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Energy spectra of small bosonic clusters having a large two-body scattering length
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In this work we investigate small clusters of bosons using the hyperspherical harmonic basis. We consider
systems with A = 2,3,4,5,6 particles interacting through a soft interparticle potential. In order to make contact
with a real system, we use an attractive Gaussian potential that reproduces the values of the dimer binding energy
and the atom-atom scattering length obtained with one of the most widely used 4He-4He interactions, the LM2M2
potential of Aziz and Slaman. The intensity of the potential is varied in order to explore the clusters’ spectra
in different regions with large positive and large negative values of the two-body scattering length. In addition,
we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in
the sum of a two- and three-body potential, we have calculated the spectrum of the four-, five-, and six-particle
systems. In all the regions explored, we have found that these systems present two states, one deep and one shallow
close to the A − 1 threshold. Some universal relations between the energy levels are extracted; in particular, we
have estimated the universal ratios between thresholds of the three-, four-, and five-particle continua using the
two-body Gaussian potential. They agree with recent measurements and theoretical predictions.
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I. INTRODUCTION

Systems composed by few atoms having large value
of the two-body scattering length a with respect to the
natural length � fixed by the atomic potential have been the
object of an intense investigation both from a theoretical
and an experimental point of view (for recent reviews, see
Refs. [1–3]). In fact, they present universal properties: for
example, the three-body system displays the Efimov effect
[4,5], which means the appearance, in the limit a/� → ∞,
of an infinite set of bound states accumulating toward the
three-particle threshold; moreover, the three-body spectrum
has a discrete-scale symmetry, with a universal ratio between
the nth and (n + 1)th levels En+1

3 /En
3 = e−2π/s0 . The scaling

factor depends only on the ratio between particle masses, and
for identical bosons of mass m it reads as e−2π/s0 ≈ 1/515.03
(with s0 ≈ 1.006 24). The finite value of � implies the existence
of a three-body ground state E0

3 , the value of which reflects the
short-range physics, and that, together with the discrete-scale
symmetry, completely determines the spectrum. In realistic
cases, the ratio a/� is large but finite; thus, the three-body
spectrum reduces to a finite number of states.

A remarkable property in the a → ∞ limit appears in the
four-body system: two states E

n,0
4 ,E

n,1
4 are attached to each

trimer state En
3 , one deep and one shallow having universal

ratios E
n,0
4 /En

3 ≈ 4.6 and E
n,1
4 /En

3 ≈ 1.001 [6–8]; the two
lowest four-body states, E0

4 = E
0,0
4 and E1

4 = E
0,1
4 , are real

bound states. These properties have been studied for large
positive and large negative values of the scattering length in the
(a−1,κ) plane, with κ = sign(E)[|E|/(h̄2/m)]1/2, constructing
what is normally called an Efimov plot [9].

There are very few studies of the spectrum of small
bosonic clusters beyond A = 4. In addition to the specific
problems related to the solution of the Schrödinger equation
for more than four particles, the atom-atom realistic potentials
present a strong repulsion at short distances, which makes
the numerical problem more difficult. Specific algorithms

have been developed so far to solve this problem: the
Faddeev equation has been opportunely modified [10], the
hyperspherical methods resorted either to the hyperspherical
adiabatic (HA) expansion (for a review, see Ref. [11]) or to
the correlated hyperspherical harmonic expansion (CHH) [12].
However, due to the difficulties in treating the strong repulsion,
few calculations exist for systems with more than three atoms.
For example, in Ref. [13] the diffusion Monte Carlo method
has been used to describe the ground state of 4He molecules up
to 10 atoms, and in Ref. [14] a very extended calculation has
been done in the four-helium-atom system. On the other hand,
descriptions of few-bosons systems using soft-core potentials
are currently operated (see, for example, Refs. [7,15]).

The equivalence between hard- or soft-core-potential de-
scriptions has been discussed in Refs. [16,17], in which an
attractive soft 4He-4He Gaussian potential has been used to
investigate the three-atom system. The soft-two-body potential
was designed to reproduce the helium dimer binding energy
E2, the 4He-4He scattering length a, and the effective range r0

of the LM2M2 potential [18], one of the most used 4He-4He
interactions. In this context, the soft Gaussian potential can
be considered as a regularized-two-body contact term in an
effective field theory (EFT) approximation of the LM2M2
[19]; this is possible because of the scale separation between
the 4He-4He scattering length a = 189.41 a.u., and the natural
length � = 10.2 a.u., which is the van der Waals length
calculated for the LM2M2 potential [1].

In the two-body sector and in the low-energy limit, the two
potentials predict similar phase shifts, therefore, even if their
shape is completely different, they describe in an equivalent
way the physical processes in that limit [19]. The equivalence is
lost as the energy is increased, when the details of the potential
become more and more important. When the soft interaction
is used in the three-body sector, a new three-body contact term
is required to reproduce the ground-state binding energy of
the helium trimer given by the LM2M2 potential. This term
is introduced by means of a Gaussian-hypercentral three-body

042513-11050-2947/2012/86(4)/042513(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.042513


M. GATTOBIGIO, A. KIEVSKY, AND M. VIVIANI PHYSICAL REVIEW A 86, 042513 (2012)

force, the strength of which is tuned to reproduce the LM2M2
ground-state binding energy of the three-atom system. In
Ref. [16], the quality of this description has been studied
for different ranges of the three-body force by comparing the
binding energy of the excited Efimov state and the low-energy
helium-dimer phase shifts to those obtained with the LM2M2
potential. In Ref. [17], the spectrum of small clusters of helium
atoms has been investigated up to six particles maintaining,
however, fixed the values of a and E2 as given by the LM2M2
potential.

In this work we extend the analysis of the A = 3 − 6
bosonic spectrum to the (a−1,κ) plane. We have modified
the strength of the LM2M2 potential in order to cover the
region of negative values of a up to a0

−, with this value
indicating the threshold of having a three-body system bound.
We have also increased the intensity of the interaction in order
to extend the analysis to positive values of a in which the
universal character of the system starts to be questionable,
i.e., when the ground-state E0

3 approaches the natural energy
E� = −h̄2/m�2, which delimits the Efimov window.

Associated with the different values of a of the modified
LM2M2 potential, we have constructed a set of attractive
Gaussian potentials with the strength fixed to reproduce the
low-energy data of LM2M2. Moreover, the modifications of
the LM2M2 produce different values of the A = 3 ground-state
energy E0

3 ; accordingly, we introduce a soft three-body force
devised to reproduce those values along the (a−1,κ) plane.
Within this model, consisting in the sum of a two- and a
three-body potential, we have calculated the spectrum of the
four-, five-, and six-particle systems.

Two different calculations have been performed in this
work. From one side, we have calculated the A = 3 ground
state and excited states E0

3 and E1
3 , using the LM2M2

potential and its modification, in order to construct the
corresponding Efimov plot. Since this potential presents a
strong short-range repulsion, we have used the CHH expansion
as discussed in Ref. [12]. One the other side, when using
the soft-core-potential model in systems with A � 3, the
numerical calculations were performed by means of the
nonsymmetrized hyperspherical harmonic (NSHH) expansion
method with the technique recently developed by the authors
in Refs. [17,20–22]. In this approach, the authors have
used the hyperspherical harmonic (HH) basis, without a
previous symmetrization procedure, to describe bound states
in systems up to six particles. The method is based on a
particular representation of the Hamiltonian matrix, as a sum
of products of sparse matrices, well suited for a numerical
implementation. Converged results for different eigenvalues,
with the corresponding eigenvectors belonging to different
symmetries, have been obtained [22]. In this work, since we
are dealing with bosons, we only consider the symmetric part
of the spectrum. Interestingly, we have observed that in all the
regions explored, the A = 4,5,6 systems present two states,
one deep and one shallow close to the E0

A−1 threshold. To gain
insight on the shallow state, for a selected value of a, we have
varied the range of the three-body force and we have studied
the effect of that variation in the A = 4,5,6 spectrum. In the
range considered, the variation produces small changes in the
eigenvalues, but they are crucial to determine if the shallow
state is bound or not with respect to the A − 1 threshold. This

analysis confirms, at least in one zone of the Efimov plot,
previous observations that each Efimov state in the A = 3
system produces two bound states in the A = 4 system, and
extends this observation to the A = 5,6 systems.

Finally, we have extended the calculations of the A = 4 and
5 systems up to the four- and five-particle thresholds using the
simple two-body Gaussian potential; the ratios between the
thresholds are in agreement with previous theoretical results
[7,23] and with experiments [24–27].

The paper is organized as follows. In Sec. II, we describe
the two- and three-body forces we used in our calculations
to reproduce the LM2M2 values. In Sec. III, we discuss the
Efimov plot for three particles. In Sec. IV, the results for
the bound states of the A = 3,4,5,6 clusters are discussed,
whereas the conclusions are given in the last section.

II. SOFT-CORE TWO- AND THREE-BODY POTENTIALS

As mentioned in the Introduction, we use the LM2M2
4He-4He potential as the reference interaction, with the mass
parameter fixed to h̄2/m = 43.281 307(a.u.)2 K. In order to
explore the Efimov (a−1,κ) plane, we have modified the
LM2M2 interaction as follows:

Vλ(r) = λVLM2M2(r). (1)

Examples of this strategy exist in the literature [12,28]. We
have varied λ from λ = 0.883, where a = a0

− = −43.84 a.u.,
up to λ = 1.1 corresponding to a = 44.79 a.u., as shown in
Fig. 1. The unitary limit is produced for λ ≈ 0.9743. When
λ = 1, the values of the LM2M2 are recovered: a = 189.41
a.u., E2 = −1.303 mK, and r0 = 13.845 a.u.

Following Refs. [11,16,17], we have constructed an attrac-
tive two-body Gaussian (TBG) potential

V (r) = V0 e−r2/R2
0 , (2)

with range R0 = 10 a.u., and we have varied the strength V0 in
order to reproduce the values of a given by Vλ(r), as shown in
Fig. 2. For λ = 1 with the strength V0 = −1.234 356 6 K, we
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FIG. 1. The scattering length a, in units of �, as a function of the
parameter λ, calculated with the modified LM2M2 potential Vλ(r).
The range of variation of λ is between λ = 0.883, which corresponds
to the disappearance in the continuum of the excited three-body state,
and λ = 1.1. The unitary limit is obtained for λ ≈ 0.9743.
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FIG. 2. The strength V0 of the Gaussian two-body potential as a
function of the parameter λ. The values are tuned to reproduce the
scattering length a given by the modified LM2M2 potential Vλ(r).

reproduce the LM2M2 low-energy data, E2 = −1.303 mK,
a = 189.42 a.u., and r0 = 13.80 a.u. The use of the TBG
potential in the three-atom system produces a ground-state
binding energy appreciably deeper than the one calculated
with Vλ(r). For example, at λ = 1, the LM2M2 helium trimer
ground-state binding energy is 126.4 mK, whereas the one
obtained using the two-body soft-core potential in Eq. (2) is
151.32 mK. A smaller difference, although still appreciable,
can be observed in the first excited state.

In order to have a closer description to the A = 3 system
obtained with the modified LM2M2 potential, we introduce
the following (repulsive) hypercentral-three-body (H3B) in-
teraction

W (ρ123) = W0 e−ρ2
123/ρ

2
0 , (3)

with the strength W0 tuned to reproduce the trimer energy E0
3

obtained using Vλ(r) for all the explored values of λ, as shown
in Fig. 3. Here, ρ2

123 = 2
3 (r2

12 + r2
23 + r2

31) is the hyperradius of
three particles and ρ0 gives the range of the three-body force
or, in the spirit of EFT, the cutoff of the three-body contact
interaction; therefore, it is not independent of R0, which is the
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FIG. 3. The strength W0 of the hypercentral three-body potential
as a function of the parameter λ. The values are tuned to reproduce the
three-body ground state E0

3 given by the modified LM2M2 potential
Vλ(r).

cutoff of the two-body contact force, and in fact it should be
ρ0 = R0, as shown in Ref. [17], and so we fixed ρ0 = 10.0 a.u.
A different criterion to fix the three-body force was given in
Ref. [23] in which the condition ρ0 � r0 has been used. In this
case, the (repulsive) three-body force is used to push the trimer
spectrum high in energy in order to verify as close as possible
the universal ratios En+1

3 /En
3 = e−2π/s0 already at n = 0. With

the LM2M2 interaction, this relation is only approximately
verified; for λ = 1, we have E0

3/E
1
3 ≈ 56, whereas at the

unitary limit E0
3/E

1
3 ≈ 525, very close to the universal ratio.

III. THREE-BODY EFIMOV PLOT

The calculations for A = 3 have been performed using
the CHH expansion. Since Vλ(r) is obtained multiplying the
LM2M2 potential by a global factor λ, it inherits the strong
short-range repulsion; in this case, a direct use of the HH basis
to compute the bound states is not feasible since it would be
necessary to include an enormous number of basis elements in
the expansion [29]. The use of the CHH expansion circumvents
this problem by the introduction of a correlation factor of the
Jastrow type. The method is described in Ref. [12] and it
allows us to achieve similar accuracy as other techniques. As
an example, in Table I we show the results for the ground state
E0

3 and the excited state E1
3 at λ = 1 (in this case, the results of

the LM2M2 potential are recovered), and at the unitary limit
λ = 0.9743. These results have been obtained using the CHH
basis up to a value of the grand angular momentum K = 160.

As a by-product of the tuning procedure of the three-body
strength W0, we have constructed, as was previously done for
instance in Refs. [28,30], the Efimov plot shown in Fig. 4. In
the figure, we report calculations of E0

3 and E1
3 as functions of

a done both with the Vλ(r) and the TBG potential. When the
TBG + H3B potential is used, the results coincide with those
of Vλ(r) and are not reported in the figure. In addition, we draw
the dimer energy E2, calculated using the Vλ(r) potential. In
order to show these quantities together, in the figure we have
used the fourth root of the energy (in units of E�) as a function
of the square root of a−1 (in units of �). In the region analyzed,
the results are inside the Efimov window; in fact, the scattering
length is still much larger than the natural length �, and the
ground-state energy E0

3 is above the natural value E�.

TABLE I. The ground state E0
3 and the excited state E1

3 of the
three-boson system calculated with the modified LM2M2 potential
Vλ(r), the TBG potential, and the TBG potential plus the H3B
potential at λ = 1, which corresponds to the original LM2M2
potential, and in the unitary limit λ = 0.9743.

Potential E0
3 (mK) E1

3 (mK)

λ = 1

Vλ(r) −126.4 −2.27
TBG −151.3 −2.48
TBG + H3B −126.4 −2.31

λ = 0.9743

Vλ(r) −83.99 −0.16
TBG −103.4 −0.20
TBG + H3B −83.99 −0.16
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FIG. 4. (Color online) Efimov plot for A = 3. We report the
ground- and excited-state energies E0

3 and E1
3 in units of E�, as

a function of �/a, both for the modified LM2M2 potential Vλ(r)
and for the TBG potential. Following the literature, we really draw
the fourth root of the scaled energies as a function of the square
root of the scaled-inverse scattering length; using this trick, the ratio
between excited and ground energies is greatly reduced, allowing for
the graphical representation of both curves on the same scale. We
also report the A = 2 binding energy.

Looking in Fig. 4 at negative values of a, it is possible
to identify the value of the scattering length a1

− at which the
excited state E1

3 disappears. For Vλ(r), this value is a1
− ≈

−975 a.u., whereas using the TBG potential it results a1
− ≈

−752 a.u. The next interesting point appears at a0
−, when the

three-body cluster is no more bound, so that E0
3 approaches

zero. Using Vλ(r) this happens at a0
− ≈ −48.1 a.u., whereas

using the TBG potential alone it is a0
− ≈ −43.3 a.u.

The ratio a0
−/a1

− has been predicted to have a univer-
sal value (a0

−/a1
−)theory = 22.7 [1]; in the only experiment

which measures the two thresholds (Ref. [24]), the ratio is
(a0

−/a1
−)experiment = 21.1. In our case, we obtain (a0

−/a1
−)TBG =

17.4, and (a0
−/a1

−)
Vλ(r) = 20.3, which is closer to both theoreti-

cal and experimental values. The absolute position of a0
− is not

predicted by the theory of Efimov physics and, in that sense,
it can be considered as not a universal quantity; however, it
has been the subject of experimental measurements which give
more or less the same value in units of mean scattering length
a = 0.955 978 �/2 for different atoms a0

− = −(9 ± 1) a [31].
In the present calculations, we obtain (a0

−)TBG = −8.9 a and
(a0

−)Vλ(r) = −9.9 a.
In addition, we discuss the universal character of the

shallow state E1
3 . Using Efimov’s radial law [5], it is possible to

obtain an equation for this trimer binding energy as a function
of a. It reads as

E1
3 + h̄2

ma2
= exp[�(ξ )/s0]

h̄2κ2
∗

m
, (4)

where κ∗ is the wave number corresponding to the en-
ergy E1

3 = h̄2κ2
∗/m = 0.156 mK at the resonant limit and

tan ξ = −(mE1
3/h̄

2)1/2a. The function �(ξ ) is universal and a
parametrization in the range [−π, − π/4] is given in Ref. [1].
It verifies �(−π/2) = 0 and, from the very precise result
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FIG. 5. (Color online) Comparison between the excited three-
body energy E1

3 and the theoretical universal value given by Eq. (4),
using the TBG potential (upper panel) and the modified LM2M2
potential Vλ(r) (lower panel). The two-body energy E2 calculated
with Vλ(r) is also shown. The calculated and theoretical curves agree
around the resonant limit, and the differences close to the values a∗

and a1
− are due to effective-range corrections. The most remarkable

difference is represented by the fact that the calculated E1
3 does not

cross the atom-dimer threshold.

�(−π/4) = 6.027 306 781 99 and �(−π ) ≈ −0.89 [1], it is
possible to determine the values a∗ (at which E1

3 = E2) and a1
−

(at which E1
3 = 0). In order to analyze the universal character

of the calculated energies E1
3 using the TBG and TBG + H3B

potential models, in Fig. 5 we compare them to the values
of Eq. (4). By construction, the energies E1

3 at the resonant
limit coincide with those of Eq. (4). It is possible to see
that the calculated energies using the TBG potential (Fig. 5
upper panel) and TBG + H3B potential (Fig. 5 lower panel)
reproduce the universal behavior close to the resonant limit.
The small differences observed at finite values of a, especially
close to the critical values a∗ and a1

−, are due to effective-range
corrections which are automatically included in our approach.
Moreover, E1

3 does not disappear in the atom-dimer continuum
at a∗, but follows very close the E2 curve from below.

To conclude, we further analyze the universality looking
at the correlations between the three-body ground and excited
states, as has been proposed in Ref. [32]. In Fig. 6 we trace
the square root of the excited-trimer energy, measured from
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FIG. 6. (Color online) Correlations between the ground E0
3 and

excited E1
3 states of the trimer. We compare the universal correlation,

obtained by means of Eq. (4), to the calculations made using the
full Vλ(r) potential and the TBG potential. The agreement is good
close to the unitary point, where the dimer energy E2 is small. The
deviations become significant when the finite effective-range effects
become non-negligible.

the two-body dimer, in units of the trimer ground-state energy,
as a function of the dimer energy, always in units of trimer
ground-state energy. Efimov’s universal-radial law [Eq. (4)]
gives the universal curve in this plot; we see that as far as the
dimer is very shallow, the calculated points are very close to
the universal curve. They depart from it when corrections due
both to finite scattering length and to nonzero effective range
become sizable. This nonuniversal effect is more important
for the TBG case, probably due to the lack of the three-body
corrections.

IV. EFIMOV PLOT FOR A = 4,5,6 CLUSTERS

The calculations for the A > 3 systems are performed
using the NSHH basis. The method has been recently used
to describe up to six nucleons interacting through a central
potential [21,22,33] and six bosons using a two-body plus
a three-body force [17]. The Hamiltonian matrix is obtained
using the following orthonormal basis:

〈ρ 	 | m [K]〉

=
(

β(α+1)/2

√
m!

(α + m)!
L(α)

m (βρ) e−βρ/2

)
YLM

[K] (	N ) , (5)

where L(α)
m (βρ) is a Laguerre polynomial with α = 3N − 1

(N = A − 1) and β a variational nonlinear parameter. The
functions YLM

[K] (	N ) are the HH functions with grand angular
momentum K , and total angular momenta L and magnetic
number M . The Hamiltonian matrix is not constructed, but
using properties of HH is expressed as an algebraic combina-
tion of sparse matrices, allowing for an efficient research of
the lowest eigenvectors/eigenvalues. A full discussion of the
NSHH method is given in Refs. [17,22].

After solving the A = 3 problem for bound states, used
to fix the strength of the H3B force, we have diagonalized
the Hamiltonian for A = 4,5,6 bodies using the TBG and
TBG + H3B potentials. The results are given in Fig. 7 in two
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FIG. 7. (Color online) Energies of the A = 3 − 6 ground and ex-
cited states, E0

A,E1
A, as a function of a−1, using the two-body Gaussian

potential (upper panel), and using the two-body plus the hypercentral
three-body force (lower panel). In both panels, we also give the two-
body ground-state energy E2 calculated with the LM2M2 potential.

scaled (a−1,κ) plots, one obtained with the two-body potential
alone (upper panel) and one with the two-body plus three-body
interactions (lower panel). In the first case, with only the TBG
potential, we observe that the spectrum of the systems A =
4,5,6 presents two bound states, one deep and one shallow, for
all values of a studied. When the repulsive three-body force is
included, the spectrum moves up and we can observe that the
excited state E1

A disappears for A = 5,6 for negative values
of the scattering length as a approaches a1

−. This fact is better
shown in Fig. 8, where the differences E0

A − E1
A+1 have been

plotted as functions of �/a. Whereas the differences E0
2 − E1

3
and E0

3 − E1
4 are positive along the whole range, indicating

that the states E1
3 and E1

4 are bound, the differences E0
4 − E1

5
and E0

5 − E1
6 result negative as a goes to the negative region,

so at some value of a the excited states E1
5 and E1

6 are no more
bound. The determination of the point where the transition
happens can be determined by looking at the convergence
of the states E1

5 and E1
6 , as can be seen in Table II where we

report the convergence pattern using the TBG + H3B potential
for A = 4,5,6 at the point λ = 0.9 where both E1

5 and E1
6 are

not bound. They remain above the E0
4 and E0

5 thresholds,
respectively. In the table, we have shown the three maximum
values of K considered in the present calculations.
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FIG. 8. The difference �E = E0
A − E1

A+1 for the indicated cases
as a function of the inverse of a for the TBG + H3B potential. The
particular cases at λ = 1 and 0.9 as well as at the unitary limit are
indicated as vertical lines.

Moreover, the fact that the states E1
5 and E1

6 are bound or
not depends also on the range of the three-body force ρ0. In
order to analyze this relation, we have varied ρ0 at λ = 0.9 as
well as at the unitary limit. For each value of ρ0, the strength
of the three-body potential has been fixed to reproduce the
trimer binding energy E0

3 as before. The results for A = 4,5,6
at λ = 0.9 are shown in Fig. 9. As can be seen, the excited
states are recovered as bound states for values of ρ0 ≈ 18 a.u.

To make contact with the analysis of Ref. [34], we have cal-
culated

√
|E1

4 − E0
3 |/|E0

4 | = 0.070 and
√

|E0
3 |/|E0

4 | = 0.434
at the unitary limit. These two values correspond to a point
in the plot given in Fig. 1 of that reference lying very close
to the line giving the relation of these two quantities at the
unitary limit. In addition, in Fig. 10 we analyze the relation
between E0

A+1 (upper panel) and E1
A+1 (lower panel) with E0

A

and E1
A, respectively, as a function of the scattering length for

A = 4,5,6. We can observe a linear dependence in all cases
except for a small curvature in the E0

4 versus E0
3 and E1

4 versus
E1

3 curves close to the point in which E0
3 goes to zero. These

curves display the universal character of these clusters as their
spectrum is determined by two parameters, a and E0

3 .

TABLE II. Convergence of the binding energies as a function of
the grand angular quantum number K using the TBG + H3B potential
at λ = 0.9, R0 = 10 a.u., and ρ0 = 10 a.u. for clusters of A particles.
We also report the number NHH of hyperspherical basis elements
corresponding to a given K .

A K NHH E0
A (mK) E1

A (mK)

4 36 33649 −166.25945 −6.55041
38 42504 −166.25949 −6.79163
40 53130 −166.25951 −6.99574

5 26 448800 −532.75811 −161.96737
28 724812 −532.75828 −162.98374
30 1139544 −532.75834 −163.79689

6 18 709410 −1063.8276 −513.50956
20 1628328 −1063.8311 −516.42712
22 3527160 −1063.8322 −518.25341

-15

-10

-5

0

5

10

10 14 18 22 26 30 34 38

Δ
E

(m
K

)

ρ0 (a.u.)

E0
3 − E1

4

E0
4 − E1

5

E0
5 − E1

6

FIG. 9. The difference �E = E0
A − E1

A+1 at λ = 0.9 as a function
of ρ0 for the TBG + H3B potential.

Besides, the universal ratios E0
A/E0

3 and E1
A+1/E

0
A can

be studied at λ = 1. They are E0
4/E

0
3 = 4.5, E0

5/E
0
3 = 10.4,

E0
6/E

0
3 = 18.4 and E1

4/E
0
3 = 1.020, E1

5/E
0
4 = 1.009,

E1
6/E

0
5 = 1.016. These ratios are in close agreement to

those obtained in the literature [23]. At the unitary limit,
the ratios E0

A/E0
3 move a little bit from the universal values

showing some dependence on the form of the soft potential,
whereas the ratios E1

A+1/E
0
A show stability. At λ = 0.9743,
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FIG. 10. Relation between E0
A+1 and E0

A (upper panel) and
between E1

A+1 and E1
A (lower panel) for the indicated cases obtained

with the TBG + H3B potential along the (a−1,κ) plane.
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FIG. 11. (Color online) Energies of the states E0
3 , E1

4 , E0
4 , E1

5 ,
and E0

5 as a function of a−1 for negative values of the scattering
length close to the continuum threshold obtained using the TBG
potential. The four-particle thresholds are a

4,0
− ≈ −19.6 a.u. and

a
4,1
− ≈ −39.8 a.u. The five-particle thresholds are a

5,0
− ≈ −12.5 a.u.

and a
5,1
− ≈ −18.7 a.u.

they are E0
4/E

0
3 = 5.3, E0

5/E
0
3 = 13.0, E0

6/E
0
3 = 23.4 and

E1
4/E

0
3 = 1.026, E1

5/E
0
4 = 1.004, E1

6/E
0
5 = 1.006.

Finally, using the TBG potential, we have extended the
calculations for A = 4 and 5 systems up to the four- and
five-particle thresholds in order to calculate the ratios between
the different thresholds and to compare our results to previous
calculations and experimental outcomes. Our results are
summarized in Fig. 11. Denoting with a

4,0
− and a

4,1
− the

four-particle thresholds of the ground and excited states,
respectively, we have a

4,1
− ≈ −39.8 a.u., and a

4,0
− ≈ −19.6

a.u.; equivalently, with respect to the three-particle threshold
a0

− we get (a4,1
− /a0

−)TBG ≈ 0.92 for the excited state, and
(a4,0

− /a0
−)TBG ≈ 0.45 for the ground states. These values agree

very well with what was measured in the experiments [24–26]
and with what was predicted by the theory [7,23,35]. The
five-particle thresholds read as a

5,0
− ≈ −12.5 a.u. for the

ground state and a
5,1
− ≈ −18.7 a.u. for the excited state. Equiv-

alently, the ratios with respect to the four-particle threshold
are (a5,0

− /a
4,0
− )TBG ≈ 0.64 and (a5,1

− /a
4,0
− )TBG ≈ 0.95, still in

agreement with previous theoretical prediction [23] and with
recent experiments [27].

V. CONCLUSIONS

In this paper, we have discussed the spectrum of bosonic
systems up to six particles interacting through a two-body
potential having a large two-body scattering length (with
respect to the effective range). The three-body scale has been
fixed using a scaled helium-helium potential. The scope was
to extend previous studies on the Efimov physics done in the
three- and four-body systems. We have observed that, similarly
to the four-body system, the five- and six-body systems present
two bound states, one deep and one shallow. It seems that
this type of spectrum is to some extent universal depending
only on the condition a � r0 in the two-body system. This
condition produces a geometrical series of bound states in
the three-body system and, attached to each of these states, a

two-level spectrum has been showed to appear in the four-body
system [6–8]. However, they are true bound states only in
correspondence to the lowest trimer level. The other states
appear as resonances embedded in the continuum of four
particles. It is possible to introduce a repulsive three-body
force that eliminates all the trimer states below one specific
level. In this way, the two-level spectrum of the four-body
system attached to this trimer ground state will become true
bound states. Also, the universal character of the spectrum
will be more evident as the repulsive three-body force will
push more and more the particles far away.

Although the analysis of the bosonic spectrum can follow
the strategy illustrated above, in this paper we follow a different
one based on the physics introduced by the two-body potential.
In nuclear systems as well as in many atomic systems, the
two-body interaction has a sharp repulsion at short range
followed by a very weak attractive part that produces very
shallow dimers as, for example, the deuteron or the two-helium
molecule. The particles are located in the asymptotic region
and do not feel the details of the interaction. Therefore, we
can introduce a soft potential to be considered as a regularized
two-body contact term in an EFT approximation of the original
potential [19]. In the three-body sector, a three-body contact
term is required to reproduce the ground-state binding energy
of three particles introduced here by means of a Gaussian-
hypercentral three-body force. Using this potential model,
we have calculated the three-body spectrum and we have
analyzed its universal character comparing the energy of the
shallow state E1

3 to Efimov’s equation for the binding energy.
Furthermore, we have identified the critical values a0

− and a1
−

at which E0
3 = 0 and E1

3 = 0, respectively. Successively, we
have calculated the four-, five-, and six-body spectra and we
have observed the two-level structure. The EFT approach is
better adapted to describe shallow states and this is confirmed
by the close result obtained for E1

4 = −128.8 mK at λ = 1
and the LM2M2 result E1

4 = −127.9 mK, very recently
published [14].

The universal character of the structure of these clusters
has been studied using Tjon lines, which means the relation
between E0

A+1 and E0
A and between E1

A+1 and E1
A. As

illustrated in Fig. 10, we have obtained an almost linear relation
between E0

A+1 and E0
A (upper panel) and between E1

A+1 and
E1

A (lower panel) in the region from λ = 1 to 0.9. As the
energy of the cluster E0

A or E1
A tends to zero, the linear relation

is lost.
Since we are describing the lowest bound states, some

universal ratios are only approximately verified, although not
very far from the values quoted by other groups in A = 3,4.
However, in the simple case of TBG, we have extended our
calculations for A = 4 and 5 up to the four- and five-particle
continuum threshold in order to calculate the ratios between
the thresholds: the values we obtain in the four-body case
(a4,1

− /a0
−)TBG ≈ 0.92 and (a4,0

− /a0
−)TBG ≈ 0.45, and in the five-

body system (a5,0
− /a

4,0
− )TBG ≈ 0.64 and (a5,1

− /a
4,0
− )TBG ≈ 0.95,

are in accord with the ratios that have been previously predicted
[36] and measured [27] in literature.

Another interesting aspect is the uncertainty introduced
by the cutoff in the hypercentral three-body force. We have
observed that with the most natural choice ρ0 = R, the shallow
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states E1
5 and E1

6 result unbound in the last part of the curves.
They cross the respective thresholds E0

4 and E0
5 . Increasing

ρ0, they result bound again around ρ0 ≈ 18 a.u. Increasing
further ρ0, they become again unbound. This last analysis
is somehow inconclusive as to really understand the cutoff
dependence we need to vary both cutoff R0 and ρ0 in a

coherent way; the dependence on the cutoff will eventually
reflect the leading-order nature of the potential we are using,
pointing to the necessity of going to a higher order in the EFT
expansion [19]. Studies along this line are at present under
consideration as well as the analysis of the two-level spectrum
for cluster with more than six particles.
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