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Electrostatic calibration method for large-amplitude dynamic Casimir force measurements
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Electrostatic calibration is important in Casimir force measurements. It is necessary for the estimation of the
unknown system parameters such as the absolute separation distance and the identification of the electrostatic
force model. Correct estimates of the unknown parameters and the electrostatic force model are crucial for
interpreting the Casimir force data. In this paper, we present an electrostatic calibration method with higher
sensitivity and robustness. It is based on large-amplitude dynamic force measurements. It is proven in theory that
the unknown system parameters can be obtained accurately and the electrostatic force model can be identified by
our method. The effectiveness and robustness of our method are tested on synthetic data with added noise when
the Casimir force measurement is conducted between a sphere and a flat surface.
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I. INTRODUCTION

The Casimir force exists between two electrically neu-
tral and nonmagnetic bodies [1]. The Casimir effect is a
macroscopic phenomenon of quantum mechanics, which can
be explained by zero-point electromagnetic energy. There is
significant interest in studying the origin of the Casimir force
and how it is modified by temperature, material properties, and
geometries of the interacting materials [2–4]. It is interesting to
explore the relationship between the Casimir force and the four
fundamental forces, which may help generalize unification
theories [5]. The understanding of the Casimir force also
contributes to the progress of elementary-particle, atomic, and
condensed-matter physics [6]. Besides, the Casimir force is an
important design factor in nanoeletromechanical systems [7].

In order to verify various hypotheses and theories of the
Casimir force, extensive experiments were performed during
the last decade at the submicrometer level based on atomic
force microscopy (AFM) [8] and micromachined torsional
balance [9]. The first precise measurement was conducted
in a vacuum environment between a sphere and a flat plate,
both coated with gold [10]. The issue of parallel alignment
[11] was successfully avoided by using the sphere-plate
configuration. Subsequently, experiments were performed
between sample surfaces with a cylinder geometry [12] and
complex geometries, such as sinusoidal corrugations [13] and
regular trenches [14]. It was also found that the Casimir
force can be altered if interacting materials are with different
dielectric permittivities [15]. Recently, thermal Casimir force
measurements were conducted [16,17]. In most situations,
the Casimir force between interacting materials is attractive,
but it can be repulsive if suitable materials and mediums are
chosen [18–20]. The experimental verification of the repulsive
Casimir force was observed between gold and silica in the fluid
bromobenzene [21], while theories predict that the repulsive
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Casimir force can also be observed between some novel
materials in air or vacuum [22,23].

Although extensive measurements were conducted, novel
instrumentation methods and data analysis techniques with
better accuracy and robustness are needed [24]. Measurement
uncertainties will raise the ambiguity in interpreting the exper-
imental data [25]. Currently, there are some obstacles for im-
proving the accuracy of the Casimir force measurements. First
of all, it is a challenge to obtain an accurate estimate of the sep-
aration gap between the interacting materials in Casimir force
measurements [26]. It is not easy to employ external devices
to measure this quantity, as the size of the interacting materials
is much larger than the separation gap in Casimir force mea-
surements [27]. On the other hand, there are many issues and
debates in modeling, characterizing, and reducing the electro-
static forces [28,29]. As electrostatic forces of different origins
coexist with the Casimir force in all Casimir force experiments,
any errors in characterizing electrostatic forces will directly
affect the Casimir force data [30]. The conventional electro-
static calibration method [27] for calculating the separation
distance and characterizing the electrostatic forces has several
shortcomings. First, electrostatic calibrations are conducted at
very large separations (several micrometers) in order to mini-
mize the effect of the Casimir force. Even a 1% measurement
error in R (the radius of the sphere) will lead to >10 nm of
measurement errors in the separation distance estimate. This
will create huge discrepancies in interpreting the Casimir force
data, as some Casimir force measurements were conducted at
separations below 100 nm. Second, electrostatic calibrations
are conducted statically. As measurements are conducted at
different separations in steps that are time consuming, the
measurement accuracy will be affected by noise and drift.

In this paper, we propose an electrostatic calibration method
based on large-amplitude dynamic force measurements at
separations between 500 nm and 2 μm, where the electrostatic
force is strong and the Casimir force cannot be neglected.
This is motivated by the fact that large-amplitude dynamic
force measurements are proven to be more robust and sensitive
than static force measurements in the AFM community [31].
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Compared to small-amplitude dynamic atomic force measure-
ments [32], the electrostatic calibration by large-amplitude
force measurements can be performed without moving the
piezo transducer in steps. Large-amplitude dynamic Casimir
force measurements were reported in Ref. [33] and showed a
significant improvement in measurement sensitivities. How-
ever, nonlinear phenomena have been predicted and observed
[33–35], which leads to difficulties in interpreting the mea-
surement results. In our previous work, we have proposed a
method to estimate the absolute separation distance based on
large-amplitude dynamic force measurements [36]. But this
method is based on an assumption that the electrostatic force
has the model of Fe = −πε0R[V 2

m + V 2
1 ]/d, where ε0 is the

permittivity of free space, R is the sphere radius, Vm is the
contact potential difference between two interacting materials
which can be neutralized, d is the separation gap, and V1 is
due to the electrostatic patch charge which is assumed to be
known in that paper. In practice, it is not possible to calculate
V1 because the distribution of electrostatic patch charge is
unknown and there are huge debates on different electrostatic
force models [37]. All of these issues will be addressed by
the proposed method in this paper. It will be shown that one
is able to estimate the unknown parameters accurately via the
proposed method. Its effectiveness and robustness are tested on
synthetic data with noise when the Casimir force measurement
is conducted between a sphere and a flat surface. At the same
time, the electrostatic force model can be justified as well.

II. MODEL

Our method is based on a modified AFM where the
probeless cantilever is electrically isolated and the spherical
surface is mounted on the motorized actuator [29]. The
measurement setup is shown in Fig. 1. Our method can also be
modified for other Casimir force experimental setups like the
micromachined torsional balance reported in Refs. [9,17]. A
sinusoidal excitation signal is used to excite the cantilever to
produce large-amplitude vibrations (hundreds of nanometers).
The deflection of the cantilever is measured from the optical
detector. The dynamic equation of the cantilever is given by

ẍ(t) + 2γ ẋ(t) + k

m
x(t) = I

m
sin ωt − 1

m

{
V 2

1 Fe(n,[z + x(t)])

+Fc(z + x(t))
}
, (1)

FIG. 1. (Color online) The schematic of the measurement setup.

where x(t) is the instantaneous position of the cantilever
end which can be measured by the deflecting optical beam,
m is the effective mass of the cantilever, γ describes the
system damping, k is the spring constant of the cantilever,
I is the amplitude of the excitation signal, ω is the excitation
frequency, Fe(n,[z + x(t)]) is the electrostatic force, Fc(z +
x(t)) denotes the Casimir force between the sphere and the
cantilever, and z is the separation gap when the cantilever is
in equilibrium. Here we assume that the electrostatic force
is partially neutralized by applying an external bias voltage
and V1 denotes the voltage difference which may be due to
the electrostatic patch potential fluctuation. The residue of
the electrostatic force can be modeled or approximated as the
following equation:

Fe(n,d) = πε0R

dn
, (2)

where n is a positive number. In the literature, there were
reported measurements showing that the electrostatic force
model [Eq. (2)] is different from the standard model of the
electrostatic force between a large sphere and a flat surface
[29]. This observation suggests that the assumption of n = 1
without any verification is not always true, and the value
of n needs to be determined. The model of the Casimir
force depends on temperature, materials, and geometries.
As the electrostatic calibration is conducted at a separation
distance below 2 μm, the thermal effect is small compared to
the electrostatic force and it is neglected here. Both the
cantilever and the sphere are coated with gold. Then the
Casimir force can be calculated as

Fc(d) = π3h̄cR

360d3
rc(d), (3)

where rc(d) is the conductivity correction to the ideal Casimir
force [38]. Here we use the approximation form of rc(d) =
exp(−4δ0/d) [39], where δ0 = 137/2π nm is the effective
penetration depth of gold. This approximation has less than
0.6% error when the separation distance is larger than 500 nm.
The error can be further reduced by using higher-order
approximations, but it is good enough to use this first-order
approximation. As the electrostatic calibration is conducted at
separations larger than 500 nm, the correction to the Casimir
force due to the surface roughness is less than 0.1%, even if the
roughness amplitude is 10 nm for a flat surface [40]. Thus, the
roughness correction is not considered in this paper. But we
point out that our method is still effective if the roughness
correction or even geometry correction is considered. The
objective of the electrostatic calibration is to estimate the
unknown quantities z, V1, and n based on the available
measurement data of the excitation signal and the cantilever
vibrations x(t).

III. METHOD

Four linear filters are required in our estimation process:

ξ̈1(t) + 2γ1ξ̇1(t) + k

m
ξ1(t) = Fe(n̂,ẑ + x(t))

m
, (4)

ξ̈2(t) + 2γ1ξ̇2(t) + k

m
ξ2(t) = Fc(ẑ + x(t))

m
, (5)

042504-2



ELECTROSTATIC CALIBRATION METHOD FOR LARGE- . . . PHYSICAL REVIEW A 86, 042504 (2012)

ζ̈ (t) + 2γ1ζ̇ (t) + k

m
ζ (t) = ẍ(t) + 2γ ẋ(t) + k

m
x(t), (6)

ψ̈(t) + 2γ1ψ̇(t) + k

m
ψ(t) = I

m
sin ωt, (7)

where n̂ is the estimate of n. Based on reported measurements,
n < 2 . Thus, the range of n̂ can be limited to 0 < n̂ < 2. Our
method is still effective even if we further extend the range of n̂

as long as Eq. (12) is satisfied. ẑ is the estimate of z. In Eqs. (4)
and (5), the force inputs to the second-order system are the esti-
mated electrostatic force and Casimir force where the unknown
separation gap z is replaced by the estimate ẑ. Other correction
factors such as surface roughness can be considered in the
Casimir force model as well, and our method is still effective
if the unknown separation distance z is replaced by its estimate
ẑ in the proposed linear filters [Eqs. (4) and (5)]. Since collision
between the sphere and the cantilever should be avoided in the
real experiment, ẑ must satisfy [ẑ + x(t)] > 0. γ1 is chosen
to satisfy γ1 >

√
k/m. We denote that y(t) = ψ(t) − ζ (t). Al-

though only x(t) is measurable, we can get ζ (t) by passing x(t)
through the linear transfer function: (s2 + 2γ1s + k/m)/(s2 +
2γ s + k/m). Inspired by Schwarz inequality, we construct a
cost function with respect to ẑ in the time interval [t1,t2]:

G(ẑ) =
∫ t2

t1

[y(t) − ξ2(t)]2dt −
( ∫ t2

t1
{[y(t) − ξ2(t)]ξ1(t)}dt

)2∫ t2
t1

[
ξ 2

1 (t)
]
dt

.

(8)

When n̂ = n, it is proven in the Appendix that the cost
function has the following properties under normal operation
conditions:

dG(ẑ)

dẑ
< 0 (ẑ < z), (9)

dG(ẑ)

dẑ
= 0 (ẑ = z), (10)

dG(ẑ)

dẑ
> 0 (ẑ > z), (11)

if the positive functions Fc(x) and Fe(n,x) with x > 0 satisfy
the following conditions:

d
dFe(n,x)/dx

Fe(n,x)

dx
> 0,

d
dFc(x)/dx

Fe(n,x)

dx
> 0,

(12)
d

dFc(x)/dx

Fc(x)

dx
> 0,

d Fc(x)
Fe(n,x)

dx
< 0,

dFc(x)

dx
< 0.

It is easy to show that our electrostatic force model Fe(n,x)
and the Casimir force model Fc(x) satisfy these conditions.
In other words, the cost function G(ẑ) has only one local
minimum and it will reach it only when ẑ = z. It is also proven
that G(ẑ = z) = 0 [?]. Thus, optimization methods such as the
gradient method and golden section search method [41] can
be applied to locate the local minimum of the cost function
G(ẑ). Once the accurate estimate of z is obtained, it is easy to
show that V1 can be estimated accurately:

V̂1 =
√∫ t2

t1

{[y(t) − ξ2(t)]ξ1(t)}dt
/∫ t2

t1

[
ξ 2

1 (t)
]2

dt. (13)

However, if the electrostatic force model in the experiment
is different from the model assumed in our estimation

algorithm (n̂ �= n), then the location of the local minimum
of G(ẑ) will shift to another position where ẑ �= z. Thus,
an estimation error in absolute separation distance will be
produced if the electrostatic force model assumed in our
method is not correct. This is the reason why the identification
of the electrostatic force model, in other words, estimating n,
is important in the electrostatic calibration process.

Here, we propose to excite the cantilever vibrations at
three separation distances (z1,z2,z3) in order to estimate n

accurately. Although it is not possible to measure directly the
separation distances, it is feasible to measure their differences
(e.g., z1 − z2, z2 − z3) by measuring the distances of piezo
movements. The estimation processes will be conducted with
different estimates of n at each separation distance. If n̂ = n is
assumed in the algorithm, then the differences in the estimated
separation distances (ẑ1 − ẑ2, ẑ2 − ẑ3) should be matched with
measured distances of piezo movements (z1 − z2 and z2 − z3),
respectively. On the other hand, if n̂ �= n is assumed in the
algorithm, then the location of the local minimum of G(ẑ)
will shift to another position where ẑ �= z, as mentioned in
the previous paragraph. As the dynamic system and G(ẑ) are
highly nonlinear in nature, the amount of shift will be different
if the cantilever vibrates at different separation distances. In
that case, ẑ1 − ẑ2 and ẑ2 − ẑ3 will not be consistent with
measured distances of piezo movements if a wrong estimate
of n is assumed in our algorithm. Thus, by comparing ẑ1 − ẑ2

and ẑ2 − ẑ3 computed at different n̂ with the piezo movement
distances, we are able to estimate n accurately and identify
the correct electrostatic force model. Besides the Casimir
force research, accurate identification of the electrostatic force
model can help us understand various electrostatic effects. As
discussed above, the absolute separation distance z and V1 can
be calculated correctly once n is estimated accurately.

IV. SIMULATION STUDIES

Our method will be tested based on synthetic data generated
by computer simulations. The fourth-order Runge-Kutta nu-
merical method with a step size of 1 × 10−7 is used to simulate
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FIG. 2. (Color online) The strength of the Casimir force and the
residue electrostatic force in the numerical studies.
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FIG. 3. (Color online) The trajectory of cantilever vibration.

the system dynamics described by Eq. (1). The system param-
eters used in Eq. (1) are similar to the real experiment setup
reported in Ref. [29]. In all of our simulations, R = 30 mm,
k = 1 N/m, ω0 = √

k/m = 2π × 8 kHz, and λ = 240 s−1.
The cantilever is much softer in our simulations compared to
Kim’s setup [29] in order to have large-amplitude vibrations.
The excitation signal is set as I/m = 3 m/s2 and ω = ω0. The
electrostatic force is modeled as Fe(d) = πε0R

dn with n = 1.2.
The voltage difference due to the electrostatic patch charge is
chosen to be V1 = 10 mV, which is in the range of theoretical
predictions and experimental findings [17,42,43]. Data in the
time interval [0.09,0.1] are processed in the algorithm.

Thus, the strength of the Casimir force and the electrostatic
force in our numerical studies can be calculated (Fig. 2). It can
be seen that the residue electrostatic force is stronger than the
Casimir force when the separation distance is above 500 nm.
Neglecting the Casimir force in any calibration methods
in this regime will give errors in determining the absolute
separation distance and characterizing the electrostatic force.
Next, estimation results will be presented separately when
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FIG. 4. (Color online) The cost function G(ẑ) with respect to ẑ.
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FIG. 5. (Color online) The estimated piezo movement with
respect to different n̂ when the separation distance is changed from
800 nm to 1200 nm and the measurement is free of noise.

measurement data are clean and when measurement data are
subject to noise.

A. Noise-free measurement data

Here, we present the estimation results produced by our
method when the cantilever trajectory x(t) measurement is
free of noise. The cantilever-sample separation distance at
the equilibrium is set to be z = 1200 nm. The trajectory of
the cantilever vibration is plotted in Fig. 3. It can be seen
that the cantilever is experiencing large-amplitude sinusoidal
vibration. The cost function G(ẑ) with respect to different
estimates of z is calculated when n̂ = n = 1.2. It is shown
that there is only one local minimum in G(ẑ) and it is located
at ẑ = z = 1200 nm (Fig. 4). Thus, if the assumption on the
electrostatic force model is correct, then it is able to find the
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FIG. 6. (Color online) The trajectory of cantilever vibration with
Gaussian noise.
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TABLE I. Estimated separation distance (nm) when the measurement is noiseless.

z (nm) n̂ = 0.9 n̂ = 1 n̂ = 1.1 n̂ = 1.2 n̂ = 1.3 n̂ = 1.4 n̂ = 1.5

800 688.07 721.93 759.38 800.00 843.65 890.29 939.08
1000 839.55 888.51 942.16 1000.00 1061.57 1126.14 1193.01
1200 988.90 1053.91 1124.51 1200.00 1279.38 1362.05 1447.28

accurate estimate of the separation distance by employing
searching algorithms such as gradient method and golden
section search method to locate the only local minimum.

Next, estimation processes with different n̂ assumed in the
algorithm are conducted at z = 800, 1000, and 1200 nm, in
steps of 200 nm. The results are listed in Table I. It is found
that when the assumption of the electrostatic force model is
correct (n̂ = n), accurate separation distances can be obtained.
As mentioned, although the absolute value of z is unknown,
the step distance of the piezo movement can be measured.
The differences in the estimated separation distances can only
be correctly matched with the piezo movements when the
correct model of the electrostatic force n̂ = n = 1.2 is assumed
(Fig. 5). The mismatch is larger if there is a larger difference
in the electrostatic force model. The differences in estimated
separation distances are found to be 382.35 and 417.65 nm
for n̂ = 1.15 and 1.25, respectively, when the piezo moves
from z = 800 nm to z = 1200 nm. This means that if the
measurement error of the piezo movement is less than 4%,
then we will be able to determine the correct estimate of n

with a resolution of δn = 0.05. In practice, the measurement
error of the piezo can be greatly reduced by calibrations [44].
The voltage difference due to the electrostatic patch potential
fluctuation is estimated to be V̂1 = 10.0 mV via Eq. (13),
which is very accurate.

B. Noisy measurement data

Noise is always present in real measurements and any
proposed calibration methods must be robust to noise. We
also test the robustness of our method based on synthetic
data. Gaussian noise with zero mean and standard deviation
of 1 nm is added to x(t). The noisy data x(t) are then
processed in our algorithm. The noisy x(t) is plotted (Fig. 6)
when the cantilever is vibrating at the equilibrium separation
distance z = 1200 nm. It is found that the cost function G(ẑ)
still has one local minimum. Our method has been tested
with uncorrelated Gaussian noise sequences with zero mean
and standard deviation of 1 nm. Statistically, the estimated
separation distance is ẑ = 1199.82 ± 1.92 nm. Estimations
are also conducted when different electrostatic models are
assumed at three equilibrium separation distances (Table II).
Only one noise sequence is added to the trajectory x(t) during

the estimation processes. The differences in the estimated
separation distances are plotted when the piezo moves from
z = 800 nm to z = 1200 nm for different models of the
electrostatic force assumed (Fig. 7). It could be seen that one
is still able to identify the correct electrostatic force model by
comparing the differences in the estimated separation distances
with the piezo movements. The voltage difference due to
electrostatic patch charge is calculated to be V̂1 = 10.025 mV
at z = 1200 nm.

We point out that more accurate results could be obtained
by filtering x(t) properly to reduce the noise effect [45].
Alternatively, estimations could be carried out at different
time intervals and estimates based on different intervals can
be averaged. For uncorrelated noises, the average value of the
estimates will have better accuracy and confidence level.

V. CONCLUSION

In this paper, an electrostatic calibration method for Casimir
force measurements based on large-amplitude dynamic force
measurement is introduced. The proposed electrostatic cal-
ibration method relies on signal processing algorithms to
estimate the unknown system parameters such as the absolute
separation distance and to identify the correct electrostatic
force model when one of the interaction surfaces is vibrating at
large amplitudes. There are several advantages when compared
to the conventional method. First of all, the measurement
sensitivity is greatly enhanced, as our proposed calibration
is conducted at smaller separations where the electrostatic
force is stronger. Second, as large-amplitude dynamic force
measurements are performed, our method is much more robust
to noise and drift. It is proven in theory and numerical studies
that it is able to obtain an accurate estimate of the absolute
separation distance and identify the correct electrostatic force
model.

APPENDIX: PROOF OF EQUATIONS (9)–(11)

In this section, we will prove that the proposed cost function
G(ẑ) has the properties described by Eqs. (9)–(11) under
normal operation conditions if the positive functions Fc(x)
and Fe(x) with x > 0 satisfy Eq. (12).

TABLE II. Estimated separation distance (nm) when the measurement is subject to noise.

z (nm) n̂ =0.9 n̂ =1 n̂ =1.1 n̂ =1.2 n̂ =1.3 n̂ =1.4 n̂ =1.5

800 (nm) 688.51 722.48 759.82 800.72 844.63 891.00 940.06
1000 (nm) 840.43 889.66 943.31 1001.43 1062.88 1127.73 1194.88
1200 (nm) 990.32 1055.60 1126.38 1202.15 1281.96 1364.89 1450.13
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FIG. 7. (Color online) The estimated piezo movement with
respect to different n̂ when the separation distance is changed from
800 nm to 1200 nm and the measurement is subject to noise.

When γ1 >
√

k/m, the second-order filters described by
Eqs. (4)–(7) are overdamped, which leads to

y(t) =
∫ t

0
Q(t − τ )

[
V 2

1
Fe(z + x(τ ))

m
+ Fc(z + x(τ ))

m

]
dτ,

(A1)

ξ1(t) =
∫ t

0
Q(t − τ )

Fe(ẑ + x(τ ))
m

dτ, (A2)

ξ2(t) =
∫ t

0
Q(t − τ )

Fc(ẑ + x(τ ))
m

dτ, (A3)

where Q(t − τ ) = ( e−α(t−τ )−e−β(t−τ )

β−α
), α = γ1 −

√
γ 2

1 − ω2
0, and

β = γ1 +√
γ 2

1 −ω2
0. Under normal operation condition, the

trajectory x(t) is dominated by the fundamental sinusoidal,
which could be expressed as x(t) = A sin(ωt + φ) + d0. This
leads to

Fc(z + x(t))
m

= Fc(z + d0 + A sin(ωt + φ))
m

= L0(z)

m
+

+∞∑
i=1

Li(z)

m
sin(iωt + φi)

≈ L0(z)

m
+ L1(z)

m
sin(ωt + φ), (A4)

where L0(z) = 1
T

∫ T

0 Fc(z + d0 + A sin(ωt + φ))dt , Li(z) =
1
T

∫ T

0 2Fc(z + d0+A sin(ωt + φ)) sin(iωt+φi)dt , φi = φ (i =
1,3,5, . . .), and φi = φ + π

2 (i = 2,4,6, . . .). Higher-order
harmonics are neglected in our analysis as they are much
smaller than the signal at fundament frequency. Similarly, we
can denote

∂
Fc(z+x(t))

m

∂z
≈ l0(z)

m
+ l1(z)

m
sin(ωt + φ), (A5)

Fe(z + x(t))
m

≈ N0(z)

m
+ N1(z)

m
sin(ωt + φ), (A6)

∂
Fe(z+x(t))

m

∂z
≈ n0(z)

m
+ n1(z)

m
sin(ωt + φ), (A7)

where l0(z) = 1
T

∫ T

0
∂Fc(z+d0+A sin(ωt+φ))

∂z
dt , l1(z) = 1

T

∫ T

0 2
∂Fc(z+d0+A sin(ωt+φ))

∂z
sin(ωt + φ)dt , N0(z) = 1

T

∫ T

0 Fe(z + d0 +
A sin(ωt + φ))dt , N1(z) = 1

T

∫ T

0 2Fe(z + d0 + A sin(ωt +
φ)) sin(ωt + φ)dt , n0(z) = 1

T

∫ T

0
∂Fe(z+d0+A sin(ωt+φ))

∂z
dt , and

n1(z) = 1
T

∫ T

0 2 ∂Fe(z+d0+A sin(ωt+φ))
∂z

sin(ωt + φ)dt . The steady
state of the filter outputs can be calculated as

y(t) − ξ2(t) = L0(z) − L0(ẑ) + V 2
1 N0(z)

k

+p
[
L1(z) − L1(ẑ) + V 2

1 N1(z)
]

sin(ωt + ϕ),

(A8)

−∂ξ2(t)

∂ẑ
= −l0(ẑ)

k
+ p[−l1(ẑ)] sin(ωt + ϕ), (A9)

ξ1(t) = N0(ẑ)

k
+ pN1(ẑ) sin(ωt + ϕ), (A10)

∂ξ1(t)

∂ẑ
= n0(ẑ)

k
+ pn1(ẑ) sin(ωt + ϕ), (A11)

where p = 1√
(mω2−k)2+(2γ1mω)2

and ϕ = φ − tan−1

[2γ1mω/(k − mω2)].
From the Cauchy-Schwartz inequality, we have

∫ t2

t1

[y(t) − ξ2(t)]2dt

∫ t2

t1

[
ξ 2

1 (t)
]
dt

�
(∫ t2

t1

{[y(t) − ξ2(t)]ξ1(t)}dt

)2

. (A12)

The equality is valid only when ẑ = z. Thus, we can conclude
that the cost function G(ẑ) will be equal to zero only when
ẑ = z and will be positive otherwise. The first derivative of
G(ẑ) with respect to ẑ can be expressed as

dG(ẑ)

dẑ
= 2{ ∫ t2

t1

[
ξ 2

1 (t)
]
dt

}2

[ ∫ t2

t1

{[y(t) − ξ2(t)]ξ1(t)}dt

(∫ t2

t1

{[y(t) − ξ2(t)]ξ1(t)}dt

∫ t2

t1

[
∂ξ1(t)

∂ẑ
ξ1(t)

]
dt

−
∫ t2

t1

{
[y(t) − ξ2(t)]

∂ξ1(t)

∂ẑ

}
dt

∫ t2

t1

[
ξ 2

1 (t)
]
dt

)
+

∫ t2

t1

[
ξ 2

1 (t)
]
dt

{∫ t2

t1

[y(t) − ξ2(t)]

[
−∂ξ2(t)

∂ẑ

]
dt

∫ t2

t1

[
ξ 2

1 (t)
]
dt

−
∫ t2

t1

[y(t) − ξ2(t)]ξ1(t)dt

∫ t2

t1

[ξ1(t)]

[
−∂ξ2(t)

∂ẑ

]
dt

}]
. (A13)
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It is easy to show that
∫ t2
t1

[
ξ 2

1 (t)
]
dt > 0. And it is mentioned in the paper that the estimate ẑ is chosen to ensure that

∫ t2
t1

[y(t) −
ξ2(t)]ξ1(t)dt > 0. The period [t1,t2] is chosen to satisfy t2 − t1 = NT . It is easy to verify that∫ t2

t1

{[y(t) − ξ2(t)]ξ1(t)}dt

∫ t2

t1

[
∂ξ1(t)

∂ẑ
ξ1(t)

]
dt −

∫ t2

t1

{
[y(t) − ξ2(t)]

∂ξ1(t)

∂ẑ

}
dt

∫ t2

t1

[
ξ 2

1 (t)
]
dt

= NT 2p2

2k2

{[
L0(z) − L0(ẑ) + V 2

1 N0(z)
]
N1(ẑ) − [

L1(z) − L1(ẑ) + V 2
1 N1(z)

]
N0(ẑ)

}
[N0(ẑ)n1(ẑ) − N1(ẑ)n0(ẑ)], (A14)

and ∫ t2

t1

[y(t) − ξ2(t)]

[
−∂ξ2(t)

∂ẑ

]
dt

∫ t2

t1

[
ξ 2

1 (t)
]
dt −

∫ t2

t1

[y(t) − ξ2(t)ξ1(t)]dt

∫ t2

t1

ξ1(t)

[
−∂ξ2(t)

∂ẑ

]
dt

= NT 2p2

2k2

{[
L0(z) − L0(ẑ) + V 2

1 N0(z)
]
N1(ẑ) − [

L1(z) − L1(ẑ) + V 2
1 N1(z)

]
N0(ẑ)

}
[N0(ẑ)l1(ẑ) − N1(ẑ)l0(ẑ)]. (A15)

Further examinations of Eqs. (A14) and (A15) are taken:

[N0(ẑ)n1(ẑ) − N1(ẑ)n0(ẑ)]

= 1

T 2

∫ T

0

∫ T

0

{[
Fe(ẑ + d0 + A sin(ωτ1 + φ))

∂Fe(ẑ + d0 + A sin(ωτ2 + φ))
∂ẑ

−Fe(ẑ + d0 + A sin(ωτ2 + φ))
∂Fe(ẑ + d0 + A sin(ωτ1 + φ))

∂ẑ

]
[sin(ωτ2 + φ) − sin(ωτ1 + φ)]

}
dτ1dτ2, (A16)

[N0(ẑ)l1(ẑ) − N1(ẑ)l0(ẑ)]

= 1

T 2

∫ T

0

∫ T

0

{[
Fe(ẑ + d0 + A sin(ωτ1 + φ))

∂Fc(ẑ + d0 + A sin(ωτ2 + φ))
∂ẑ

−Fe(ẑ + d0 + A sin(ωτ2 + φ))
∂Fc(ẑ + d0 + A sin(ωτ1 + φ))

∂ẑ

]
[sin(ωτ2 + φ) − sin(ωτ1 + φ)]

}
dτ1dτ2, (A17)

[N0(z)N1(ẑ) − N1(z)N0(ẑ)]

= 1

T 2

∫ T

0

∫ T

0
{[Fe(z + d0 + A sin(ωτ1 + φ))Fe(ẑ + d0 + A sin(ωτ2 + φ))

−Fe(z + d0 + A sin(ωτ2 + φ))Fe(ẑ + d0 + A sin(ωτ1 + φ))][sin(ωτ2 + φ) − sin(ωτ1 + φ)]}dτ1dτ2, (A18)

[L0(z) − L0(ẑ)]N1(ẑ) − [L1(z) − L1(ẑ)]N0(ẑ)

= 1

T 2

∫ T

0

∫ T

0
({[Fc(z + d0 + A sin(ωτ1 + φ)) − Fc(ẑ + d0 + A sin(ωτ1 + φ))]

×Fe(ẑ + d0 + A sin(ωτ2 + φ)) − [Fc(z + d0 + A sin(ωτ2 + φ)) − Fc(ẑ + d0 + A sin(ωτ2 + φ))]

×Fe(ẑ + d0 + A sin(ωτ1 + φ))}[sin(ωτ2 + φ) − sin(ωτ1 + φ)])dτ1dτ2. (A19)

Next, we will prove the following theorem:
Theorem 1. If the positive functions Fc(x) and Fe(x) with

x > 0 satisfy the following conditions:

d
dFe(x)/dx

Fe(x)

dx
> 0, (A20)

d
dFc(x)/dx

Fe(x)

dx
> 0, (A21)

d
dFc(x)/dx

Fc(x)

dx
> 0, (A22)

d Fc(x)
Fe(x)

dx
< 0, (A23)

dFc(x)

dx
< 0, (A24)

then Eqs. (9)–(11) are valid.

Proof. It is easy to verify that Eq. (A20) is equivalent to the
following equation:

dFe(x+�)
dx

Fe(x + �)
−

dFe(x)
dx

Fe(x)
> 0, (A25)

where � > 0 is a constant. This is equivalent to

dFe(x + �)

dx
Fe(x) − dFe(x)

dx
Fe(x + �) > 0. (A26)

Similarly, we can obtain the following equation:

dFe(x − �)

dx
Fe(x) − dFe(x)

dx
Fe(x − �) < 0. (A27)

By substituting x = ẑ + d0 + A sin(ωτ1 + φ),� = |A sin
(ωτ2 + φ) − A sin(ωτ1 + φ)| into the two equations above, we
can prove that

[N0(ẑ)n1(ẑ) − N1(ẑ)n0(ẑ)] > 0. (A28)
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Further transformation of Eq. (A25) leads to

d[Fe(x + �)/Fe(x)]

dx
> 0, (A29)

which is equivalent to

Fe(x1 + �)Fe(x2) − Fe(x2 + �)Fe(x1) > 0(x1 > x2).

(A30)

In the same way, we can obtain the following equation:

Fe(x1 − �)Fe(x2) − Fe(x2 − �)Fe(x1) < 0 (x1 > x2).

(A31)

By substituting x1 = ẑ + d0 + A sin(ωτ1 + φ), x2 = ẑ + d0 +
A sin(ωτ2 + φ), and � = |ẑ − z| into Eq. (A18), we can show
that

[N0(z)N1(ẑ) − N1(z)N0(ẑ)][ẑ − z] > 0. (A32)

Similarly, we can show that Eq. (A21) can lead to

[N0(ẑ)l1(ẑ) − N1(ẑ)l0(ẑ)] > 0. (A33)

Based on Eq. (A22), we get[
dFc(x + �)

dx
Fc(x) − dFc(x)

dx
Fc(x + �)

] /
F 2

c (x + �) > 0.

(A34)

Together with Eqs. (A23) and (A24), we can obtain

d
[

Fc(x)−Fc(x+�)
Fc(x+�)

Fc(x+�)
Fe(x+�)

]
dx

< 0. (A35)

This is equivalent to

d
[

Fc(x)−Fc(x+�)
Fe(x+�)

]
dx

< 0. (A36)

Similarly, we can obtain

d
[

Fc(x)−Fc(x−�)
Fe(x−�)

]
dx

> 0. (A37)

Based on Eqs. (A36) and (A37), we can prove that

{[L0(z) − L0(ẑ)]N1(ẑ) − [L1(z) − L1(ẑ)]N0(ẑ)}[ẑ − z] > 0.

(A38)

With Eqs. (A28), (A32), (A33), and (A38), it can be shown
directly that Eqs. (9)–(11) are valid.
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