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The spontaneous two-photon emission in hydrogenlike ions is investigated within the framework of second-
order perturbation theory and Dirac’s equation. Special attention is paid to the angular correlation of the emitted
photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed
under arbitrary angles. Expressions for the angular correlation and the degree of linear polarization are expanded
in powers of cosine functions of the two-photon opening angle, whose coefficients depend on the atomic number
and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles
upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the
coefficients are performed for the transitions 2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2, along the entire
hydrogen isoelectronic sequence (1 � Z � 100).
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I. INTRODUCTION

Studies on the two-photon decay of atoms and ions have
a long tradition, which can be traced back to the seminal
works of Göppert-Mayer and of Breit and Teller [1,2]. These
studies made the first prediction of nonlinear (second-order)
processes in atomic physics and were originally motivated
by astrophysics [3,4]. More recently, various theoretical
investigations on such processes have aimed to test the standard
model by measuring parity nonconservation (PNC) effects in
both hydrogen- [5] and heliumlike ions [6–8]. Furthermore,
fundamental effects of quantum theory have also been tested
in experiments [9,10] and theoretically investigated [11],
using two-photon decay channels. Recent technical advances
in polarization and position-sensitive detectors have opened
up the possibility of investigating angular and polarization
properties of the radiation emitted in atomic decays [12–14].
For medium- and high-Z ions, in particular, measurements of
two-photon angular and polarization properties are presently
planned to be performed at GSI in Darmstadt in forthcoming
years. To support these measurements and to extend previous
investigations [15,16], we here present a relativistic study
on the angle correlation and degree of linear polarization
of the radiation emitted in (spontaneous) two-photon de-
cays of hydrogenlike ions. We investigate both the angular
dependence of the differential decay rate (referred to as
angular correlation) as well as the degree of linear polarization
of the “first” photon, if the “second” photon is observed
under certain angles and if its polarization properties remain
unobserved. Moreover, by using the symmetry properties of
the second-order transition amplitude, the angular correlation
and the degree of linear polarization of the emitted photons
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are written as an expansion in powers of cos θ , where θ

is the (opening) angle between the direction of the two
photons. Such a (relativistic) parametrization can be readily
compared with other theoretical calculations and provides a
theoretically well-justified fit model for future experiments
that involve two-photon transitions. Up to now, there is
no fully relativistic parametrization of such quantities for
hydrogenlike ions available. A previous parametrization of
the angular correlation performed by Au [17] was restricted
to the 2s1/2 → 1s1/2 transition as well as to a nonrelativistic
framework. This paper is organized as follows: in Sec. II A
we give a brief overview of the background theory involved
in two-photon emission and introduce the (second-order)
reduced amplitudes, which represent the building blocks of the
theoretical calculation. Next, we define the angle correlation
and degree of linear polarization functions together with its
parametrization procedure in Secs. II B and II C. The numerical
evaluation of the reduced amplitudes is described in Sec. II D.
Section III contains the coefficients of the expansions for the
2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2 transitions.
In order to describe more easily the relativistic behavior of
these coefficients, we express them in terms of reduced two-
photon matrix elements. In addition, the effect of higher-order
multipoles other than the dominant electric dipole in these
evaluations is also discussed. A brief summary is given in
Sec. IV.

II. THEORY

A. Two-photon transition amplitude

The standard theoretical formalism for the description of
two-photon decays in atoms or ions is based on the relativistic
second-order perturbation theory and has recently been applied
in Refs. [15,18,19]. In the present work, we therefore restrict
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ourselves to a compilation of those equations that are needed
for the present analysis. The second-order transition amplitude
for the emission of two photons with wave vectors kγ (γ = 1, 2)
and polarization vectors uλγ

(λγ = ±1), from an initial atomic
state |i〉 = |nijimi〉 to a final atomic state |f 〉 = |nf jf mf 〉,
with well-defined principal quantum number ni,f , total angular
momenta ji,f , and their projections mi,f , is given by [18]

Mk1 k2
f i (mi,mf ,λ1,λ2)

=
∑

ν

∫ [ 〈f | R̂†(k1,λ1) |ν〉 〈ν| R̂†(k2,λ2) |i〉
Eν − Ei + ω2

+ (1 ←→ 2)

]
.

(1)

Here ω1,2 are the energies of the emitted photons and the
transition operator R̂(kγ ,λγ ) in Eq. (1) denotes the interaction
between the electron and the electromagnetic radiation. Note
that the index γ stands to the first (γ = 1) or second (γ = 2)
photon. Moreover, the intermediate states |ν〉 = |nνjνmν〉 in
Eq. (1) form a complete set of states, including both discrete
and positive or negative energy eigenvalues of the Dirac
spectrum. The symbol ∑

ν

∫
stands for a summation over the

discrete as well as an integration over the continuum part of
this intermediate states.

In the so-called Coulomb gauge, which corresponds to the
velocity form of the electron-photon interaction operator in
the nonrelativistic limit, the transition operator reads

R̂(kγ ,λγ ) = α · uλγ
eikγ ·r , (2)

where α is the usual vector of Dirac matrices.

Owing to the conservation of energy, the initial and final
ionic energies Ei and Ef are related to the energies of the
emitted photons ω1,2 by

ωt = Ei − Ef = ω1 + ω2, (3)

where ωt is the total energy of the transition. Instead of
working with photon energies, it is therefore more convenient
to describe the decay using the energy sharing parameter
y = ω1/ωt .

The evaluation of the angular and polarization properties of
the emitted radiation requires a spherical tensor decomposition
of the photon fields contained in Eq. (1) into their electric
and magnetic multipole components [20]. This decomposition
reads

uλe
ik·r =

√
2π

∞∑
Lγ =1

Lγ∑
Mγ =−Lγ

∑
p=0,1

iLγ [Lγ ]1/2(iλ)p

× â
p

Lγ Mγ
(k,r)D

Lγ

Mγ λ(k̂), (4)

where [Lγ ] = 2Lγ + 1, k = |k|, and D
Lγ

Mγ λ are the Wigner

rotation matrices of rank Lγ and â
p=0,1
Lγ Mγ

(k,r) refer to the mag-
netic (p = 0) and the electric (p = 1) multipole components,
respectively. Thus, for example, the multipole component with
Lγ = 1 and p = 1 is referred to as an electric-dipole (E1),
while others are designated higher (magnetic and electric)
multipoles.

Inserting Eqs. (2)–(4) into Eq. (1) and using the Wigner-
Eckart theorem, we get the general expression for the second-
order transition amplitude,

Mk1 k2
f i (mi,mf ,λ1,λ2) = 2π

∑
L1M1p1

∑
L2M2p2

(−i)L1+L2 [L1,L2]1/2(−iλ1)p1 (−iλ2)p2D
L1∗
M1λ1

(k̂1)DL2∗
M2λ2

(k̂2)

×
∑
jνmν

1

[ji,jν]1/2

[〈jf mf L1M1|jνmν〉〈jνmνL2M2|jimi〉Sjν

L1p1,L2p2
(ω2)

+〈jf mf L2M2|jνmν〉〈jνmνL1M1|jimi〉Sjν

L2p2,L1p1
(ω1)

]
, (5)

where the reduced amplitudes S
jν

L1p1,L2p2
are defined as

S
jν

L1p1,L2p2
(ω2) =

∑
nν

∫ 〈
nf jf

∣∣∣∣αâ
p1†
L1

(k1)
∣∣∣∣nνjν〉

〈
nνjν

∣∣∣∣αâ
p2†
L2

(k2)
∣∣∣∣niji〉

Eν − Ei + ω2
. (6)

The evaluation of the reduced matrix elements 〈||αâ
p†
L (k)||〉 is

discussed in Ref. [21].
The numerical evaluation of expression (6) is rather diffi-

cult and has been accomplished using different approaches,
namely the Coulomb-Greens’s function (both nonrelativistic
[17,22,23] and relativistic cases [15,24,25]), and the finite
basis set method [18,19]. The main difficulty of this evaluation
concerns the summation over the infinite intermediate Dirac
states |nν,jν〉, which includes both the discrete as well as the
positive and negative continuum part of the spectrum. In this
work, Eq. (6) is evaluated by exploiting both the relativistic
Coulomb-Green’s function and the finite basis set approaches.

We outline the theory of these two approaches in Sec. II D.
In the following sections, we define the angular correlation
function and the degree of linear polarization of the radiation
emitted in two-photon decays of hydrogenlike ions, which are
the two observables of interest in the present work.

B. Angular correlation function

If we assume that the excited ions are initially unpolarized
and that the spin states of the emitted photons remain
unobserved during the measurement, the differential decay
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FIG. 1. (Color online) Geometry of the two-photon decay. The z

axis is collinear with the first photon momentum vector k1. The plane
zx contains the second photon momentum vector k2 The angle θ is
the opening angle between the direction of the two photons.

rate can be written in atomic units as [18]

dW

dy d�1 d�2
= ω3

t

y(1 − y)

(2π )3c2

1

2ji + 1

×
∑

mi,mf

∑
λ1,λ2

∣∣Mk1 k2
f i (mf ,mi,λ1,λ2)

∣∣2
. (7)

HereMf i is given by Eq. (1). We define the angular correlation
function Wy(θ ) as the differential decay rate for a given
opening angle θ between the two photons (see Fig. 1) and
energy fraction y, irrespective of their polarizations.

Since there is no preferred direction for the decay of an
unpolarized ion, it is generally more convenient to adopt the
quantization (z) axis along the momentum of the first photon:
k1||z (see Fig. 1). This choice of quantization axis enables us
to evaluate the angular correlation function by integrating Eq.
(7) over the solid angle of the first photon (d�1) as well as
over the azimuthal angle of the second photon (dφ2),

Wy(θ ) = 8π2 dW

dy d�1 d�2
(θ1 = 0,φ1 = 0,φ2 = 0)

= dW

dy d cos θ
. (8)

Thus the opening angle θ is the polar angle of the second
photon θ2. The factor 8π2 in Eq. (8) hereby arises from the
integration over d�1 and dφ2. Due to the photon-photon
permutation symmetry that characterizes the amplitude in
Eq. (1) and corresponds to the exchange of the emitted photons,
the analytic expression for Wy(θ ) can only contain terms that
are θ -even under the algebraic replacement of θ → −θ . We
can thus expand Wy(θ ) in powers of cos θ ,

Wy(θ ) = a0

(
1 +

∞∑
i=1

ai cosi θ

)
, (9)

where the parameters ai depend on the atomic number of the
ion, the energy sharing parameter y, and the states involved in
the decay. To make the procedure for obtaining the parameters
an less cumbersome, the angular correlation was first expanded
in orthogonal polynomials of cos(θ ). In the present case, we
considered the Legendre polynomials [26]. Each coefficient lm

of this initial expansion was obtained by performing the scalar
product [26] of the respective Legendre polynomial Pm with
Wy(θ ). This procedure simplifies the algebraic conversion of
the various combinations of sini(θ ) cosj (θ ) (i and j being ar-
bitrary integers) in Eq. (8) into powers of cos(θ ). Finally, each
parameter an is given as a combination of the coefficients lm.
Note that only the parameter a0 has units, which in S.I. are s−1.

By integrating the parametrization (9) in dy and d cos θ ,
only the even parameters contribute to the total decay rate.

C. Degree of linear polarization

We used the spin-polarization density matrix to analyze the
polarization properties of the emitted radiation, which has been
applied several times to the two-photon decay rate [15,27]. The
first Stokes parameter is given by [27]

P1(θ ) = 2

N Re

[ ∑
mi,mf ,λ2

Mk1 k2
f i (mf ,mi,λ1 = 1,λ2)

×Mk1 k2∗
f i (mf ,mi,λ1 = −1,λ2)

]
, (10)

where N is a normalization coefficient given by

N =
∑

mi,mf

∑
λ1,λ2

∣∣Mk1 k2
f i (mf ,mi,λ1,λ2)

∣∣2
, (11)

which assures that the trace of the spin-polarization density
matrix is unitary. The derivation of Eq. (10) follows from
the assumption that the polarization of only one (first) of
the photons is observed. The normalization constant N
is proportional to Wy(θ ) defined in the previous section.
Therefore, by employing Eq. (9) into Eq. (10) and using the
symmetry properties of Mf i , we can parametrize P1 as

P1(θ ) = b0
(
1 + ∑∞

k=1 bk cosk θ
)

a0
(
1 + ∑∞

i=1 ai cosi θ
) . (12)

Like the case of ai , parameters bi depend on the ion atomic
number and energy sharing. It should be noted that within the
current geometry and since we assume that the atom or ion is
unpolarized, the second Stokes parameter vanishes. Therefore,
the degree of linear polarization, which we define as PL(θ ), is
equal to the absolute value of the first Stokes parameter, i.e.,
PL =

√
P 2

1 + P 2
2 = |P1| [27]. The procedure for obtaining the

parameters an was also applied to the parameters bk .
We find by analytical evaluation that the relations b1 =

−b3 and b2 = −(1 + b4) are valid for the entire isoelectronic
sequence, energy shares, or type of transition. By considering
these relations, the degree of polarization PL(θ ) takes the form

PL(θ ) =
∣∣∣∣b0[sin2 θ (1 + b1 cos θ − b4 cos2 θ ) + · · · ]

Wy(θ )

∣∣∣∣ . (13)

It can observed that by neglecting parameters bi for i > 4,
the degree of polarization is zero for values of θ equal to
0◦ or 180◦. This is expected since for these angles there is
no unique plane of reaction defined by the direction of the
photons, neither a unique coordinated system that defines the
first photon polarization. Further relations between bi with
i > 4 can thus be expected in order to have PL = 0 for these
geometrical settings. Obtaining such relations goes beyond
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the scope of this work since, as discussed in Sec. III, the
contribution of these (higher) parameters to the degree of
polarization can be neglected.

D. Computation of the S functions

The reduced amplitudes (6) were evaluated by making
use of both the relativistic Coulomb-Green’s function [15,24]
and the finite basis set [19] approaches. The first approach
is based on the formal solution of the Green’s equation of
the atomic Hamiltonian. This function contains the complete
summation (integration) over the Dirac’s spectrum that can
therefore be used to replace the summation in Eq. (6). We note
that the Green’s function is known analytically both for the
nonrelativistic Schrödinger-Coulomb as well as the relativistic
Dirac-Coulomb Hamiltonian and it can be represented in terms
of Laguerre polynomials [25]. The second approach (finite
basis set) has been recently applied to two-photon decay [28]
and two-photon absorption [8] in hydrogenlike ions as well
as to Rayleigh scattering [29,30] in hydrogen. It is based on
enforcing boundary conditions leading to a “discretization of
the continuum,” which enables one to replace the infinite
sum over the bound states as well as the integration over
the continuum by just a “finite summation” over a basis
set [31].

In this work we use the B-splines basis set. Another basis
set, B-polynomials [32], was used to check the results of the

finite basis set method. By carrying out the calculations, we
verified that both approaches yielded identical results for the
values of the coefficients in Eqs. (9) and (12). Finally, to
further assess the accuracy of the reduced matrix elements
S

jν

L1p1,L2p2
, these elements were evaluated in both Coulomb

and Lorentz gauges and tested in a total decay rate expression
as performed in Ref. [19].

III. RESULTS AND DISCUSSION

Figure 2 displays the values of the coefficients ai in the
expansion (9) of the two-photon correlation function Wy(θ )
for the two-photon 2s1/2 → 1s1/2 transition as function of the
nuclear charge Z. We considered only multipoles (L < 4)
that give a visible contribution to the figure. Several different
energy shares (y = 0.1,0.25,0.5) are displayed. We notice that
the angular correlation function is well described, in the low-Z
regime, by Wy(θ ) ∼ a0(1 + cos2 θ ), which corresponds to the
dipole approximation [23]. This is in agreement also with the
more general result of Yang [33], who predicts an angular
correlation of the form [1 + β cos2(θ )] for dipole-dipole
transitions. A deviation to this expression arises from a1 and
a3, which leads to an asymmetry (with respect to θ = 90◦) and
to a “tilt” of the angular correlation function, i.e., a slight
preference of a back-to-back emission of the two photons
(θ = 180◦), when compared with an emission into the same
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FIG. 2. (Color online) Values of the parameters ai defined in Eq. (9), for the 2s1/2 → 1s1/2 transition as a function of Z. The values
obtained in this work, which correspond to different energy shares y = 0.1, 0.25, and 0.5, are represented by a black-solid, red-dashed, and
green-dot-dashed curve, respectively. With exception of a0 (given in s−1), all parameters are dimensionless. The same energy shares values
given by Au [17] are represented by a blue dotted line (y = 0.5), a cyan dot-dot-dashed line (y = 0.25), and by the purple short dashed line
(y = 0.1). The parameters a2 of Ref. [17] are always equal to one, as represented by the purple dotted line. On the bottom right plot, the blue
dotted line refers to values of the total decay rate obtained from the parametrization of Ref. [17]. The black line represents the total decay values
obtained from our current parametrization. The dark green dashed line contains the values provided by Refs. [18,19]. The level of precision of
the plot does not allow one to distinguish differences between these references. Values of parameters bi can be obtained from this figure using
the relations b0 ≈ −a0, b1 ≈ a3, and b4 ≈ −a4.
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direction (θ = 0◦). In order to quantify this deviation, we write
the coefficients ai directly in terms of the reduced amplitudes
S

jν

L1p1,L2p2
(ω2), defined in Eq. (6). By restricting ourselves to

contributions of order (αZ)2 or lower, the angular correlation
is given approximately by

Wy(θ ) ∝ |SE1|2
[(

1 − 4

∣∣∣∣DE1

SE1

∣∣∣∣
)

(1 + cos2 θ )

− 4

∣∣∣∣SM1

SE1

∣∣∣∣ cos θ − 4

∣∣∣∣SE2

SE1

∣∣∣∣ cos3 θ

]
, (14)

where, for the sake of brevity, we introduced the notation

SLp = S
jν

Lp,Lp(ω2) + S
jν

Lp,Lp(ω1) (15)

and

DLp = 2S
jν

Lp,Lp(ω2) + 2S
jν

Lp,Lp(ω1)

+ S
jν+1
Lp,Lp(ω2) + S

jν+1
Lp,Lp(ω1), (16)

with jν = 1/2 for the multipoles 2E1 and 2M1 and jν = 3/2
for the 2E2 case.

By expanding the wave functions and energies inside the
terms S

1/2
2E1(ω) and S

3/2
2E1(ω) in powers of αZ (α being the

fine structure constant), we find that the term DE1 would be
equal to zero, if nonrelativistic wave functions and energies
were employed. Furthermore, this term scales with the atomic
number as (αZ)2. As can be observed from Eq. (14), the
deviations of the angular correlation from the low-Z regime
arise from both interference between the leading multipole
2E1 and the next higher multipoles 2M1 and 2E2 as well as
from relativistic effects.

The term SE1 is five orders of magnitude higher than the
terms SM1 and SE2 for Z = 1. While the term SE1 scales as
(αZ)0, the terms SM1 and SE2 scale as (αZ)2, which gives rise
to the asymmetry of the angular correlation for higher-Z ions.

The scaling laws for the reduced amplitudes (6)
were obtained from the expressions of the reduced matrix
elements [21].

The expression (14) evaluated for the case of two emitted
collinear photons (θ = 0) has the same proportionality to the
multipoles as a similar expression (18) obtained for the case
of the absorption of two collinear photons [8].

Parameters a2 and a4 deviate from one and zero, respec-
tively, for high-Z ions due to terms S

j

2M1(ω) × S
j ′
2M1(ω′),

S
j

2E2(ω) × S
j ′
2E2(ω′), or cross multipoles not listed in Eq. (14),

which scale as (αZ)4. These terms, along with similar ones
in a0, give the contribution of the multipoles M1M1, E2E2,
E1M2, and M2E1 to the total decay rate. Parameters ai with
i > 4 depend on even higher multipoles and can be neglected
even for Z = 100. The parameter a0 and W shown in Fig. 2
scales as (αZ)6 due to the energy transition wt in Eq. (7),
which scales as (αZ)2.

The asymmetry of the angular correlation function was
theoretically first studied by Au [17] using a nonrelativistic
approach with the inclusion of higher (nondipole) order
multipoles. We show in Fig. 2, for comparison purposes, the
parameters obtained by Au for the 2s1/2 → 1s1/2 transition and
y = 0.1,0.25,0.5. For low-Z ions, we find good agreement
between our results and Au’s results in all parameters [34].
On the other hand, the agreement between the two data

sets becomes worse for increasing values of Z. As can be
observed from Eq. (14), the first correction to the term a0

comes from relativistic effects, i.e., from the term DE1. In our
work the full extent of these effects was taken into account
using the Dirac theory, while in Ref. [17] nonrelativistic wave
functions were used with a relativistic correction to the 2E1
multipole.

To further assess our parameters a0 and a2, we evaluated the
total decay rate by integrating our angular correlation function
in dy and d cos θ and compared it with Refs. [18,19]. The
bottom right panel of Fig. 2 shows a plot of the total decay
rate for several values of Z and values from other references.
The difference between the values of Ref. [18] and Ref. [19]
is so small that both references can be represented by a single
line. The plot in Fig. 2 highlights that our results are in good
agreement with the above two references. However, this is not
the case for the Au values of the decay rate, which have a
maximum discrepancy of 12% for Z = 100.

We observed good agreement between our results of the
parameters a1 and the respective results of Ref. [17] for y =
0.5, and this would seem to indicate a good agreement of the
2M1 multipole contribution [see Eq. (14)]. With decreasing
energy sharing values the agreement degrades, the maximum
difference being at y = 0.1 and Z = 100 of 60%. On the other
hand, for the parameters a3, there is some disagreement in
the 2E2 multipole with high-Z ions at all energy shares, the
maximum difference being of 35% for y = 0.25 and Z = 100.
There were similar discrepancy values for the a2 parameter and
the maximum difference was 20% for Z = 100 and y = 0.1.
In the parametrization provided by Ref. [17], the a2 is equal to
one for all energy shares and atomic numbers.

The asymmetry of the correlation function due to the
relativistic and nondipole contribution was also investigated by
Surzhykov et al. [15], who carried out a relativistic evaluation
of all relevant multipoles. Table I shows values for the intensity
ratio between the angular correlation under 0◦ and 180◦
obtained in the present work, as well as by Au [17] and
Surzhykov et al. [15]. As can be observed, good agreement
is found for the values presented by Surzhykov et al. [15].

Overall, we noticed that deviations from the formula
Wy(θ ) = a0(1 + cos2 θ ) start playing a role, reaching a
size of some percent from hydrogenlike Tin ion onwards
(Z � 50).

As with the angular correlation function, the nondipole
and relativistic effects on the degree of linear polarization
function (13) can also be estimated by restricting its evaluation
to contributions of order (αZ)2 or lower. The result of this

TABLE I. Intensity ratio between the angular correlation between
0◦ and 180◦ for several values of the atomic number and equal energy
sharing (y = 0.5). Comparison between the values obtained in this
work and other theoretical values.

W 0.5(180◦)/W 0.5(0◦)

Z = 1 Z = 54 Z = 92

Surzhykov et al. [15] 1.000 1.038 1.124
Au [17] 1.000 1.038 1.131
This work 1.000 1.038 1.123
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shares y = 0.1, 0.25, 0.5 are represented by a black-solid, red-dashed, and green-dot-dashed curve, respectively. With exception of a0 (given
in s−1), all parameters are dimensionless. Values for parameters bi can be obtained from this figure (within its resolution) using the relations
b0 ≈ −a0/13 and b1 ≈ 13a3.

procedure is given by

PL(θ ) ≈
∣∣∣∣∣

−(
1 − 4

∣∣DE1
SE1

∣∣) sin2 θ
(
1 − 4

∣∣SE2
SE1

∣∣ cos θ
)

(
1 − 4

∣∣DE1
SE1

∣∣)(1 + cos2 θ
) − 4

∣∣SM1
SE1

∣∣ cos θ − 4
∣∣SE2
SE1

∣∣ cos3 θ

∣∣∣∣∣ . (17)

The numerator of the degree of linear polarization (12) in
2s1/2 → 1s1/2 transitions can be well described by a0 sin2 θ ,
so that PL(θ ) = sin2 θ/(1 + cos2 θ ) [35], as long as the atomic
number is relatively small.

Equation (17) highlights that a0 = −b0 and a3 = b1 if
multipoles lower than three were employed and also in this

case b0 and b1 could be obtained from Fig. 2. The maximum
degree of polarization corresponds to θ = 90◦ [PL(90◦) =
|b0/a0|]. This maximum is not much affected by nondipole
and relativistic effects with explicit values of 1 for y = 0.5 and
0.9 for y = 0.1. As in the case of a4, parameters b4 depend on
multipole contributions of order (αZ)4, which are not shown
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FIG. 4. (Color online) Values of the parameters ai defined in Eq. (9), for the 2d5/2 → 1s1/2 transition as a function of Z. The different
energy shares y = 0.1, 0.25, 0.5 are represented by a black-solid, red-dashed, and green-dot-dashed curve, respectively. With exception of a0

(given in s−1), all parameters are dimensionless.
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TABLE II. Values of the parameters ai and bi defined in Eqs. (9) and (12), for the transition 2s1/2 → 1s1/2. The energy sharing is fixed at
y = 0.5. All parameters are dimensionless, with the exception of a0 and b0, which are given in s−1.

Z a0/Z
6 a1 × 106/Z2 a2 a3 × 106/Z2 a4 × 1012/Z4 b0/Z

6 b1 × 106/Z2 b4 × 1012/Z4

1 3.9942 −6.7348 1.0000 −5.4827 7.5149 −3.9942 −5.4827 −7.5149
4 3.9935 −6.7378 1.0000 −5.4826 7.5147 −3.9935 −5.4826 −7.5147
8 3.9911 −6.7472 1.0000 −5.4824 7.5142 −3.9911 −5.4824 −7.5142
12 3.9871 −6.7630 1.0000 −5.4820 7.5132 −3.9871 −5.4821 −7.5132
16 3.9816 −6.7851 1.0000 −5.4815 7.5119 −3.9816 −5.4816 −7.5119
20 3.9744 −6.8135 1.0000 −5.4808 7.5101 −3.9744 −5.4809 −7.5102
30 3.9494 −6.9118 0.9998 −5.4781 7.5037 −3.9491 −5.4788 −7.5040
40 3.9142 −7.0488 0.9993 −5.4736 7.4941 −3.9132 −5.4757 −7.4951
50 3.8683 −7.2232 0.9984 −5.4664 7.4807 −3.8658 −5.4716 −7.4830
54 3.8468 −7.3029 0.9978 −5.4625 7.4740 −3.8434 −5.4697 −7.4771
60 3.8111 −7.4323 0.9966 −5.4553 7.4625 −3.8058 −5.4665 −7.4672
70 3.7419 −7.6704 0.9935 −5.4385 7.4381 −3.7319 −5.4602 −7.4466
80 3.6591 −7.9268 0.9885 −5.4136 7.4063 −3.6418 −5.4528 −7.4202
90 3.5614 −8.1788 0.9808 −5.3766 7.3640 −3.5332 −5.4436 −7.3849
92 3.5402 −8.2248 0.9788 −5.3671 7.3535 −3.5093 −5.4414 −7.3759
100 3.4474 −8.3798 0.9692 −5.3215 7.3078 −3.4036 −5.4321 −7.3363

in Eq. (17). We found that a4 ≈ −b4 for all the isoelectronic
sequence. Moreover, like in the case of ai , parameters bi

with i > 4 depend on higher multipoles and therefore can
be neglected.

As shown in Fig. 2, the deviations from both the angular
correlation and the degree of linear polarization present a
nontrivial dependence on the energy sharing that characterizes
the decay: ai=0,2,4 are greater in magnitude for higher energy
shares, while ai=1,3 and bi=0,1,4 are smaller with increasing
values of energy shares.

Other transitions in which a two-photon emission is
observed are the 3d3/2 → 1s1/2 and 3d5/2 → 1s1/2 [36]. Unlike
the 2s1/2 → 1s1/2 transition that we studied above, these
transitions are resonant and exhibit peaks for certain values
of y corresponding to the 3d3/2,5/2 → 2p3/2,1/2 → 1s1/2

2E1 decay channels [28]. In the nonrelativistic limit, these

resonances have a single value of yr = 5/32 ≈ 0.156.
Figures 3 and 4 report the coefficients ai and bi as obtained for
the two-photon transitions 3d3/2 → 1s1/2 and 3d5/2 → 1s1/2,
respectively. The values of y = 0.1 and 0.25 were chosen to
be outside the region of the resonant peak, thus avoiding its
influence on the angular correlation function over all values
of Z (see Fig. 5 of Ref. [28]).

Similar to what is observed on Fig. 1, deviations from the
nonrelativistic formula Wy(θ ) ≈ a0(1 + cos2 θ/13) [22] are of
the order of some percent from Z ≈ 50 onwards. Also in the
lower Z regime the degree of linear polarization is given by
PL(θ ) = sin2 θ/(13 + cos2 θ ). As for the ai case, parameters
bi of the 3d3/2 → 1s1/2 transition can be obtained from Fig. 3
using the following relations b0 ≈ −a0/13 and b1 ≈ 13a3.
Like the case of the 2s1/2 → 1s1/2 transition, relativistic and
nondipole effects do not give a sizable contribution to the

TABLE III. Same as Table II but for 3d3/2 → 1s1/2 transition.

Z a0/Z
6 a1 × 106/Z2 13 × a2 a3 × 106/Z2 a4 × 1012/Z4 13 × b0/Z

6 b1 × 106/(13Z2) b4 × 1012/(13Z4)

1 4.7852 −6.9947 1.0000 −1.0110 3.3220 −4.7852 −1.0110 −3.3220
4 4.7846 −6.9911 0.9996 −1.0110 3.3228 −4.7839 −1.0112 −3.3233
8 4.7824 −6.9795 0.9984 −1.0108 3.3254 −4.7797 −1.0118 −3.3273
12 4.7788 −6.9600 0.9963 −1.0106 3.3297 −4.7726 −1.0128 −3.3340
16 4.7738 −6.9326 0.9934 −1.0103 3.3358 −4.7628 −1.0143 −3.3435
20 4.7673 −6.8969 0.9897 −1.0099 3.3438 −4.7501 −1.0162 −3.3559
30 4.7443 −6.7704 0.9768 −1.0084 3.3721 −4.7058 −1.0228 −3.3997
40 4.7111 −6.5852 0.9587 −1.0062 3.4139 −4.6431 −1.0324 −3.4638
50 4.6666 −6.3323 0.9352 −1.0031 3.4713 −4.5612 −1.0454 −3.5513
54 4.6453 −6.2092 0.9243 −1.0016 3.4994 −4.5229 −1.0516 −3.5939
60 4.6090 −5.9978 0.9061 −0.9988 3.5479 −4.4590 −1.0623 −3.6671
70 4.5365 −5.5608 0.8708 −0.9928 3.6490 −4.3353 −1.0838 −3.8179
80 4.4453 −4.9896 0.8282 −0.9844 3.7829 −4.1876 −1.1113 −4.0148
90 4.3327 −4.2339 0.7762 −0.9721 3.9615 −4.0146 −1.1461 −4.2737
92 4.3080 −4.0543 0.7645 −0.9688 4.0037 −3.9775 −1.1541 −4.3343
100 4.1957 −3.2113 0.7113 −0.9530 4.2046 −3.8159 −1.1905 −4.6199
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TABLE IV. Same as Table II but for 3d5/2 → 1s1/2 transition.

Z a0/Z
6 a1 × 106/Z2 13 × a2 a3 × 106/Z2 a4 × 1012/Z4 13 × b0/Z

6 b1 × 106/(13Z2) b4 × 1012/(13Z4)

1 4.7851 −6.9953 1.0001 −1.0111 3.3221 −4.7852 −1.0110 −3.3219
4 4.7820 −7.0002 1.0016 −1.0121 3.3243 −4.7848 −1.0111 −3.3224
8 4.7722 −7.0158 1.0066 −1.0153 3.3317 −4.7832 −1.0113 −3.3240
12 4.7558 −7.0420 1.0149 −1.0207 3.3439 −4.7805 −1.0117 −3.3266
16 4.7329 −7.0788 1.0266 −1.0283 3.3612 −4.7766 −1.0123 −3.3305
20 4.7036 −7.1265 1.0418 −1.0381 3.3837 −4.7712 −1.0132 −3.3356
30 4.6018 −7.2946 1.0960 −1.0733 3.4639 −4.7503 −1.0165 −3.3553
40 4.4601 −7.5374 1.1756 −1.1251 3.5822 −4.7148 −1.0223 −3.3877
50 4.2790 −7.8629 1.2846 −1.1964 3.7458 −4.6583 −1.0317 −3.4382
54 4.1957 −8.0187 1.3378 −1.2313 3.8261 −4.6282 −1.0369 −3.4651
60 4.0593 −8.2827 1.4294 −1.2916 3.9653 −4.5729 −1.0465 −3.5145
70 3.8024 −8.8127 1.6188 −1.4175 4.2570 −4.4493 −1.0689 −3.6274
80 3.5091 −9.4751 1.8665 −1.5844 4.6467 −4.2759 −1.1022 −3.7938
90 3.1821 −10.2988 2.1932 −1.8090 5.1749 −4.0418 −1.1513 −4.0390
92 3.1134 −10.4854 2.2706 −1.8629 5.3018 −3.9874 −1.1635 −4.1003
100 2.8250 −11.3217 2.6331 −2.1191 5.9100 −3.7368 −1.2236 −4.4060

maximum degree of polarization [PL(90◦) = 1/13] of the first
photon emitted by the 3d3/2 → 1s1/2 transition. However, this
is not the case of the 3d5/2 → 1s1/2 transition, where PL(90◦)
increases by 20% from neutral hydrogen to H-like uranium for
y = 0.5.

Tables II–IV in the Appendix provide the values of the
parameters ai and bi with i < 5 for the transitions considered
in this work for a few atomic numbers and for the case of
equal energy sharing. The values of parameters not shown in
the Figs. 3 and 4 can be found in these tables.

The angular correlation and the degree of linear polarization
expressed as Eqs. (9) and (12), together with the parameters in
Figs. 2–4, provide a theoretically well-justified fit model for
any future experiments that involve two-photon polarization,
for example, the parity nonconservation mixing coefficient
measurement [7].

IV. SUMMARY

We analyzed the angular correlation and the degree of linear
polarization for the radiation emitted in two-photon decay of
hydrogenlike ions for the transitions 2s1/2 → 1s1/2, 3d3/2 →
1s1/2, and 3d5/2 → 1s1/2. These two physical quantities were
expanded in powers of cos θ and the coefficients were plotted
for the entire isoelectronic sequence (1 � Z � 100). By
restricting ourselves to the first two multipoles of the photon
field expansions, these coefficients were written in terms of
the reduced amplitude of the process. Overall, we have shown
that the coefficients that deviate from nonrelativistic formulas
begin to be some percent from approximately hydrogenlike tin
ion onwards (Z � 50).

When available, a comparison with previous works was
performed in order to verify these present results.

The parametrization of the angular correlation and the
degree of linear polarization presented in this work could
be exploited in future experiments aimed at measuring the
angular and polarization properties of the radiation emitted in
two-photon decay of atoms or ions.
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APPENDIX: TABLES OF THE PARAMETERS

The values for the parameters ai and bi are shown, for a
few atomic numbers and equal energy sharing. b2 and b3 are
not shown since the relations b2 = −(1 + b4) and b3 = −b1

hold true.
The considered transitions are 2s1/2 → 1s1/2, 3d3/2 →

1s1/2, and 3d5/2 → 1s1/2, which are displayed in Tables II,
III, and IV, respectively.
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