [5]. However, when the
first term in Eq. (49) is left unchanged, its calculation is both
more accurate and easily done than the calculation of the Bethe
logarithm. For to use the spectral decomposition of the scaled
Hamilton operator h one has to sum over the quantum numbers
n′ and integrate over the wave numbers ke; see Eq. (A33). The
eigenvalues of the operator h for the discrete and continuous
parts of the spectrum are given in the nonrelativistic limit
as (Zα)2(1/n2 − 1/n′2) and (Zα)2(1/n2 + k2

e ), respectively.
Now, for the S states the operator Pih ln(h)Pi has to be
evaluated between Schrödinger wave functions, otherwise

it diverges. For large wave numbers ke one integrates an
expression that behaves for the S states as k−2

e ln ke, i.e., is on
the very border of convergence. On the other hand, the function
φ0/m + mφ̃2/H

2 behaves for large h as ln(h). Therefore,
the average of the operator Pi(φ0/m + mφ̃2/H

2)Pi converges
even when evaluated between Dirac wave functions. When
this average is taken between Schrödinger wave functions it
behaves for large ke for the S states as k−4

e ln ke. The same
kind of argument also applies to further terms in Eq. (49). For
example, the expansion of the function mφ̃4/H

2 yields at the
leading order mh3[47/900 − ln(h)/15], where the second term
corresponds to the correction to the Bethe logarithm due to
quadrupole interaction of the electron with the electromagnetic
field [12]. The average of the operator PiXjh

3 ln(h)XiPj

diverges when evaluated for the S states and converges only
when normalized difference of the averages of the operators
[11,12]

〈〈O〉〉 = n3〈ψn|O|ψn〉 − 〈ψ1|O|ψ1〉 (52)

between the Schrödinger wave functions is considered. In
contrast to it, the function mφ̃4/H

2 behaves for large h as
mh2/6. When the average of the operator PiXj (mφ̃4/H

2)XiPj

is taken between Schrödinger wave functions it behaves for the
S states for large ke as k−2

e .

C. Evaluation of high-energy part

As shown in Appendix B, the expressions in Eq. (41) can be
converted to multiple commutators involving the components
of 	 and H . Taking advantage again of simplifications
following from neglect of the terms that contribute to higher
order than α(Zα)6, Eq. (41) can be for the case of the external
Coulomb field (4) brought to the form

�Ehigh = − α

2π

{
〈γ0γj [Pj ,	0]〉 1

2m2
+ 〈[Pi,[Pi,	0]]γ0〉

× 5

12m3
− 〈[Pi,[Pi,[Pj ,	0]]]γ0γj 〉 1

12m4

−〈[Pi,	0][Pi,	0]〉0
1

2m4

−〈[Pi,[Pi,[Pj ,[Pj ,	0]]]]〉0
7

120m5

}
. (53)
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Reduction of the reference wave function to the upper
components yields (see Appendix B for details)

〈γ0 �γ · [ �P ,	0]〉
� 1

2m
〈−[Pj ,[Pj ,	0]] − [σi,σj ][Pj ,	0]Pi〉FW

+ 1

4m3
〈([Pj ,[Pj ,	0]] + [σk,σj ][Pj ,	0]Pk)

×P 2 + m[Pj ,	0][Pj ,	0]〉0, (54)

〈γ0[Pj ,[Pj ,	0]]〉 � 〈[Pj ,[Pj ,	0]]〉FW

− 1

8m2
〈[Pk,[Pk,[Pj ,[Pj ,	0]]

+ [σi,σj ][Pj ,	0]Pi]]〉0, (55)

and

〈[Pk,[Pk,[Pj ,	0]]]γ0γj 〉 � − 1

2m
〈[Pk,[Pk,[Pj ,[Pj ,	0]]

+ [σi,σj ][Pj ,	0]Pi]]〉0, (56)

where

〈O〉FW = 〈ψFW|O|ψFW〉 (57)

and ψFW is the Foldy-Wouthuysen form of the Dirac wave
function containing corrections at least of the order (Zα)2 to
the Schrödinger limit.

1. Evaluation for the S states

For the S states the expressions in Eqs. (53)–(56) are
generally divergent. One has to consider the normalized

difference of the averages of the operators, Eq. (52). For
nonvanishing terms in Eqs. (53)–(56) one then gets for this
difference [12]

1

m2
〈〈[Pj ,[Pj ,	0]]〉〉FW

= m(Zα)4〈〈4πδ(�r)〉〉FW

= m(Zα)6

(
6 + 4

n
− 10

n2
− 4[γ + �(n) − ln(n)]

)
, (58)

1

m3
〈〈[Pj ,	0][Pj ,	0]〉〉0

= −m(Zα)6

〈〈
1

r4

〉〉
0

= −8m(Zα)6

(
−2

3
+ 1

2n
+ 1

6n2
+ γ + �(n) − ln(n)

)
,

(59)

1

m4
〈〈[Pk,[Pk,[Pj ,[Pj ,	0]]]]〉〉0 = −m(Zα)6 8(1 − n2)

n2
,

(60)

and

1

m4
〈〈[Pj ,[Pj ,	0]]P 2〉〉0 = −m(Zα)6 4(1 − n2)

n2
. (61)

2. Evaluation for the P states

For the P states one gets for nonvanishing terms in
Eqs. (53)–(56) [12]

1

m2
〈[σk,σj ][Pj ,	0]Pk〉FW = 2m(Zα)4

〈 �σ · �L
r3

〉
FW

= 2m(Zα)4

n3

{ 〈�σ · �L〉0

3
+ (Zα)2

[
−〈�σ · �L〉0

4

(
− 346

135
− 4

3n
+ 22

5n2

)

+ 2 − 〈�σ · �L〉0

2

(
− 227

540
− 1

6n
+ 1

5n2

)]}
, (62)

1

m4
〈[σk,σj ][Pj ,	0]PkP

2〉0 = m(Zα)6

n3
〈�σ · �L〉0

2

5

(
4 − 13

3n2

)
,

(63)

1

m4
〈[Pm,[Pm,[Pj ,	0]]]Pk[σk,σj ]〉0

= m(Zα)6

n3
〈�σ · �L〉0

8(n2 − 1)

3n2
, (64)

1

m3
〈[Pj ,	0][Pj ,	0]〉0 = −m(Zα)6

n3

2(3n2 − 2)

15n2
, (65)

and

1

m4
〈[Pk,[Pk,[Pj ,[Pj ,	0]]]]〉0 = −m(Zα)6

n3

8(n2 − 1)

3n2
. (66)

Here, we take

〈�σ · �L〉0 = −2, j = 1/2, 〈�σ · �L〉0 = 1, j = 3/2.

(67)

3. Evaluation for the states j > 1/2

For the states with j > 1/2 we have

〈[Pi,[Pi,	0]]γ0〉 = 0 (68)

and

〈[Pi,[Pi,[Pj ,	0]]]γ0γj 〉 = 0. (69)

Furthermore, for the states with l > 1 we have

〈[Pi,[Pi,[Pj ,[Pj ,	0]]]]〉0 = 0.

The remaining terms in Eq. (53) are evaluated by means of
Eqs. (A44) and (B16).

IV. RESULTS AND DISCUSSION

In Tables I–III the results for the self-energy effect on
the states of hydrogenlike atoms with the principal number
n ranging from 2 to 10, the orbital quantum number l ranging
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TABLE I. Result for the scaled energy function F (Zα,n,lj ) for low-lying S and P states of hydrogenlike atoms obtained by various
methods. For the S states the results for the difference F (α,n,0) − F (α,1,0) are given. The numerical results are taken from Ref. [17] for
Z = 1–5 and from Ref. [16] for Z = 10–30. The results obtained by means of Eq. (8) are taken from Ref. [12] for the S states, and from
Ref. [13] for the P states.

State Z This paper Numerical Eq. (8)

2s − 1s 1 0.23002947 0.23003154 0.23003040
5 0.23302946 0.233233342 0.23309401

10 0.23887771 0.24028 0.23917098
20 0.25130292 0.260392 0.25216758

2p1/2 1 −0.1263965908 −0.12639637 −0.12639773
5 −0.1227963730 −0.12277494 −0.12292993

10 −0.1149935477 −0.11483 −0.11601084
20 −0.09335685260 −0.092519 −0.10100723
30 −0.06613153145 −0.0643302 −0.091200090

2p3/2 1 0.1234982498 0.12349856 0.12349766
5 0.1255937276 0.12562330 0.12552595

10 0.1301591823 0.13036 0.12965824
20 0.1426153201 0.143839 0.13905128
30 0.1571646516 0.160647 0.14614776

3s − 1s 1 0.28881828 0.28882057 0.28881946
5 0.29154791 0.29175898 0.29163760

10 0.29682921 0.2982 0.29729576
20 0.30772309 0.3170 0.30974380

3p1/2 10 −0.1022064452 −0.1021 −0.10341245
20 −0.07688197377 −0.0760 −0.085950786
30 −0.04471096715 −0.0430 −0.074424272

3p3/2 10 0.1418508156 0.1421 0.14125930
20 0.1556877238 0.1572 0.15148550
30 0.1718101044 0.1761 0.15882288

4s − 1s 1 0.31259262 0.31259475 0.31259391
5 0.31492838 0.31513180 0.31503165

10 0.31939228 0.3253 0.31996353
20 0.32820025 0.3371 0.33100244

4p1/2 10 −0.09650194613 −0.0963 −0.097772470
20 −0.06983105648 −0.0690 −0.079374572
30 −0.03588964739 −0.0344 −0.067119757

4p3/2 10 0.1471460730 0.1477 0.14652274
20 0.1593951831 0.1630 0.15703404
30 0.1781270585 0.1827 0.16444487

5s − 1s 10 0.33036787 0.3316 0.33100744
20 0.33748936 0.3460 0.34082239

5p1/2 10 −0.09340485640 −0.0933 −0.094704519
20 −0.06609711910 −0.0652 −0.075850139
30 −0.03133848193 −0.0299 −0.063219658

5p3/2 10 0.1500435251 0.1502 0.14940540
20 0.1645702624 0.1662 0.16003876
30 0.1814730287 0.1861 0.16746710

from 0 to 3, and nuclear charges Z ranging from 1 to 30 are
presented.

As follows from discussion in Sec. I the error of the present
calculation is of the order α(Zα)7 for the normalized difference
of the S states and for the P states and of the order α(Zα)8

for the states with the angular quantum number l greater than
1. However, some of the terms in Eq. (49) are treated with
greater accuracy than α(Zα)6. Therefore, the present method
should yield the results that are closer to the accurate numerical
results obtained by partial wave expansion [16,17] than the

results obtained in Refs. [12,13] by expanding the self-energy
in Zα, Eq. (8). Looking at Table I one can see that this is
indeed true for P states, but not for the normalized difference
of the S states, where the present method yields results that
are slightly smaller than both the numerical and perturbative
results. However, whatever is the cause of the difference, it is
not significant. There is no need at this moment and for some
time to come to further improve the accuracy of the result
achieved either here or in Refs. [12,17] for the atoms with low
nuclear charge. The observable difference of the self-energies
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TABLE II. Results for the self-energy function F (Zα,n,lj ) for Z = 1, n = 3–10, l = 0–3, and j = 1/2–7/2. For the S states the results
for the difference F (α,n,0) − F (α,1,0) are given. The results obtained by means of Eq. (8) are taken from Ref. [12] for the S states, from
Ref. [15] for the 5F states, from Ref. [14] for the 9D–10D states, and from Ref. [13] for the other states.

State Low-energy part High-energy part Total Eq. (8)

3p1/2 0.05123609530 −0.1666954947 −0.1154593994 −0.11546075
3p3/2 0.051087381807 0.08332663172 0.1344140135 0.13441331
3d3/2 0.00698293324 −0.0500012647 −0.0430183315 −0.0430183314
3d5/2 0.00698282332 0.0333333531 0.0403161764 0.040315728

4p1/2 0.05627005992 −0.1666959457 −0.1104258857 −0.11042730
4p3/2 0.05611336273 0.08332639032 0.1394397530 0.13943901
4d3/2 0.00899544159 −0.0500014034 −0.0410059618 −0.0410059616
4d5/2 0.00899532578 0.0333334209 0.0423287466 0.042328177
4f5/2 0.00231274299 −0.0238097629 −0.0214970199 −0.021497015
4f7/2 0.00231272472 0.0178571748 0.0201698996 0.020169900

5s − 1s 0.32456588 −0.000011833054 0.32455404 0.32455540
5p1/2 0.05904972297 −0.1666960022 −0.1076462793 −0.10764773
5p3/2 0.05888941069 0.08332624055 0.1422156512 0.14221489
5d3/2 0.0101422290 −0.0500014448 −0.0398592158 −0.0398592155
5d5/2 0.0101421091 0.0333334421 0.0434755512 0.043474936
5f5/2 0.00293755438 −0.0238097949 −0.0208722406 −0.0208722397
5f7/2 0.00293753396 0.0178571948 0.0207947288 0.0207947296

6s − 1s 0.33142715 −0.000011371781 0.33141578 0.33141718
6p1/2 0.06075659360 −0.1666959508 −0.1059393572 −0.10594083
6p3/2 0.06059436226 0.08332613865 0.1439205009 0.14391973
6d3/2 0.0108710371 −0.0500014549 −0.0391304178 −0.0391304174
6d5/2 0.0108709134 0.0333334481 0.0442043616 0.044203727
6f5/2 0.00333764381 −0.0238098084 −0.0204721646
6f7/2 0.00333762227 0.0178572035 0.0211948257

7s − 1s 0.33572642 −0.000010994923 0.33571542 0.33571685
7p1/2 0.06188266713 −0.1666958704 −0.1048132033 −0.10481469
7p3/2 0.06171930504 0.08332606486 0.1450453699 0.14504460
7d3/2 0.0113671876 −0.0500014536 −0.0386342660 −0.0386342655
7d5/2 0.0113670606 0.0333334485 0.0447005091 0.044699866
7f5/2 0.00361357688 −0.0238098142 −0.0201962373
7f7/2 0.00361355458 0.0178572073 0.0214707619

8s − 1s 0.33859759 −0.000010686353 0.33858691 0.33858835
8p1/2 0.06266557694 −0.1666957862 −0.1040302093
8p3/2 0.06250149745 0.08332600896 0.1458275064
8d3/2 0.0117216955 −0.0500014480 −0.0382797525 −0.0382797518
8d5/2 0.0117215656 0.0333334466 0.0450550122 0.0450543659
8f5/2 0.00381363141 −0.0238098164 −0.0199961850
8f7/2 0.00381360854 0.0178572090 0.0216708175

9s − 1s 0.34060985 −0.000010430983 0.34059941
9p1/2 0.06323228165 −0.1666957066 −0.1034634249
9p3/2 0.06306772116 0.08332596516 0.1463936863
9d3/2 0.0119844041 −0.0500014408 −0.0380170367 −0.0380170366
9d5/2 0.0119842719 0.0333334438 0.0453177157 0.0453177160
9f5/2 0.00396403419 −0.0238098169 −0.0198457827
9f7/2 0.00396401084 0.0178572096 0.0218212204

10s − 1s 0.34207453 −0.000010217001 0.34206431
10p1/2 0.06365584559 −0.1666956339 −0.1030397883
10p3/2 0.06349094851 0.08332592992 0.1468168784
10d3/2 0.0121847643 −0.0500014333 −0.0378166690 −0.0378166678
10d5/2 0.0121846301 0.0333334408 0.0455180709 0.0455180723
10f5/2 0.00408030566 −0.0238098165 −0.0197295108
10f7/2 0.00408028192 0.0178572095 0.0219374915
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J. ZAMASTIL AND V. PATKÓŠ PHYSICAL REVIEW A 86, 042514 (2012)

TABLE III. Results for the self-energy function F (Zα,n,lj ) for Z = 10–30, n = 3–10, l = 0–3, and j = 1/2–7/2.

State Z = 10 Z = 20 Z = 30

3d3/2 −0.0427179723 −0.0420823419 −0.0412544602
3d5/2 0.0407323104 0.0417137667 0.0431019645

4d3/2 −0.0406712184 −0.0399624855 −0.0390316449
4d5/2 0.0427988310 0.0439098686 0.0454864309
4f5/2 −0.0214413415 −0.0213183565 −0.0211555427
4f7/2 0.0202506194 0.0204496148 0.0207395023

5d3/2 −0.0395056287 −0.0387538976 −0.0377592207
5d5/2 0.0439701187 0.0451397241 0.0468013236
5f5/2 −0.0208109431 −0.0206763255 −0.0204988563
5f7/2 0.0208859960 0.0211115123 0.0214407403

6s − 1s 0.33646424 0.34228099
6p1/2 −0.09152245608 −0.06386341969 −0.02866483271
6p3/2 0.1518120874 0.1664470985 0.1834670953
6d3/2 −0.0387650529 −0.0379851595 −0.0369473916
6d5/2 0.0447118426 0.0459121250 0.0476181050
6f5/2 −0.0204073538 −0.0202650016 −0.0200771519
6f7/2 0.0212916826 0.0215311862 0.0218811026

7s − 1s 0.34016445 0.34496208
7p1/2 −0.09028882430 −0.06241509348 −0.02695387655
7p3/2 0.1529737796 0.1676693504 0.1847521660
7d3/2 −0.0382609103 −0.0374612730 −0.0363927129
7d5/2 0.0452154962 0.0464334427 0.0481648359
7f5/2 −0.0201290318 −0.0199811675 −0.0197856080
7f7/2 0.0215708918 0.0218185366 0.0221804457

8s − 1s 0.34255769 0.34654410
8p1/2 −0.08943500943 −0.06142008301 −0.02578997709
8p3/2 0.1537787026 0.1685102685 0.1856283268
8d3/2 −0.0379006583 −0.0370864941 −0.0359949816
8d5/2 0.0455746675 0.0468034719 0.0485503713
8f5/2 −0.0199272499 −0.0197752692 −0.0195737852
8f7/2 0.0217730018 0.0220257196 0.0223950641

9s − 1s 0.34418136 0.34750949
9p1/2 −0.08881893254 −0.06070588271 −0.02496088841
9p3/2 0.1543597058 0.1691135696 0.1862518076
9d3/2 −0.0376336445 −0.0368083944 −0.0356992008
9d5/2 0.0458404213 0.0470762214 0.0488330185
9f5/2 −0.0197755445 −0.0196203819 −0.0194142218
9f7/2 0.0219247615 0.0221808015 0.0225549855

10s − 1s 0.34532463 0.34810919
10p1/2 −0.08835949620 −0.06017526145 −0.02434859620
10p3/2 0.1547929114 0.1695609671 0.1867106947
10d3/2 −0.0374299512 −0.0365959944 −0.0354728156
10d5/2 0.0460428455 0.0472833114 0.0490466341
10f5/2 −0.0196582588 −0.0195005693 −0.0192906366
10f7/2 0.0220419641 0.0223002626 0.0226777126

can be written as

�En − �E1 = n3�En − �E1

n3
+

(
1

n3
− 1

)
�E1. (70)

The difference between the result for the normalized difference
obtained here and in Ref. [17] amounts to the difference of
210.5 Hz and 69 Hz for 2S − 1S and 3S − 1S transitions
in hydrogen, respectively. This is much smaller than the
difference between the results in Ref. [22] and in Ref. [17]
for the ground-state self-energy �E1 that amounts to the
difference of 15 kHz for 2S − 1S transition in hydrogen. Also

this is much smaller than the uncertainty of 82 kHz for 2S − 1S

transition in hydrogen arising from the uncertainty about the
proton radius [25].

Further, it can be seen from Table I that for the normalized
difference of the S states the agreement between the present
method and the partial wave expansion goes slowly down
with the increase of the nuclear charge Z. The decrease of
the accuracy of the present method is in this case roughly
the same as that of the series (8) truncated after the α(Zα)6

term. On the other hand, for the P states, the decrease of the
accuracy of the present method is significantly slower than
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that of the series (8). To sum up, the present method yields
quantitative results for the self-energy effect up to Z about 20
for the normalized difference of the S states and up to Z about
30 for the P states. This is remarkable, since for Z about 30
we are for the P states clearly out of the perturbative region.
The accuracy and reliability of the present method for the
atoms with higher nuclear charges can be further improved by
avoiding the separations (30) and (31), expansions (32), and
nonrelativistic approximation of the reference wave function;
see results in Ref. [21]. The calculation is then, however,
somewhat more involved.

In Table II the results for the self-energy effect in hydrogen
for the excited states are presented. For the states where the
effect was calculated earlier by means of the expansion in Zα,
Eq. (8), the agreement between the present and perturbative
method is for all practical purposes more than sufficient. We
note that we achieved calculating the effect for the excited
states whose radial wave functions have more than seven
nodes.

In Table III the results for the self-energy effect for
hydrogenlike atoms with nuclear charge between Z = 10 and
Z = 30 on the excited states are presented. For S and P states
their accuracy can be judged from the comparison between
the results of the present method and accurate numerical
evaluations [16] in Table I for low-lying states. One can see
from Table III that for D and F states the results change only
slowly with the increase of the nuclear charge. Clearly, for
these states for Z = 30 we are still at the perturbative region.
Therefore, the accuracy of the results for D and F states will
be even higher than that for S and P states.

V. CONCLUSIONS

In this paper we suggested the method for evaluation of the
self-energy of the bound electron for the excited states. The
method was applied to the states with n = 2–10, l = 0–3, and
Z = 1–30. In the cases that were already considered in the
literature a very good agreement with previous calculations
was found, especially for the atoms with lower nuclear charges.
These results can be used for the determination of nuclear
masses and for the improvement of the accuracy of the Rydberg
constant by high-precision spectroscopy in the way proposed
in Ref. [15].

In comparison with the calculation based on the expansion
in powers of Zα [12–14] the decline of the accuracy and
reliability of the present method with the increase of the
nuclear charge Z is much slower. Further, the numerical part
of the calculation is easier to do since for the S states the
behavior of the integrals encountered here is much better than
the behavior of the integrals encountered in Ref. [12]. Also,
the spectral decomposition of the Hamilton operator used here
for the evaluation of the low-energy term is somewhat simpler
than the approach followed in Refs. [12–14].

In comparison with the calculation based on the partial
wave expansion [15–20] the performance of the method
improves with the increase of the principal quantum number
n and decrease of the nuclear charge Z. The difficulty of
the present calculation, as with any other calculation, grows
with the increase of the number of nodes of the reference
wave function ψ . However, the difficulty of the calculation

does not increase with the increase of the angular quantum
number l. In either case there are no problems associated
with the numerical stability of the method; compare this with
discussion in Ref. [15]. The present method involves just a
few one-dimensional integrals over the continuous part of the
hydrogen atom spectrum. The same holds for the approach
based on the expansion in Zα followed in Refs. [12–14].
This should be contrasted with the partial wave expansion
that involves three-dimensional numerical integration that has
to be done, especially for the atoms with low nuclear charges,
for a huge number of partial waves [17].

In comparison with both of the approaches followed in
Refs. [12–20] the present method avoids the explicit separation
of the integration over four-momentum of virtual photon.
Further, this integration is done in the way that preserves
manifest Lorentz invariance.

Bearing in mind the foregoing arguments we believe that
the method presented in this paper is of some interest and its
extension to higher loops [26] and many-electron atoms [27]
will lead to further progress in bound-state QED.
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APPENDIX A: EVALUATION OF LOW-ENERGY PART

The first two parts of this appendix show how to get from
Eqs. (40) to (49). The remaining parts are devoted to the
practical evaluation of Eq. (49).

1. Simplifications due to the Dirac equation

Multiplicating the first-order Dirac equation (3) by (γ · 	 +
m) yields the second-order Dirac equation

Hψ = 0. (A1)

It follows from the definition (15) and the last equation that if
φ(H = 0) = 0, then

D1[φ]H01=0 = φ(H12)

H12
(A2)

and generally

Dn[φ]H01=0 = Dn−1

[
φ(H )

H

]
. (A3)

If further also [φ(H )/H ]H=0 = 0, then

D2[φ]H01=H23=0 = φ(H12)

H 2
12

, (A4)

and generally

Dn[φ]H01=Hn,n+1=0 = Dn−2

[
φ(H )

H 2

]
. (A5)

If [φ(H )/H 2]H=0 = 0, then

D1[φ]H01=H12=0 = 0. (A6)

These identities lead to certain simplifications when evaluating
Eq. (40) and will be used in the following part.
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2. Nonrelativistic approximation

Further, we will discard in Eq. (40) some of the con-
tributions of higher order than α(Zα)6. There are several
simplifications resulting from this.

By means of the identity

φ(H ) = (γ · 	 − m)
φ(H )

H
(γ · 	 + m) (A7)

and the Dirac equation (3) the first term in Eq. (40) can be
rewritten into the form

〈γμφ0	μ〉 = 1

m

〈
	μφ0	μ + γρ[	μ,	ρ]

φ0

H
γν[	μ,	ν]

〉
.

(A8)

Now, the second term on the right member of the last
equation can be evaluated with sought accuracy between the
Schrödinger wave function ψ0 instead of the Dirac wave
function ψ and the exact operator H can be replaced by the
approximation (51),

1

m

〈
γρ[	μ,	ρ]

φ0

H
γν[	μ,	ν]

〉

� 1

2m3
〈PiHφ0Pi〉0 − 1

2m

〈
[σi,σj ][Pi,	0]

φ0

H
[Pj ,	0]

〉
0

.

(A9)

The second term on the right member of Eq. (A9) corresponds
to the interaction of the electron spin with the electromagnetic
field [12]. Such interaction also arises from the term

−1

8
〈{γν,[γμ,[γμ,ενφ̃

′
1 + (	 − ε)1νD1[φ̃1]]]}〉

= −1

8

〈
{γ0,[γμ,[γμ,mφ̃′

1]]} − i

2
{γj ,[Xj,[γμ,[γμ,φ̃1]]]}

〉

� −1

4

〈
2m[γ0γj ,H ]

φ̃′
1

H 2
[γj ,H ] − {γj ,[γμ,[γμ,H ]]} φ̃1

H 2
Pj

〉

� m

〈
[σi,σj ][Pi,	0]

(
− φ̃′

1

H 2
+ 4

φ̃1

H 3

)
[Pj ,	0]

〉
0

, (A10)

where the identities (43),

[γi,H ] = 2[Pi,	0]γ0, [γ0γi,H ] = [�i,�j ][Pj ,	0],

(A11)

and

{γj ,[γμ,[γμ,H ]]} = −8γ0[�i,�j ][Pi,	0] (A12)

were used.
The second and third terms in Eq. (40) can be rewritten into

the form

〈γμ((	 − ε)1λελD1[φ̃′
2] + (	 − ε)1λ(	 − ε)2λD2[φ̃2])	μ〉

= m

〈
	μ

φ̃2

H 2
	μ

〉
+ 〈[γμ,(	 − ε)1λελD1[φ̃′

2]

+ (	 − ε)1λ(	 − ε)2λD2[φ̃2]]	μ〉, (A13)

where in the first term on the right member we used the Dirac
equations (3) and (A4).

The second term on the right member of Eq. (A13) can again
be evaluated with sought accuracy between the Schrödinger

wave function ψ0 instead of the Dirac wave function ψ and
with the approximation (51),

〈[γμ,(	 − ε)1λελD1[φ̃′
2] + (	 − ε)1λ(	 − ε)2λD2[φ̃2]]	μ〉

�
〈[

γμ,m

(
H + m2 − Em

E
φ̃′′

2 + i

2E
[ �X · �P ,φ̃′

2]

)

+ 1

8
[Xi,[Xi,φ̃2]] − 3

4
φ̃′

2

]
	μ

〉

� − 1

m

〈[
Pj ,m(	0 − m)1D1[φ̃′

2]

− 1

2
φ̃′

2 − (Pi)1(Pi)2D2[φ̃2]

]
Pj

〉
0

= − 1

m

〈
Pj

(
m(	0 − m)1D1[φ̃′

2] − 1

2
φ̃′

2

+ 1

8
[Xi,[Xi,φ̃2]] − 3

4
φ̃′

2

)
Pj

〉
0

+ 2

〈
(	0 − m)

(
m

φ̃′
2

H
(	0 − m) − i

2

[
Xi,

φ̃2

H

]
Pi

)〉
0

,

(A14)

where in the first equality the identities (46) and (48) were
used. In the second equality we used the approximation

[
γj ,

∫ 1

0

dy

m2y − H

]
� γ0

m

[
Pj ,

∫ 1

0

dy

m2y − H

]
(A15)

following from the approximation

[γj ,H ] � γ0

m
[Pj ,H ]. (A16)

The last approximation follows from the identity

[γμ,H ] = 2[	μ,	λ]γλ (A17)

for μ = j and approximation (51). When pushing Pj to the
left, we used the identitities

[Xj,[Xj,[Pk,O]]] = [Pk,[Xj,[Xj,O]]], (A18)

[ �X · �P ,[Pk,O]] = [Pk,[ �X · �P ,O] + iO] (A19)

valid for any operator O. In the third equality in Eq. (A14) the
Schrödinger limit

Hψ0 � ((2m(	0 − m) − �P · �P )ψ0 = 0 (A20)

of the iterated Dirac equation (A1) and the identities (A2) and
(A3) following from it were used.
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Furthermore, using Eqs. (A4), (A5), (43), and (46) we get for the sum of the fourth, fifth, and sixth terms in Eq. (40)

m〈εμεν(	 − ε)1μ(	 − ε)2νD2[φ̃′′
4 ] + (ελgμν + εμgλν + ενgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3νD3[φ̃′

4]

+ (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3ρ(	 − ε)4νD4[φ̃4]〉

= m

〈
εμεν(	 − ε)μ

φ̃′′
4

H 2
(	 − ε)ν + (ελgμν + εμgλν + ενgμλ)(	 − ε)μ(	 − ε)1λD1

[
φ̃′

4

H 2

]
(	 − ε)ν

+ (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)μ(	 − ε)1λ(	 − ε)2ρD2

[
φ̃4

H 2

]
(	 − ε)ν

〉

� m

〈
m2(	0 − m)

φ̃′′
4

H 2
(	0 − m) − 2m(	0 − m)

i

2

[
Xi,

φ̃′
4

H 2

]
Pi − Pi(	0 − m)1D1

[
φ̃′

4

H 2

]
Pi

+ (δij δkl + δikδjl + δilδjk)Pi

[
−1

8

[
Xk,

[
Xl,

φ̃4

H 2

]]
+ δkl

4

(
φ̃4

H 2

)′]
Pj

〉
0

. (A21)

Finally, using Eqs. (A4) and (A6) we get for the last displayed terms in Eq. (40) with the sought accuracy

〈γν(ενφ̃
′
1 + (	 − ε)1νD1[φ̃1] + εμεν(	 − ε)1μD1[φ̃′′

3 ] + (ελgμν + εμgλν + ενgμλ)(	 − ε)1μ(	 − ε)2λD2[φ̃′
3]

+ (gλρgμν + gμρgλν + gνρgμλ)(	 − ε)1μ(	 − ε)2λ(	 − ε)3ρD3[φ̃3])〉 � −m

〈
Pi

(
φ̃1

m2H
+ φ̃3

′

H 2

)
Pi

〉
0

. (A22)

Insertion of Eqs. (A8)–(A10), (A13), (A14), (A21), and
(A22) into Eq. (40) yields Eq. (49).

3. Spectral decomposition of the second-order
Hamilton operator H

In the case of Coulomb potential (4), there is a complete
set of mutually commuting operators {H,J 2,Jz,K,�} [21,28].
Here J 2 and Jz are the operators of the square and the third
component of the total angular momentum with eigenvalues
j (j + 1) and m, respectively. K and � are the relativistic parity
and the relativistic angular momentum operators [21,28] with
eigenvalues

K = p(j + 1/2), p = ±1, (A23)

and

� = ±
√

(j + 1/2)2 − (Zα)2, (A24)

respectively.
The Hamilton operator (6) can be after scaling

R = r

EZα
, (A25)

put into the form that is, up to additive and multiplicative con-
stants, the same as the Hamilton operator for the nonrelativistic
hydrogen atom [21,28]

H = E2 − m2 − 2(EZα)2

[
1

2

(
p2

r + �(� − 1)

r2

)
− 1

r

]
.

(A26)

Here pr designates the radial momentum pr = −i( ∂
∂r

+ 1
r
).

The eigenstates of the operator (A26) are products of the radial
functions and the eigenstates of the operator �,

Rn,l� (r)|�,K,j,m〉. (A27)

The radial functions Rn,l� are the same as nonrelativistic
hydrogen wave functions except for the fact that l� is not
an integer but equal to

l� = � − 1, � > 0, (A28)

and

l� = −�, � < 0. (A29)

The explicit form of the eigenstates of the operator � reads
[21,28]

|�,K,j,m〉 =
(

c�
1,K |j,m〉p

c�
2,K |j,m〉p

)
, (A30)

where |j,m〉p stands for spherical spinors. The coefficients c

satisfy the relation

c�
2,K = i

Zα
(� − K)c�

1,K (A31)

and are normalized to unity∣∣c�
1,K

∣∣2 + ∣∣c�
2,K

∣∣2 = 1. (A32)

Further, the eigenvalues of the Hamilton operator are E2 −
m2 + (EZα)2

n2 where n = nr + l� + 1, nr = 0,1,2, . . . for a
discrete part of the spectrum. The continuous part is obtained
by the substitution n → −i/ke.

Thus the spectral decomposition of the second-order Hamil-
ton operator H reads

H =
∞∑

n′=l�+1

(
E2 − m2 + (EZα)2

n′2

)
Pn′

+
∫ ∞

0
dke

[
E2 − m2 − (EZα)2k2

e

]
Pke

, (A33)
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where the projector operator on the nth eigenstate reads

Pn′ =
∑

�,K,j,m

Pn′,l�
|�,K,j,m〉〈�,K,j,m|γ0

〈�,K,j,m|γ0|�,K,j,m〉 . (A34)

Here, the radial part of the projector is equal to

〈r|Pn′,l� |r ′〉 = Rn′,l� (r)R∗
n′,l� (r ′). (A35)

The projector operators on the eigenstates of the continuous
part are obtained by the substitution n′ → ke in the last two
equations.

As mentioned above, except for the first term in Eq. (49)
it suffices to replace the projector (A34) by its nonrelativistic
limit

Pn′ �
∑
l,m

Pn′,l|l,m〉〈l,m|, (A36)

where the states |l,m〉 are eigenstates of the operators of the
square and the third component of the orbital momentum with
eigenvalues l(l + 1) and m, respectively.

4. Energy and wave function of the reference state

The energy E of the reference state is obtained by setting
the eigenvalue of the Hamilton operator H equal to zero; see
Eq. (A1):

E = m√
1 + (

Zα
n

)2
. (A37)

The wave function ψ of the reference state is a linear
combination of the functions (A27); while every solution of the
first-order Dirac equation is also a solution of the second-order
Dirac equation, the opposite is not true. The operator �

commutes with the second-order Dirac Hamiltonian, but not
with the first-order Dirac Hamiltonian. Consequently, the
first-order Dirac Hamiltonian mixes the states with different
values of �. The solution of Dirac equation (3) in the case of
Coulomb field (4) thus acquires the form Ref. [28]

ψ± = N±(A±Rn,|�|−(1±1)/2| ± |�|,K,j,m〉
+B±Rn,|�|−(1∓1)/2| ∓ |�|,K,j,m〉), (A38)

where the coefficients A± and B± read

A± =
(

± KE

|�| + m

)
, (A39)

B± = ±EZα

√
n2 − |�|2
n|�| (A40)

and the normalization coefficient is equal to

N± =
(

A2
± + B2

± + 2A±B±
Zα

K

∫
dr r2Rn,|�|Rn,|�|−1

)−1/2

.

(A41)

Either of the possibilities displayed in Eq. (A38) can be taken
as the solution of Dirac equation (3).

5. Radial functions and radial integrals

The radial functions Rn,l(r) appearing in Eq. (A27) satisfy
recurrence relations [see, e.g., Eqs. (22) and (23) of Ref. [29]](

d

dr
+ l + 1

r

)
Rn,l(r) = 1

l
Rn,l(r) +

√
n2 − l2

ln
Rn,l−1(r)

(A42)

and(
d

dr
− l

r

)
Rn,l(r) = − 1

l + 1
Rn,l(r) −

√
n2 − (l + 1)2

(l + 1)n
×Rn,l+1(r). (A43)

By subtracting the last two equations, we obtain
√

n2 − l2

nl
Rn,l−1 +

√
n2 − (l + 1)2

n(l + 1)
Rn,l+1 + (2l + 1)

×
(

1

l(l + 1)
− 1

r

)
Rn,l = 0. (A44)

For example, in case n = l + 1 one gets

Rl+1,l−1(r) = −√
2l + 1

(
1 − l(l + 1)

r

)
Rl+1,l(r). (A45)

By means of the recursive relation (A44) the radial integrals∫ ∞
0 dr r2+pRn,lRn′,l′ needed for evaluation of Eq. (49) are

reduced to the integrals of the form
∫ ∞

0 dr r2+pRl+1,lRn′,l′ .
The explicit formula for these integrals is (see, e.g., [30])∫ ∞

0
dr r2+pRl+1,l(r)Rn′,l′ (r)

= Cl+1,lCn′,l′�(l′ + l + p + 3)

(
1

l + 1
+ 1

n′

)−(l′+l+p+3)

×F

(
−n′ + l′ + 1,l + l′ + p + 3,2l′

+ 2,
2/n′

1/(l + 1) + 1/n′

)
, (A46)

where F (a,b,c,z) stands for the hypergeometric function. The
integrals with the functions of the continuous spectrum are
obtained from the above formula by the replacement of n′ →
−i/ke and Cn′,l′ by Cke,l′ . The normalization constants for
discrete and continuous parts of the spectrum are

Cn,l = 2

n2

√
(n + l)!

(n − l − 1)!

(2/n)l

(2l + 1)!
(A47)

and

Cke,l =
√

2

π
kee

π/(2ke)|�(l + 1 − i/ke)| (2ke)l

(2l + 1)!
, (A48)

respectively.

6. Angular-spinor integration

The only angular-spinor integration that is needed to
perform for the evaluation of expressions in Eq. (49) are the
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integrals ∑
m′

±〈j,m|ni |j ′,m′〉±±〈j ′,m′|ni |j,m〉±

= 2j + 3

4(j + 1)
δj,j ′−1 + 2j − 1

4j
δj,j ′+1, (A49)

∑
m′

∓〈j,m|ni |j ′,m′〉±±〈j ′,m′|ni |j,m〉∓ = 1

4j (j + 1)
δj,j ′ ,

(A50)∑
m′

〈l,m|ni |l′,m′〉〈l′,m′|ni |l,m〉

= l

2l + 1
δl′,l−1 + l + 1

2l + 1
δl′,l+1, (A51)

and ∑
m′

〈l,m|ninj |l′,m′〉〈l′,m′|ninj |l,m〉

= δl′,l
2l2 + 2l − 1

(2l − 1)(2l + 3)
+ δl′,l−2

l(l − 1)

(2l − 1)(2l + 1)

+ δl′,l+2
(l + 1)(l + 2)

(2l + 3)(2l + 1)
. (A52)

7. Action of the momentum operator on the reference states

For the evaluation of the first term in Eq. (49) it is
advantageous to use the identity

〈Pif (H )Pi〉 = 1
4 〈XiH

2f (H )Xi〉 (A53)

following from Eqs. (42) and (A1) and then use Eqs. (A49)
and (A50).

For the evaluation of the sixth term and parts of the third,
fourth, and seventh terms in Eq. (49) we need to determine
the action of the momentum operator on the Schrödinger wave
functions:

〈l + 1,m′|Pi |ψ〉 = (−imZα)〈l + 1,m′|ni |l,m〉
(

d

dr
− l

r

)
Rn,l

= (imZα)〈l + 1,m′|ni |l,m〉

×
(

1

l + 1
Rn,l +

√
n2 − (l + 1)2

(l + 1)n
Rn,l+1

)
(A54)

and

〈l − 1,m′|Pi |ψ〉
= (−imZα)〈l − 1,m′|ni |l,m〉

(
d

dr
+ l + 1

r

)
Rn,l

= (−imZα)〈l − 1,m′|ni |l,m〉

×
(

1

l
Rn,l +

√
n2 − l2

ln
Rn,l−1

)
. (A55)

Here we used Eqs. (5) and (20) of Ref. [29] and recurrence
relations for radial functions, Eqs. (A42) and (A43). Using
further orthogonality of the radial functions with the same

orbital number l and Eq. (A51) we obtain

〈Pif (H )Pi〉0 = (mZα)2

2l + 1

{
1

l + 1
〈f (Hl+1)〉0 + 1

l
〈f (Hl−1)〉0

}
,

(A56)

where the radial Hamiltonians read

Hl = 2m(	0 − m) − P 2
R + l(l + 1)

R2
. (A57)

For the S states only the first term in curly brackets on the right
member of Eq. (A56) is to be taken.

When evaluating the effect of the interaction of the spin
with electromagnetic field, the second term in Eq. (49), we
write

〈[σi,σj ][Pi,	0]g(H )[Pj ,	0]〉0

= − 1

4m2
〈[σi,σj ]Pig(H )H 2Pj 〉0 (A58)

and

〈[σi,σj ]Pif (H )Pj 〉0

= 2〈�σ · �Pf (H )�σ · �P − Pif (H )Pi〉0 = −2(mZα)2

2l + 1

×
{(

1

l + 1
〈f (Hl + 1)〉0 − l + 1

l2
〈f (Hl − 1)〉0

)
δp,−1

+
(

1

l
〈f (Hl−1)〉0 − l

(l + 1)2
〈f (Hl+1)〉0

)
δp,1

}
, (A59)

where

l = j − p

2
. (A60)

For the S states the result is zero. Here the identity

�σ · �P = −i(mZα)�σ · �n
(

∂

∂r
− �σ · �L

r

)
(A61)

and equations for spherical spinors

�σ · �n|j,m〉p = −|j,m〉−p (A62)

and

�σ · �L|j,m〉p = [
p
(
j + 1

2

) − 1
]|j,m〉p (A63)

have been used.
To evaluate the expression 〈PiXjf (H )XjPi〉0 that arises in

the third and fourth term in Eq. (49) we use an identity

iXiPj = njnir
∂

∂r
− 1

4
[L2,ninj ] + 3ninj − δij

2
+ i

2
εijkLk,

(A64)
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Schrödinger limit of Dirac equation Hlψ0 = 0, and Eq. (A52).
One then gets

〈PiXjf (H )XjPi〉0

= 2l2 + 2l − 1

(2l − 1)(2l + 3)

〈
d

dr
rf (Hl)r

d

dr

〉
0

+ (l + 1)(l + 2)

(2l + 3)(2l + 1)

〈(
d

dr
r − l

)
f (Hl+2)

(
r

d

dr
− l

)〉
0

+ l(l − 1)

(2l − 1)(2l + 1)

〈(
d

dr
r + l + 1

)

× f (Hl−2)

(
r

d

dr
+ l + 1

)〉
0

. (A65)

It follows from the last two equations that

〈PiXjf (H )XjPi〉0 = 〈PjXif (H )XjPi〉0. (A66)

The action of the operator f (Hl)r d
dr

on the reference wave
function ψ , that arises in the first term on the right member of
Eq. (A65) and the fourth and seventh terms in Eq. (49), can be
most easily evaluated by means of Eq. (47):

f (Hl)r
d

dr
ψ = −2

f (Hl)

Hl

E
Zα

R
ψ, (A67)

provided f (Hl )
Hl

|Hl=0 = 0. In the second and third terms of
Eq. (A65) we use Eqs. (A43) and (A42), respectively. Finally,
the fifth term in Eq. (49) is evaluated by means of Eqs. (A54),
(A55), and (A51), and either Eq. (A67) or equation

d

dr
Rn,l = 1

(2l + 1)n
(
√

n2 − l2Rn,l−1

−
√

n2 − (l + 1)2Rn,l+1). (A68)

The last equation follows from adding Eq. (A42) multiplied
by l and Eq. (A43) multiplied by l + 1.

In this way all the terms in Eq. (49) involving action of the
momentum or radial momentum operators on the reference
wave function can be reduced to the integrals of the form∫ ∞

0 dr r2+pRn,lRn′,l′ . As described above these are evaluated
by means of Eqs. (A44) and (A46).

APPENDIX B: EVALUATION OF HIGH-ENERGY PART

In the first part of this Appendix it is shown how to get from
Eqs. (41) to (53). The second part deals with the reduction of
the reference wave function to the upper components.

1. Evaluation of averages

Equation (41) is evaluated by means of repeated use of the
Dirac equations (3) and (A1) and an operator identity

ACB + BCA = ABC + CBA − [A,[B,C]]. (B1)

For the special case A = B we get from Eq. (B1)

ACA = 1
2 ({A2,C} − [A,[A,C]]). (B2)

When evaluating the averages of the operators in Eq. (41) we
first derive the covariant result and only then apply it to the
case of Coulomb field (4).

In the following we shall need the identity following from
Eq. (6):

〈[	ν,[	ν,H ]]〉 = 2〈m[	ν,[	ν,	λ]]γλ + [	λ,	ν][	λ,	ν]〉
= −2〈m[Pi,[Pi,	0]]γ0 + 2[Pi,	0][Pi,	0]〉.

(B3)

The individual terms in Eq. (41) can then be evaluated as
follows:

1

m2
〈	̃2〉 = − 1

4m2
〈[γμ,γν][	μ,	ν]〉 = − 1

m2
〈γ0γj [Pj ,	0]〉,

(B4)

1

6m3
〈	̃2	νγν〉

= 1

6m3

〈(
3

2
{	̃2,	ν} − 1

2
[	μ,[	μ,	ν]]

)
γν

〉

= − 1

8m2
〈[γμ,γν][	μ,	ν]〉 − 1

12m3
〈[	μ,[	μ,	ν]]γν〉

= − 1

2m2
〈γ0γi[Pi,	0]〉 + 1

12m3
〈[Pi,[Pi,	0]]γ0〉, (B5)

− 1

4m3
〈{γμ,{	μ,H }}〉 = 1

4m3
〈[	μ,[γμ,H ]]〉

= 1

2m3
〈[	μ,[	μ,	λ]]γλ〉

= − 1

2m3
〈[Pi,[Pi,	0]]γ0〉, (B6)

1

16m3
〈{γν,[γμ,{[γμ,H ],	ν}]}〉

= 1

8m3
〈{γν,[γμ,γλ]}{[	μ,	λ],	ν}〉

= 1

8m3
〈[γν,[γμ,γλ]][	μ,	λ]	ν

+ [[γμ,γλ],γν]	ν[	μ,	λ] + 4m[γμ,γλ][	μ,	λ]〉

= − 1

m3
〈[	ν,[	ν,	λ]]γλ〉 + 1

2m2
〈[γμ,γν][	μ,	ν]〉

= 1

m3
〈[Pi,[Pi,	0]]γ0〉 + 2

m2
〈γ0γi[Pi,	0]〉, (B7)

− 1

6m4
〈	̃4〉 = − 1

6m4

〈
3	̃2	̃2 + 1

2
[	μ,	ν][	μ,	ν]

− [	μ,[	μ,	̃ν	̃ν]]
〉

= − 1

6m4

〈
3

16
[γλ,γμ][	λ,	μ][γρ,γν][	ρ,	ν]

+ 1

2
[	λ,	μ][	λ,	μ]

−
[
	λ,

[
	λ,H − 1

4
[γρ,γν][	ρ,	ν]

]]〉

= − 1

6m4
〈2m[Pi,[Pi,	0]]γ0 + 6[Pi,	0][Pi,	0]

− γ0γi[Pj ,[Pj ,[Pi,	0]]]〉, (B8)
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1

24m5
〈{γν,	̃2	νH }〉

= 1

24m5
〈{γν,2(H	̃2	ν + 	ν	̃

2H + {	̃2,{	ν,H }})
−{	ν,[	λ,[	λ,H ]]} − {H,[	λ,[	λ,	ν]]}
− {[	λ,H ],[	λ,	ν]}}〉

� 1

12m5
〈−8[	μ,	ν][	μ,	ρ]γρ	ν − 2m[	μ,[	μ,H ]]

+ [	μ,[	μ,[	ν,[	ν,	ρ]]]]γρ〉

� 1

12m5
〈4m2[Pi,[Pi,	0]]γ0 + 16m[Pi,	0][Pi,	0]

+ [Pi,[Pi,[Pj ,[Pj ,	0]]]]γ0〉, (B9)

− 1

60m5
〈	̃4	νγν〉

� − 1

60m5

〈
5m	̃4 + 1

2
[	μ,[	μ,[	λ,[	λ,	ν]]]]γν

〉

= − 1

60m5
〈5m	̃4 + 1

2
[Pi,[Pi,[Pj ,[Pj ,	0]]]]γ0〉, (B10)

− 1

96m5
〈{γν,[γμ,[γμ,	̃2	νH ]]}〉

� 1

12m5
〈m[	μ,[	μ,[	ν,	ρ]]][γν,γρ]

− 2[	μ,[	μ,[	ν,[	ν,	ρ]]]]γρ〉

= − 1

6m5
〈2m[Pi,[Pi,[Pj ,	0]]]γ0γj

+ [Pi,[Pi,[Pj ,[Pj ,	0]]]]γ0〉, (B11)

− 1

180m7
〈{	̃4	νH,γν}〉 � − 1

15m6
〈	̃4H 〉, (B12)

〈	̃4H 〉
� 〈−5[	μ,H ][	μ,H ] + 	ρ[	μ,[	μ,[	ν,[	ν,	ρ]]]]〉
� 〈20m2[Pi,	0][Pi,	0] + m[Pi,[Pi,[Pj ,[Pj ,	0]]]]〉,

(B13)

1

45m6
〈	̃6〉 � 1

45m6

〈
− 15

2
[	μ,H ][	μ,H ]

+ 3	ρ[	μ,[	μ,[	ν,[	ν,	ρ]]]]
〉

� 1

45m6
〈30m2[Pi,	0][Pi,	0]

+ 3m[Pi,[Pi,[Pj ,[Pj ,	0]]]]〉, (B14)

and
1

630m7
〈	̃6	νγν〉 � 1

90m6
〈	̃6〉. (B15)

By inserting Eqs. (B4)–(B15) into Eq. (41) we get Eq. (53).

2. Reduction of the reference wave function
to the upper components

Using the solution of the Dirac equation (A38), the first
term in Eq. (53) can be evaluated exactly:

〈γ0γi[Pi,	0]〉

=−(EZα)2N2
±

[
(Zα)2

K

(
A2

±

∫ ∞

0
dr R2

n,|�| − 1
2 (1±1) +B±

∫ ∞

0
dr R2

n,|�| − 1
2 (1∓1)

)
+ 2A±B±Zα

∫ ∞

0
dr Rn,|�|−1Rn,|�|

]
. (B16)

Except for this first term, the expressions in Eq. (53) are for the states with j = 1/2 divergent. However, when the Dirac wave
function is reduced to the upper components with the accuracy up to the order (Zα)3 then Eq. (53) yields a finite result for the
normalized difference of the S states and for the P states.

To reduce the wave function to the upper components we write

ψ = e−SψFW, (B17)

where ψFW contains the upper components only. The operator S is given as (see, e.g., [12])

S � �γ · �P
2m

− γ0 �γ · [ �P ,	0]

4m2
− �γ · �PP 2

6m3
. (B18)

Let O be an operator at least of the order (Zα)3. With accuracy up to the order (Zα)6 we get [recall Eq. (57) for notation used]

〈O〉 = 〈eSγ0Oe−S〉FW �
〈
O + [S,γ0O] + 1

2!
[S,[S,γ0O]] + 1

3!
[S,[S,[S,γ0O]]]

〉
FW

. (B19)

To reduce the wave function to the upper components with needed accuracy, we note that the terms 〈γ0 �γ · [ �P ,	0]〉,
〈γ0[Pj ,[Pj ,	0]]〉, and 〈[Pk,[Pk,[Pj ,	0]]]γ0γj 〉 in Eq. (53) are at least of the order (Zα)3, (Zα)4, and (Zα)5, respectively.

Using Eqs. (B18) and (B19) we get with the accuracy at least of the order (Zα)6 Eqs. (55), (56), and

〈γ0 �γ · [ �P ,	0]〉 �
〈

1

2m
[ �γ · �P ,[ �γ · �P ,	0]]

〉
FW

+
〈

1

3!(2m)3
[ �γ · �P ,[ �γ · �P ,[ �γ · �P ,[ �γ · �P ,	0]]]]

− 1

6m3
[ �γ · �PP 2,[ �γ · �P ,	0]] − 1

4m2
[γ0 �γ · �P ,[ �γ · �P ,	0]]

〉
0

. (B20)
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Inserting

〈[ �γ · �P ,[ �γ · �P ,[ �γ · �P ,[ �γ · �P ,	0]]]]〉0 = 4〈[Pj ,[Pj ,	0]]P 2 + m[Pj ,	0][Pj ,	0] + [σk,σj ][Pj ,	0]PkP
2〉0, (B21)

〈[ �γ · �PP 2,[ �γ · �P ,	0]]〉0 = 〈−[Pj ,[Pj ,	0]]P 2 + 2m[Pj ,	0][Pj ,	0] − [σk,σj ][Pj ,	0]PkP
2〉0, (B22)

and

〈[γ0 �γ · �P ,[ �γ · �P ,	0]]〉0 = −2〈[Pj ,	0][Pj ,	0]〉0 (B23)

into Eq. (B20) yields Eq. (54).

APPENDIX C: LOGARITHMIC TERMS

Since h is proportional to (Zα)2, the terms contained in the functions φ that are proportional to ln h yield for the state-
dependent part of the S states and non-S states the A61(Zα)2 ln(Zα)−2 term in the expansion (8) and for the state-independent
part of the S states the A41 ln(Zα)−2 term. For example, when φ0 is expanded in series in h the first term is −h ln(h). When we are
interested only in the terms proportional to ln(Zα)2 we can replace φ0 in Eq. (40) by −h ln(Zα)2. Similarly, φ̃2 can be replaced
in Eq. (40) by h3m23−1 ln(Zα)2, and so on. That means that the terms in Eq. (40) proportional to ln(Zα)2 contain just powers
of h and by virtue of Eq. (34) their evaluation can be performed in the same way as evaluation of the terms in the high-energy
part. Taking advantage again of Eqs. (37) and (A1) and using the explicit form of the functions φ, Eqs. (25) and (26), one can
determine the logarithmic terms contained in Eq. (40):

ln(Zα)2

〈
− 1

2m3
[	μ,[γμ,H ]] − 1

3m4
	̃2H + 1

6m5
[	μ,[γμ,	̃2H ]] + 1

15m6
	̃4H − 1

48m4
{γν,[γμ,[γμ,	νH 2]]}

〉
. (C1)

To evaluate this expression we use in the first term Eq. (A17) and in the second term Eqs. (A1), (B2), and (B3). Further, we use
Eqs. (B13),

〈[	μ,[γμ,	̃2H ]]〉 � 〈12[	μ,	ν][	μ,	ρ]γρ	ν − [	μ,[	μ,[	ν,[	ν,	ρ]]]]γρ〉
� −〈12m[Pi,	0][Pi,	0] + [Pi,[Pi,[Pj ,[Pj ,	0]]]]γ0〉 (C2)

and

〈{γν,[γμ,[γμ,	νH 2]]}〉 � 0. (C3)

By inserting these equations into Eq. (C1) we get

ln(Zα)2

{
2

3m3
〈[Pj ,[Pj ,	0]]γ0〉 −

〈
4

3m4
[Pj ,	0][Pj ,	0] + 1

10m5
[Pk,[Pk,[Pj ,[Pj ,	0]]]]

〉
0

}
. (C4)

Further, by reducing the reference wave function to the upper components, Eq. (55), we obtain

ln(Zα)2

{
2

3m3
〈[Pj ,[Pj ,	0]]〉FW −

〈
4

3m4
[Pj ,	0][Pj ,	0] + 11

60m5
[Pk,[Pk,[Pj ,[Pj ,	0]]]]

+ 1

12m5
[σk,σj ][Pm,[Pm,[Pj ,	0]]]Pk

〉
0

}
. (C5)

This expression for the logarithmic terms is the same as the one in Ref. [12], Eq. (3.36).
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