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Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations
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Nuclear mean-square charge radii of radioactive isotopes are obtained from isotope-shift measurements using
laser spectroscopy. To extract the values of δ〈r2〉 the atomic field and mass shift factors need to be evaluated. We
here summarize the currently available experimental and theoretical techniques for calculating the atomic field
and mass shift factors for complex, open-shell atoms, including the 5s2 1S0 − 4d5p 1P1 and 4d5s 3D2 − 4d5p 3P1

transitions for singly charged yttrium (Z = 39).
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I. INTRODUCTION

Laser-spectroscopic studies are performed on short-lived
radioactive nuclei to explore changes in the nuclear size,
spin, and moments for isotopes far away from stability [1].
In particular, precision differential changes in the nuclear
mean-square charge radius are systematically investigated
for long isotopic sequences [2]. These measurements of the
optical isotope shifts have long formed the sole probe of such
radii [3–5]. Moreover, they are determined independently of
any nuclear model.

The changes in mean-square charge radii may be compared
directly with the predictions from state-of-the-art nuclear
models to test their ability to reproduce macroscopic or
microscopic features and refine in some cases their param-
eters. These models include, for example, the droplet model
[6,7], global macroscopic-microscopic calculations [8], the
shell model [9,10], self-consistent mean-field models [11]
such as a self-consistent relativistic mean-field model [12],
Hartree-Fock BCS calculations using a Skyrme interaction
[13], Hartree-Fock-Bogoliubov calculations with a Gogny
interaction [14–16], or the fermionic molecular dynamics
approach [17].

Alternatively, simple nuclear models can be used to extract
further observables from the mean-square charge radii, such
as the diffuseness of the nuclear surface and the mean-
square quadrupole deformation. Unlike the deformation from
the nuclear electric quadrupole moment (separately obtained
from the hyperfine structure), the mean-square deformation
also includes zero-point oscillations. A comparison of these
complementary measures of deformation can infer the softness
(dynamic nature) or rigidity (static nature) of the deformation,
depending on whether the potential energy well as a function
of quadrupole deformation is broad or narrow, respectively.
However, the mean-square charge radius is also sensitive to
higher orders of nuclear deformation. Only with a reliable
calibration of the experimental mean-square charge radius 〈r2〉
can a meaningful comparison be made with estimates from an
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expression such as

〈r2〉 = 〈r2〉sph
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The terms on the right give the volume contribution 〈r2〉sph for
a spherical nucleus of the same volume (given adequately by
the droplet model [6,7]), the mean-square quadrupole 〈β 2

2 〉,
octupole 〈β 2

3 〉,... deformations and the surface diffuseness
3σ 2. Experiments have shown that the diffuseness parameter
σ is fairly constant across the nuclear chart [3] and it may
normally be assumed that these terms cancel if the change
in the nuclear charge radius is determined for two isotopes
of the same element. Moreover, the quadrupole term 〈β 2

2 〉 is
often assumed to dominate, and is sometimes compared with
calculations from nuclear transition rates [18] or substituted for
〈β2〉2 (obtained from the quadrupole moment) to investigate
the dynamic component of the deformation [19].

Aside from studying shape transformations, both the rigid-
ity of the deformation and sharpness of the nuclear surface act
also as a probe of the nuclear pairing interaction. Nuclei which
posses “magic numbers” of protons or neutrons are particularly
stabilized against decay, deformation, and collectivity. For
the shell model, therefore, “dips” or “kinks” in the radii are
signatures of subshell closure. In addition, the migration of the
energy gaps themselves, with a proton or neutron number, is of
interest as it gives information on the internucleon interactions.
Halo structure [20], parity nonconservation [21], and unitarity
tests of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [22]
are all phenomena where δ〈r2〉 plays a key role.

For a reliable and detailed analysis of the nuclear properties,
accurate atomic calculations are often needed to separate the
electronic response from the nuclear response in the shifts in
the resonance signal of the laser transitions. Although progress
has been made in determining the mass- and field-shift
contributions of the electrons to the overall isotope shifts,
limitations arise from the shell structure of the atoms or ions
used for laser spectroscopy as well as from the incomplete
treatment of the relativistic and correlation contributions of the
mass shift operator. While progress has been made for light
elements such as beryllium [23] where only a few electrons
are present and full ab initio calculations are performed, such
an approach is not feasible for medium and heavy elements,
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especially if open p and d shells are involved in the atomic
transitions.

In this work, we review the present status of isotope shift
(IS) calculations and how they are utilized to extract nuclear
properties. Examples are given for various recent and ongoing
experiments for mid- and high-Z isotopic chains. With these
examples, the importance and necessity of accurate atomic
calculations will be highlighted. The results and implications
of such computations for the structure of the nuclei have been
detailed elsewhere. Finally, a few conclusions are drawn about
which atomic transition and electronic structures are favorable
for future calculations and experiments. New cases, both on
the experimental and theoretical sides, are also proposed.

II. OBSERVABLES

The nuclear mean-square charge radius is defined in terms
of the nuclear charge distribution ρ(r) as

〈r2〉 =
∫

ρ(r)r2dV∫
ρ(r)dV

. (2)

Although nuclei produced from the nuclear reactions will have
a distribution in Z as well as N (even when a particular mass
number A = Z + N is selected), the nature of atomic transi-
tions and the practicalities in producing the laser wavelengths
mean that only one element is studied during a particular
experiment. Changes in resonance frequency between isotopes
is much easier to determine with precision than a measurement
of absolute transition frequencies and nuclear parameters more
readily extracted.

The changes in mean-square charge radii δ〈r2〉A,A′ =
〈r2〉A′ − 〈r2〉A between isotopes A and A′ are determined from
IS measurements δνA,A′ = νA′ − νA via

δν
A,A′
i = Mi

A′ − A

AA′ + Fiδ〈r2〉A,A′
, (3)

where Mi and Fi are the mass shift and field shift factors for the
considered atomic (or ionic) transition i and accurate values
for the isotopic masses are substituted in place of the mass
numbers A and A′. For heavier nuclei, δ〈r2〉 is replaced with
the Seltzer moment [24]

λA,A′ = δ〈r2〉AA′ + b1δ〈r4〉AA′ + b2δ〈r6〉AA′ · · · . (4)

Terms of higher order than δ〈r2〉 contribute only a few percent
even in heavy nuclei, and the approximation

λA,A′ = δ〈r2〉AA′
(

1 + b1
δ〈r4〉AA′

δ〈r2〉AA′ + · · ·
)

= K(Z)δ〈r2〉AA′

(5)
is often used, where K(Z) has been tabulated and is close to
unity [25].

From an atomic physics point of view, the two factors Mi

and Fi need to be determined for each transition separately.
These two factors are assumed to be constant for an isotopic
chain and, thus, enable one to extract δ〈r2〉 without any
dependence on the nuclear model. For many elements, three
or more isotopes are naturally abundant, which allows (at
least) two values of δ〈r2〉 to be measured using nonoptical
techniques. These values can be used in conjunction with IS
measurements to calibrate the two factors and therefore extract

δ〈r2〉 from IS measurements for all isotopes, whether they are
naturally occurring, or radioactive and short-lived, with only
small fluxes available from a reaction.

Although the atomic factors are transition dependent, if
they are known for one transition they can also be determined
for other transitions using the King plot technique [1,26].
Multiplying Eq. (3), for example, by a modification factor
AA′/(A′ − A) gives

AA′

A′ − A
δνAA′

i = Mi + Fi

AA′

A′ − A
δ〈r2〉AA′

. (6)

For two transitions i and j , this allows δ〈r2〉 to be eliminated
and gives rise to the linear regression line

(
AA′

A′ − A
δν

A,A′
j

)
= Fj

Fi

(
AA′

A′ − A
δν

A,A′
i

)
+ Mj − Fj

Fi

Mi.

(7)

Therefore, if IS data for two transitions are modified by the
factor AA′/(A − A′), the plot of such values will be linear
with a gradient of Fj/Fi , and intercept Mj − (Fj/Fi)Mi .

The transitions chosen for experimental study will be
selected on grounds such as spectroscopic efficiency to
measure the most exotic (and weakly produced) isotopes.
However, these may not be the most convenient lines for which
to consider reliable theoretical computations of their atomic
factors. For a (second) transition which is nonoptimal from
an experimental point of view, a selected remeasurement of a
few isotope shifts can be made, but will be limited to the more
intensely produced isotopes.

Using the King plot technique, one can then proceed in
two ways. First, this technique enables the atomic factors
for the primary (spectroscopically efficient) transition to be
determined from those calculated with relative ease for a
purer transition. Only two isotope shifts would need to be
remeasured using the second transition (or two existing δ〈r2〉
values if available). Alternatively, the King plot can be used
as a consistency check of the theoretical computations of F

and M since the King plot provides a definite relationship
between the factors for one transition and those of another.
If, for example, the ratio of the two ab initio calculated F

factors is close to the (experimentally determined) gradient of
the King plot, then confidence in these values is increased.

III. EXPERIMENTAL TECHNIQUES

Of the available techniques in the study of charge radii,
laser spectroscopy of optical isotope shifts is versatile and
has been extensively applied to small fluxes of short-lived
radioactive nuclei [1]. These nuclei are produced at radioactive
ion beam facilities and the spectroscopy is performed in situ.
Two common forms exist: the “collinear beams” method [17,
22,27,28], which achieves the highest precision, and the “in-
source” method [29,30] which is currently applicable to lower
atom fluxes. One or the other is generally used and these
are discussed below, with a schematic overview in Fig. 1.
Variations on those techniques can be used in specific cases
(e.g., Refs. [31–34]).
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FIG. 1. (Color online) Schematic view of the two common forms of laser spectroscopy of radioactive isotopes. One of these two techniques
is usually selected, although during collinear experiments, the lasers used for in-source spectroscopy are often used to selectively enhance the
ionisation of the reaction products for the element of interest [35]. In this case, the lasers are not scanned but run in a broadband mode.

A. Collinear laser spectroscopy

At radioactive isotope production facilities, nuclear reac-
tions are triggered when a high-energy primary beam hits a
piece of target material to cause fission, fusion, spallation,
and/or any additional mechanism. The isotopes produced
diffuse or recoil from the target material into, or are guided to
an ion source, where ionization to a singly charged state takes
place. The electrodes are then used to form a beam of these
ions, which are accelerated away to energies of typically 30 to
60 keV. The isotopes, which may have half-lives of only a few
milliseconds, are then mass selected in-flight and delivered to
the high-resolution laser spectroscopy station.

The laser and atom beams are overlapped in a collinear or
anticollinear geometry to maximize the interaction length and
therefore the probability of excitation. Photomultiplier tubes
(PMTs) are mounted at 90◦ to the beams and plane of polar-
ization, to detect fluorescence photons. Doppler broadening
of the hyperfine resonances results from the velocity spread
δv of the ions in the forward direction, caused by the kinetic
energy spread δE in the ionization region. However, from the
classical kinetic energy formula δE = mvδv, it can be seen
that the use of fast (∼30 keV) beams suppresses this velocity
spread since the energy spread remains constant. A tuning
potential is applied to the point of interaction to Doppler shift
the observed frequency over the resonances, or to an alkali
vapor cell immediately upstream of the interaction region in
the cases where neutral atoms are investigated.

In the last decade, gas-filled radio-frequency quadrupoles,
known as ion beam coolers, have been used to capture
and reaccelerate the mass-filtered ion beam en route to the
laser spectroscopy station [18]. These devices cool the ions,
reducing the energy spread through collisions with a helium
buffer gas. More importantly, ion coolers have been used to
accumulate and trap the ions for up to 500 ms and release
them in bunches of a few microseconds temporal length. This
maintains the intensity of the resonant fluorescence signal,

while enabling suppression of the photon background from
the continuous scattering of laser light, by the ratio of these
accumulation and release times (approximately four orders
of magnitude). More recently, optical pumping has been
performed inside the ion cooler [27], enabling metastable
states of interest to be populated. This has permitted collinear
laser spectroscopy to be performed from these states in
preference to the ground state, where required.

Using these techniques, resonance widths are of the same
order of magnitude as the natural linewidth, and the spec-
troscopy on ion fluxes of 100/s has been routinely performed
[36].

B. In-source laser spectroscopy

Conversely to the aforementioned in-flight technique,
in-source laser spectroscopy is performed directly at the
secondary beam production level. By sending a set of laser
beams directly into the ion source, a valence electron may
be excited across the atomic structure until it reaches beyond
the ionization potential. This ionization technique is regularly
used in two types of radioactive ion beam facilities: thick-target
hot-cavity facilities, where the reaction products are stopped
in the material and diffuse from within, and thin-foil-target
gas-catcher facilities, where products recoil directly into a gas
stopping volume. In-source spectroscopy has proven efficient
and selective at both hot-cavity facilities [37–40] and gas-
catcher facilities [41–43].

The spectroscopy is performed by monitoring the ion
beam intensity as a function of the frequency of one of the
resonant transitions. The ion beam intensity may be recorded
by counting ions or observing the radioactive decay of the
mass-separated beams. Either technique is very sensitive and
the radioactive decay can be used to identify long-lived nuclear
isomers from the ground state [44]. This increased sensitivity
allows the study of much more exotic cases than the collinear
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technique. Isotopes with production rates down to 6 ions/s at
a gas-catcher facility [29] and less than 1 ion/s at a hot-cavity
facility [30,45] have been reached.

The limit of the technique is, however, the large energy
broadening due to the environmental conditions inside the ion
source. At hot-cavity facilities, the high temperature of the ion
source (∼2000◦ C) induces a large velocity spread, resulting
in a typical Doppler broadening of ∼4 GHz; at gas-catcher
facilities, collisions with buffer gas atoms and molecules result
in a pressure broadening of a similar magnitude [46].

As a result of this large broadening, only limited infor-
mation can be extracted from the data. The magnetic dipole
moment may be extracted if the hyperfine parameter is large
enough, as in copper [29]. In the case of δ〈r2〉, as seen in
Eq. (3), the mass shift diminishes with increasing A while
the field shift factor Fi increases with increasing Z. As a
consequence, heavy isotopes have large isotope shifts which
can be accessed with in-source techniques [30,45,47–49].

There exists an intermediate concept between the in-source
ionization and in-flight fluorescence techniques in the collinear
resonant ionization spectroscopy (CRIS) technique [50,51].
By ionizing the beam of interest in-flight, it is possible find
a compromise between the high resolution obtained upon
accelerating the beam and from the high efficiency from the
ion detection technique. This technique is currently under
development at CERN ISOLDE [52].

C. Nonoptical methods

Nuclear charge radii have also been measured using
nonoptical techniques: primarily K x-ray spectroscopy (via
the Seltzer moment λ), muonic atom spectroscopy (Barrett
radii), and electron scattering [the nuclear density distribution,
ρ(r)] [53]. Measurements using the nonoptical methods
generally require preparation of relatively large (quasistable)
samples. It has therefore not been possible to apply such
techniques to radioactive ion beam production. Nevertheless,
a combined analysis of data from these techniques can provide
absolute charge radii data for the longest lived nuclei [54,55].
The total 〈r2〉 can then be determined for any isotope using
these values in combination with the differential δ〈r2〉 values
from optical spectroscopy.

Where nonoptical measurements can be made for three
isotopes of an element (i.e., values of δ〈r2〉 are available
for two pairs of isotopes), the two atomic factors can also
be determined using a King plot analysis similar to the one
described in Sec. II. Values of δ〈r2〉 can be used in place of
the IS values for one transition. They can then be considered
as IS values for a hypothetical transition where F = 1 and
M = 0. However, many elements have fewer than three stable
isotopes, and theoretical calculations must be relied upon.

IV. THEORY AND COMPUTATIONS

Various methods have been developed over the years to
evaluate isotope shifts and parameters for different elements
and electronic transitions; aside from some early semi-
empirical estimates, systematic IS calculations have become
available only recently and showed how sensitive these shifts
may depend on the electronic structure of atoms or ions. Here,

we shall not recall the basic IS theory in detail, which has
been presented in the literature [56–58]. Instead, we will focus
on the difficulties and limitations that arise from the complex
shell structure of medium and heavy elements, and especially
for atoms with open p and d shells.

A. Parametrization of isotope shifts

The parametrization in Eq. (3) assumes that the IS in the
transition frequency of an atomic line δv

A,A′
i depends on the

masses A and A′ of a given pair of isotopes and their change in
the mean-square charge radius δ〈r2〉A,A′

, but not on further de-
tails of the nuclear potential as it appears in the electronic struc-
ture calculations. For many (chains of) isotopes, indeed, this
assumption appears to be well fulfilled and, thus, supports such
a separation of the nuclear properties from the electronic re-
sponse, up to some reasonable but not further specified nuclear
model. With these assumptions in mind, Eq. (3) enables one to
capture the response of the electrons upon changes in the recoil
of the nucleus and the nuclear potential for a whole chain of
isotopes in just two parameters, namely the mass-shift parame-
ter M and field-shift parameters F , respectively. The mass shift
of the atomic energy levels arises from the recoil of the nucleus
(i.e., the energy-momentum conservation of the composite
system “nucleus + electrons”), and is usually separated into
two parts: The normal mass shift MNMS ≈ ν∞ me

mn
, as obtained

from the reduced electron mass (due to its mass ratio with
regard to the mass of the nucleon mn = 1820 me) as well as
the specific mass shift MSMS that reflects the correlations of the
momenta { 	pi, i = 1, . . . ,Ne} of the electrons. The field shift of
atomic levels and transition frequencies, in contrast, originates
from changes in the nuclear charge distribution and volume.

For optical transitions, the IS is obtained as the difference
of two shifts for the upper and lower atomic levels. While
the individual shifts of the atomic levels can be quite large,
in general, they partly cancel each other out and make it
necessary to calculate the various contributions with sufficient
accuracy to derive useful information about the nucleus. We
note, however, that the parametrization in Eq. (3) and its
factorization into some electronic × nuclear property is an
approximation which may break down if the nuclear radii and
further moments of the charge and magnetization distribution
are known with enough accuracy.

B. Semi-empirical estimates versus many-body calculations

Many of the earlier field-shift studies were focused on the
ns–np optical transitions of atoms and ions with either an
alkali-metal or alkaline-earth-metal valence configuration. For
these shell structures, the field-shift parameter Fi has often
been parametrized as [25,53]

Fi = π ao

Z
	 |ψns(0)|2nr fi(Z) , (8)

where 	|ψns(0)|2nr describes the difference of the total non-
relativistic density distribution of the active ns electron for
a pair of isotopes with A,A + 1, taken for a point nucleus,
and where fi(Z) describes the relativistic correction to Fi

for a finite model of nuclear charge distribution. Although
this parametrization is simple and has been found reasonably
reliable [56], it neglects the screening of the ns electron in
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proximity to the nucleus by the other electrons, the changes of
the nuclear potential upon the excited np electron as well as
correlation effects. Moreover, such a simple parametrization
cannot be derived so easily for other transitions that do
not include a ns 2S1/2 or ns2 1S0 ground level of either an
alkali-metal-like or alkaline-earth-metal shell structure.

In the laser spectroscopy of most medium and heavy
elements, in fact, optical transitions with a sufficiently strong
(E1) absorption rate are considered that do not include the
ground state necessarily but can be explored by lasers as
available already (in the laboratory, for instance). For a
thorough treatment of both the mass and field shifts, it then
appears more appropriate to start from an ab initio description
of the IS that is performed independently for a few selected
isotopes, and by including all important mass and field-shift
contributions. In such a theoretical treatment of the IS, M

and F are simply used to parametrize the shifts, analog as in
experiments, and by applying some reasonable nuclear charge
distribution in the computations. The variation of the M and
F parameters, obtained for different sets of three isotopes, are
interpreted first of all as numerical uncertainties due to missing
correlation and relativistic effects as well as with regard to the
overall stability of the computations. Only if the M and F are
not much affected by the details of the nuclear model, taken, for
instance, as a Fermi-distributed charge, are these parameters
deemed useful and can be exploited in the extraction of nuclear
observables (in a seemingly model-independent way).

C. Atomic mass-shift operators

For an atom with mass Ma , the mass shift of an atomic level
is caused by the recoil motion of the nucleus in the combined
system “nucleus + electrons” and goes as the first order in
the mass ratio (me/Ma), described by the Hamiltonian [57]

HMS = 1

2Ma

Ne∑
ij

[
pi · pj − αZ

ri

(
αi + (αi · ri) ri

r2
i

)
· pj

]
.

(9)

Typically, this Hamiltonian is separated into two parts, the
normal mass shift and the specific mass shift, HMS =
HNMS + HSMS to distinguish the one-electron terms, due to
the reduced electron mass, from the two-electron contributions
of the electronic momenta. These two parts of the mass-shift
Hamiltonian then read

HNMS = 1

2Ma

Ne∑
i

(
p2

i − αZ

ri

αi · pi − αZ

ri

(
αi · C1

i

)
C1

i · pi

)
,

(10)

HSMS = 1

Ma

Ne∑
i<j

(
pi · pj − αZ

ri

αi · pj

− αZ

ri

(
αi · C1

i

)
C1

i · pj

)
, (11)

and their further decomposition into a tensorial form was
worked out recently by Gaidamauskas et al. [59]. An analog
decomposition applies also for the mass-shift parameter M =
MNMS + MSMS. For low-Z atoms and ions (αZ 
 1), only the
first term in Eqs. (10) and (11) are important, while the other

terms typically become significant for heavy elements, and
especially if multiply or highly charged ions are considered
[57]. However, at present, very little is known about the
importance of these relativistic terms if optical transitions are
considered for medium and heavy atoms and ions with a low
charge state.

In the computations reported in this article, the main diffi-
culties arise from a proper treatment of the electron-electron
interaction and the (large) uncertainties due to the missing
relativistic and correlation contributions. Large uncertainties
in the calculated M and F parameters are then not uncommon
for the transitions of interest. As such, the mass-shift operators
in Eqs. (10) and (11) have been restricted in the calculations
below to their nonrelativistic part as obtained for αZ → 0.
For the normal mass shift, moreover, we simply use MNMS =
ν∞ me

mn
in all cases below.

D. Ab initio isotope-shift calculations for open-shell atoms

Different many-body techniques have been designed to
calculate (or, at least, estimate) the IS of atomic levels and
transitions. For atoms and ions with a complex shell structure,
the multiconfiguration Dirac-Fock (MCDF) method has been
found to be a very versatile tool as it enables one to describe
atoms with two and more open shells in quite a similar manner
as closed-shell systems. A thorough treatment of the MCDF
method may already be found in the literature [65]. Its use
applied to a large number of atomic level calculations as well
as for predicting transitions and ionization properties has also
been reported in Refs. [66,67].

In the MCDF method, an atomic state is approximated
by a linear combination of the so-called configuration state
functions (CSF) of the same symmetry

ψα(PJM) =
nc∑

r=1

cr (α) |γrPJM〉 , (12)

where nc is the number of CSF and {cr (α)} denotes the
representation of the atomic state in this basis. In most
standard computations, the CSF |γrPJM〉 are constructed as
antisymmetrized products of a common set of orthonormal
orbitals and are optimized together on the basis of the Dirac-
Coulomb Hamiltonian. Relativistic effects due to the Breit
interaction are then added to the representation {cr (α)} by
diagonalizing the Dirac-Coulomb-Breit Hamiltonian matrix
[68,69]. While the dominant QED corrections can at least be
estimated within this method, they are typically negligible for
optical transitions of medium and heavy elements. In addition,
the specific mass-shift operator is taken into account into the
Hamiltonian matrix, while the different charge distribution of
the isotopes, related to the field shift, are considered implicitly
by means of an extended nucleus. In the computations below,
we applied a two-parameter Fermi distribution

ρ(r) = ρo

1 + e(r−c)/a
, (13)

where c denotes the “half-charge density” radius and a the
skin thickness. Since we aim for a single field-shift parameter
F for a whole chain of isotopes, a spherical symmetric
nucleus has been assumed for all isotopes, independent of
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their natural occurrence, and the Fermi parameters were taken
as implemented in GRASP92 [68].

For atoms with a complex shell structure, the major
difficulties arise from unaccounted correlation contributions,
as is typical for most many-body procedures. In the MCDF
method, these correlations are taken into account by incor-
porating systematically single, double, and possibly further
replacements of electrons from bound orbitals into some active
set of virtual orbitals. Using such a “restricted active space”
procedure, however, the size of the wave-function expansion
nc in Eq. (12) often increases rapidly and makes it necessary to
restrict the size of the expansions. In the past, such an approach
has been utilized mainly to explore the IS of light elements [70]
and simple valence shell structures [71], while little work has
been done for atoms and ions with complex spectra, say, with
more than two electrons outside of closed shells.

Contrary to the semi-empirical parametrization in Eq. (8), in
which the field-shift parameter is obtained for a pair of neigh-
boring isotopes, we applied first-order perturbation theory for
a series of isotopes and calculated the corresponding IS of
the upper and lower levels involved in the transition explicitly
by diagonalizing the full Hamiltonian matrix including the
specific mass shift and the extended nucleus. A common set
of radial orbitals, as generated for some stable isotope, is
typically sufficient because of the overall small shifts of the
atomic levels, compared, for instance, to the fine structure
of the levels. For any three selected isotopes from the few
calculated, the mass-shift M and field-shift parameters F are
then obtained by solving Eq. (3). Although this procedure
gives rise to variations in the calculated M and F values
(as calculated for different sets of three isotopes), it nicely
reflects the deficiencies in the model and the stability of

the computations. For well-correlated wave functions, indeed,
the variations are much smaller than the changes of these
parameters for different computational models and, hence, the
average of the M and F for different sets are used for the
parametrization in Eq. (3). This behavior of the IS parameters
also confirms our conclusions that the major difficulties in
obtaining accurate mass-shift and field-shift parameters arise
from the treatment of the electron-electron correlations.

E. Systematically enlarged multiconfiguration
Dirac-Fock wave computations

To support ongoing experiments at the IGISOL facility
in Jyväskylä, the ISOLDE facility at CERN, and elsewhere,
MCDF calculations have been performed for various elements
during recent years, from the rather light Sc+ ions with an
open 3d shell up to Po atoms with a half-filled 6p shell
(cf. Table I). These calculations showed the sensitivity of
the IS parameters with regard to the shell structure and
different correlation contributions in the expansion of the
many-electron wave functions. In the MCDF model, a series of
computations is typically carried out for each atomic transition
of interest, in which the size of the wave-function expansion
is systematically enlarged and the M and F parameters are
monitored with regard to different classes of correlations. In
most of the reported cases, however, we were not able so far
to demonstrate real convergence while the size of the wave
functions is increased and further computations are needed to
learn more about the various shell structures and classes of
correlations that are important for a proper description.

Apart from the optical transitions of elements that have
been investigated previously (see Table I for examples and

TABLE I. Transitions used in the laser spectroscopy of radioactive isotopes. Apart from the wavelength and wave numbers of these
transitions, we here display estimates for the (total) mass and field-shift parameters M and F , as obtained in different case studies during recent
years. The values in parentheses show the estimated accuracy (in percent) of the calculated IS parameters. Many other elements are without
any form of calibration of the atomic factors. Some transitions which are expected to be studied experimentally in the near future (and require
atomic factor calculations) are also included.

Wavelength Wave number M F Method
Element Transition [nm] [cm−1] [GHz amu] [MHz/fm2] & Ref.

Sc+ (Z = 21) 3d4s 3D2 − 3d4p 3F3 363.2 27 534.7 583 (15%) −355 (15%) MCDF [10]
Mn+ (Z = 25) 3d54s 5S2 − 3d54p 5P3 295.0 33 897.5 −572 (15%) 852 (10%) MCDF [60]
Mn (Z = 25) 3d54s2 6S5/2 − 3d54s4p 6P3/2 280.2 35 690.0 — — —
Cu (Z = 29) 3d104s 2S1/2 − 3d104p 2P3/2 324.8 30 783.7 — −680 (15%) MCDF [61]
Ga (Z = 31) 4p 2P3/2 − 5s 2S1/2 417.3 23 962.3 −431 (40%) 400 (15%) MCDF [62]
Y+ (Z = 39) 5s2 1S0 − 4d5p 1P1 363.4 27 516.7 1789a −3181a semi-emp. [19]

1318 (15%) −3212 (10%) MCDF, this w.
4d5s 3D2 − 4d5p 3P1 321.8 31 079.0 124 (15%) −1152 (10%) MCDF, this w.

Y2+ (Z = 39) 5s 2S1/2 − 5p 2P3/2 281.8 35 487.8 — — —
Nb+ (Z = 41) 4d35s 5F1 − 4d35p 5F1 290.9 34 375.0 716a −2430a semi-emp. [27]
Ta+ (Z = 73) 6s2 3P1 − ∗ J = 2c 301.3 33 184.8 — — —
Os− (Z = 76) 5d76s2 4F9/2 − 5d66s26p 6D9/2 1162.7 8600.3 2500 ± 12 600 16 200 ± 9900 Exp. [63]b

4000 (40%) 12 300 (25%) MCDF
Po (Z = 84) 6p37s 5S2 − 6p37p 5P2 843.4 11 853.7 −311 (25%) −12 786 (15%) MCDF

6p4 3P2 − 6p37s 5S2 255.8 39 081.2 51 (25%) 28 663 (15%) [30]

aSemi-empirical estimates by using radii from neighboring elements; see text for discussion.
bExperiments have been performed for the naturally occurring isotopes by Kellerbauer et al. [63].
cUpper state is second-order perturbed but not to the extent of the studied transitions from the ground state [64].
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references), additional computations have been performed
for two low-lying transitions in yttrium. In these compu-
tations, and similarly to gallium as discussed in Sec. V B,
the following four computational models were considered
for the construction of the wave functions from Eq. (12).
Model A: Averaged Dirac-Fock (DF) calculations for just the
reference configurations, including the Breit interaction into
the Hamiltonian matrix in addition to the mass- and field-shift
contributions as discussed above. The radial orbitals calculated
in this model are kept frozen in all further computations.
Model B: Extended optimized level (EOL) calculations,
carried out together for the lower and upper levels of the
given transition, and including single and double (SD) virtual
excitations from the reference configuration into a full layer of
correlation orbitals {(n + 1)s, (n + 1)p, (n + 1)d, (n + 1)f }.
Here, n refers to the maximum principal quantum number
that is occupied in usually the upper level of the transition.
Model C: The same as model B but by incorporating, in
addition, the core-polarization from all occupied 1s, . . . ,nlj

subshells (by means of single excitations) and by reoptimizing
the radial orbitals of the (n + 1) correlation layer from above.
Model D: EOL calculations for the two levels of interest in-
cluding core-core excitations from a selected set of subvalence
shells and SD excitations into an additional (n + 2) layer of
correlation orbitals.

While these four approaches may result in quite sizable
expansions already, no further attempt has been made to push
the wave-function expansions to its present-day limits or to
establish an independent variational procedure for each level
of interest. A further systematic enlargement of the wave-
function expansion is usually possible only for a single element
and transition at a given time and might be considered in the
future.

Similar computations, including at least model C, have been
carried out for all elements and transitions for which MCDF
results are displayed in Table I [69,72].

V. CASE STUDIES AND DISCUSSION

Those calculations as described in the previous section have
recently been applied to a wide range of elements in answer
to the call from the radioactive ion beam physics community.
Their challenges and implications are described below. Ex-
amples are given for elements from across the nuclear chart,
in an order which roughly indicates the increasing need for
theoretical calculations. As a general rule, for the heaviest
elements, the field shift dominates over the mass shift (which
is often neglected). In the medium mass (A ∼ 100) region this
is not the case, but neighboring isotopic chains may be used as
a guide to the general trend of the radii (when no alternative
is available) which tend to be dominated by macroscopic
behavior. Neither of these simplified approaches are applicable
to lighter elements. On the other hand, if two stable isotopes
exist for the element under study, a nonoptical measurement
of δ〈r2〉 may be used to infer the mass shift, leaving only the
field shift to be calculated. It seems clear that this task is far
simpler since the nuclear potential of an extended nucleus is
usually under much better control than the correlation effects,
upon which the specific mass shift depends. For elements with
only a single isotope, calculation of the mass shift is required

and with no (nonoptical) data to provide an independent check.
Elements of the highest Z are studied where no stable or even
naturally occurring isotopes exist, and atomic data of any type
become increasingly scarce.

A. Yttrium and niobium

In the A ∼ 100 region of the nuclear chart, a sudden onset of
nuclear deformation occurs at N ∼ 60, which appears centered
around the yttrium chain [73]. A corresponding increase in
〈r2〉 is seen, and the isotope shifts have been recently studied
in yttrium [19] and niobium [27], requiring the evaluation of
the atomic factors for the extraction of this nuclear observable
of interest. Many stable isotopes exist in neighboring chains,
such as zirconium [18] and molybdenum [74], allowing these
radii to be established using nonoptical techniques. This then
allows the calibration of F and M for the studied optical
transition using a King plot [1] and the determination of δ〈r2〉
from all measured isotope shifts. However, for yttrium and
niobium, only one stable isotope exists in each case, and
therefore no independent measurements of δ〈r2〉 are available.
Reliable values of F and M are essential for determining the
overall gradient of the radii, how this changes with Z, and
the consequences for determining the changing softness of the
deformation over the shape transition, via Eq. (1).

In the absence of any calibration for the atomic factors
of yttrium and niobium, an assumption was made that the
systematics of the charge radii, close to stability, varied
little with Z. For niobium, existing δ〈r2〉 values from the
neighboring zirconium chain were used (for the same neutron
number pairs) as if they were nonoptical measurements of
niobium [27]. A King plot was formed from the measured
isotope shifts in niobium, νN,N ′

, and the δ〈r2〉N,N ′
values of

zirconium (using only those isotopes away from the anomalous
N = 60 region of structural change). This produces a fairly
linear plot [73], but the confidence in the extracted parameters
depends on the validity of the approximation made above.

For yttrium [19], a modified King plot was formed incor-
porating measurements for N = 47–59. Isotopes from beyond
the structural change at N = 59 reduced the linearity of the
plot. An extended approach was used, whereby in addition to
using the zirconium radii, the process was repeated using the
radii of krypton, rubidium, and strontium. In each case, the
atomic factors were slightly different and are shown in Fig. 2.
Nevertheless, for the studied 363 nm 5s2 1S0 − 5s5p 1P1 ionic
ground-state transition, estimates of F363 = −3181 MHz/fm2

and M363 = +1789 GHz amu were made and used to extract
the mean-square charge radii [19]. These are shown in Fig. 3.
Selected radii were later remeasured using a second transition
[75].

As part of this work, theoretical estimates of the atomic
factors were produced. Following the computational pro-
cedure as described above, systematically enlarged MCDF
calculations have been performed for the two transitions
5s2 1S0 − 5s5p 1P1 and 4d5s 3D2 − 4d5p 3P1 in yttrium.
For describing these transitions, we have chosen the reference
configurations 4d2, 4d5s, and 5s2 for the 1S0 and 3D2 lower
levels, and 4d5p, 5s5p for the 1,3P1 upper levels. In practice,
also the 4p6 closed shell were added to the valence electrons
as excitations of a 4p (sub) valence electron also contribute
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FIG. 2. Estimates of the atomic factors for the 363 nm J =
0 → J = 1 ionic transition in yttrium. A King plot was formed
from the measured isotope shifts in yttrium δνN,N ′
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values for various neighboring elements. Isotopes with
neutron numbers in the range N = 47–59 were used.

to the low-lying level structure of Y+ ions. By performing
various computations with an increasing number of CSF, nc, a
quite sizable change of the M and F parameters were caused
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FIG. 3. Mean-square charge radii of yttrium isotopes, extracted
from IS measurements using (a) an empirical estimate of the atomic
factors, (b) theoretical calculation of the atomic factors for the 363 nm
ionic transition, and (c) theoretical calculation of the atomic factors
for the 321 nm ionic transition.

TABLE II. Theoretical estimates for two ionic transitions
in yttrium, the 363 nm 5s2 1S0 (ground state) → 4d5p 1P1

(27 516.691 cm−1) and 321 nm 4d5s 3D2 (1045 cm−1) → 4d5p 3P1

(32 124 cm−1) lines. The field shift factor F , specific mass shift factor
MSMS, number of CSF nc and are shown for the four computational
models as explained in the text above. The normal mass shift factor
MNMS was calculated to be 453 and 511 GHz amu for the two
transitions, respectively.

Comput. MSMS F

Transition model nc [GHz amu] [MHz/fm2]

363 nm A 30 1088 −2344
B 11 593 1009 −2982
C 14 245 772 −3272
D 64 962a 865 −3212

321 nm A 30 −1661 −1336
B 19 518 −413 −1162
C 23 286 −305 −1090
D 108 176a −387 −1152

aIncluding core-core correlations only from the 4s and 4p shells.

especially by the core-polarization contributions, although
restricted core-core correlations still give rise to noticeable
shifts. Because of the open 4d, 5s, and 5p shells, however,
no clear convergence of the mass shift could be shown yet.
From the variations of the M and F parameters in Table II
(and further computations not shown here), we expect an
uncertainty of about 25% for the specific mass shift and 15%
for the field shift parameters. Due to the normal mass shift
of ∼500 GHz amu, the uncertainties on the total mass shift
parameter reduce to about 15% for both the 363 and 321 nm
transitions of the Y+ ion.

The MCDF values for the 363 nm transition were used
to calculate the mean-square charge radii which are added to
Fig. 3. Compared with the empirically derived values used in
Ref. [19], the calculated field factor of −3212 MHz/fm2 is
similar, but the total mass shift factor +1318 GHz amu is
smaller. On the neutron-rich side, this results in radii which are
smaller than those previously reported. However, in Ref. [19],
estimates of the mean-square charge radii were produced,
via Eq. (1), using the droplet model combined with the
deformation deduced from the quadrupole moments. Although
themselves subject to a systematic error, those values are
expected to provide an underestimate [19] of the mean-square
charge radius, but are higher than the values calculated here.

In the later experiment, selected isotope shifts were remea-
sured on the 321 nm 4d5s 3D2 − 4d5p 3P1 ionic transition
from a metastable state [75]. A King plot of the modified
321 nm isotope shifts (y axis) versus the modified 363 nm
isotope shifts (x axis) was performed, yielding a gradient of
+0.44178(98) and intercept of −676668(1958) MHz. This
provides a useful check of the theoretical calculations if these
are made for both transitions.

Calculations were therefore performed as part of this work
for the 321 nm transition. In this case the field factor F321 =
−1152 MHz/fm2 is smaller than the empirically derived value
(F321 = −1405 MHz/fm2 and M321 = +114 GHz amu [75])
whereas M321 = +124 GHz amu is similar. Charge radii
calculated from the 321 nm isotope shifts and the MCDF
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TABLE III. The same as Table II but for the 417 nm 4p 2P3/2 −
5s 2S1/2 line in neutral gallium. The normal mass shift factor MNMS

was calculated to be 394 GHz amu.

Comput. MSMS F

Transition model NCSF [GHz amu] [MHz/fm2]

417 nm A 3 −1332 169
B 3739 −1036 383
C 3873a −973 407
D 63 128b −825 400

aIncluding single excitations from 2s, . . . ,4p.
bIncluding also some SD excitations into a third but incomplete
correlation layer.

atomic factors are plotted in Fig. 3. Moreover, the theoretical
values for the 321-nm line can be used in conjunction with the
King plot to calculate the equivalent factors for the 363-nm
line (F363 = −2608 MHz/fm2, M363 = +1812 GHz amu),
and therefore show the radii for all of the isotopes. In this
case, the radii of the neutron-rich isotopes are much larger than
the empirically derived values and than the regional nuclear
systematics would suggest. It may therefore be concluded
from the King plot that the theoretical calculations for the
two transitions are not fully consistent with each other.

B. Gallium and copper

Isotope shift measurements have recently been performed
for gallium [62] and copper [61] isotopes. These studies were
motivated by the reordering of the nuclear energy levels among
the neutron-rich isotopes that occur due to the monopole
component of the nucleon-nucleon force [28]. Moreover, the
formation of a diffuse proton structure (skin) in the neutron-
deficient gallium isotopes had been proposed to explain the
apparent increase in matter radius with decreasing neutron
number. If indeed present, this would have a significant effect
on the charge radius. For both elements, however, only two
stable isotopes exist. Calculations for the gallium chain are
discussed below.

For gallium, IS measurements were performed for iso-
topes in the range 63−82Ga [62]. Mean-square charge radii
measurements had only previously been made for the stable
69,71Ga isotopes using muonic atoms, yielding δ〈r2〉71,69 =
−0.12(2) fm2 [54]. Though this single value can be used to
provide a consistency check for theoretical calculations, it is
insufficient to provide a full calibration.

Similar computations as for yttrium have been performed
for the experimentally studied 4p 2P3/2 − 5s 2S1/2 transition in
atomic gallium (see Table III). Although this transition refers
nominally to a rather simple single electron excitation outside
of a closed core, the (nearly degenerate) 4s shell affects this
transition strongly and suggests applying the 4s24p and 4s25s

reference configuration. Starting from the DF computation
with these reference configurations, a large effect on the mass
and field shift parameters M and F is observed by including
SD valence excitations into the 6l layer for the levels with total
angular momenta and parities, JP = 1/2+ and 3/2−. Again,
further core-polarization and core-core correlations, including
also excitations from the 3d shell, still give rise to sizable

changes, although some of the correlation contributions tend
to cancel each other. At present, however, attention has been
paid more systematically only to the core-valence and core-
polarization effects by including SD excitations into a second
and part of a third correlation layer. From these computations,
we estimate an overall uncertainty of 15% for the F and 40%
for the M parameter of the 4p 2P3/2 − 5s 2S1/2 transition.

Using the measured IS δν71,69 = +40(4) MHz [62],
the calculated atomic factors [F417 = +400(60) MHz/fm2,
M417 = −431(170) GHz amu] yield a difference in radius of
δ〈r2〉71,69 = −0.34 fm2, significantly larger than the nonop-
tical data. Of the two factors, the field factor appears to
stabilize more readily than the mass shift factor. Assuming
the inconsistency is therefore due to the second of these,
and the field factor and muonic data (although nuclear model
dependent) are correct, we may alternatively calculate the mass
shift factor to be M417 = −216 GHz amu. Although many of
the qualitative details of the extracted radii remain unchanged,
an uncertainty in the mass shift parameter M causes a tilting
of δ〈r2〉 about the reference point and prevents the general
gradient from becoming clear.

C. Scandium and manganese

Studies between the Z = 20 and Z = 28 proton shell
closures have recently included IS measurements in scandium
[10] and manganese [60]. As with yttrium and niobium, these
elements each have only a single stable isotope and nonoptical
measurements of the absolute radius have only been made
for these isotopes, with no δ〈r2〉 available. Unlike the heavier
yttrium and niobium nuclei, microscopic phenomena are more
apparent in the radii and less correlation is seen between
neighboring elements. This leaves any evaluation of δ〈r2〉
entirely dependent on theoretical calculations.

Anomalous charge radii provided the primary motivation
for the scandium experiments [10]. Whereas the radii generally
increase between shell closures, those in calcium form a
parabolic trend between N = 20 and N = 28 [76]. For this
reason, 48Ca has a very similar radius to 40Ca. In titanium,
in contrast, the radii were seen to increase as the neutron
number decreased below midshell. Scandium lies therefore
in the critical position between these two chains and the
accurate determination of the evolution of the radii is required.
MCDF calculations of the atomic factors were performed
and described in detail by the authors of Ref. [10]; they
give rise to radii with a titanium-like increase as the neutron
number decreases. Nuclear shell model calculations produced
estimates more similar to the calcium radii, but this would
require the mass shift factor to lie beyond the quoted error [10].
Further experiments are envisaged, which will take the IS
measurements past the N = 28 shell closure [77].

For manganese radioisotopes, laser spectroscopy has be-
gun with an initial study of 50−56Mn [60] and are the
first of such measurements in the neighborhood. For these
isotopes, the spectroscopy was performed on the 3d54s 5S2

(9472.970 cm−1) → 3d54p 5P3 (43370.510 cm−1) transition
at 295 nm. These measurements crossed the neutron number
N = 28, and revealed a minimum in δ〈r2〉 which seems a
signature of a neutron shell closure. Further spectroscopy is
planned to look for subshell effects at N = 32 and N = 34,
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FIG. 4. (Color online) Modified King plot between the two
transitions of Po-I studied with laser spectroscopy [30,81]. The
straight line is the best fit through the data points; the dashed line
is the present calculations.

and to investigate an onset of collectivity, suggested to occur
towards N = 40.

D. Translead nuclei

The elements around lead are of great interest to nuclear
physics for the richness of their structure: magic shell closures
at Z = 82 and N = 126, shape coexistence in the neutron-
deficient nuclei [78,79], as well as octupole deformation in
the neutron-rich nuclei [80]. These phenomena are directly
reflected on the shape of the nuclear ground state and have
prompted extensive laser spectroscopic studies [1].

The elements with Z > 82 have only one (near)stable
isotope (bismuth, Z = 83), while all other nuclides are
radioactive. Most of those isotopes are also not naturally
occurring and have to be produced in the laboratory. As
a consequence, the knowledge on their atomic structure is
limited. Moreover, there are no existing charge radii that can
be used for a King plot analysis.

As with the yttrium data, it is possible to assert the accuracy
of the atomic calculations to some extent, by comparing the
modified isotope shifts of two different transitions using a King
plot. This approach was used in the study of the polonium
isotopes [30]. The modified King plot is shown in Fig. 4.
As seen from this figure, the MCDF dotted line is parallel
to the best fit through the data points. We therefore conclude
that the ratio F256/F843 is accurate, giving high confidence
in the independent field shift factors. The difference in the y

intercepts shows, however, the discrepancy in the mass shift
factors. This corresponds to the behavior of the respective
parameters during the calculations: while the field shift factors
F converge reasonably fast, the mass shift factors M are more
sensitive to the details of the calculations. The modified King
plot analysis was used to determine the systematic uncertainty
arising from the mass shift. This systematic uncertainty is
comparable to the statistical uncertainty and does not affect
the nuclear physics conclusions.

In the case of astatine, the situation is even more com-
plicated, as only two atomic transitions were observed in
absorption spectroscopy [82]. A recent online campaign of
studies at radioactive ion beam facilities [83] has permitted the

discovery of many additional transitions. The search for those
transitions and their interpretation has been greatly improved
by the input from theoretical calculations. New ionization
schemes have been developed and the ionization potential has
been determined with great accuracy, and compared with the
atomic calculations. A campaign for the measurement of the
δ〈r2〉 is proposed and will require the electronic factor and
specific mass shift parameters to be calculated.

Finally, in the bismuth isotopes, a large data set of δν is
available [84] but no δ〈r2〉 could be extracted. Alternative
empirical approaches have been used to interpret the nuclear
effects on the δν but new atomic calculations are required to
finalize the analysis.

Another experimental program will study the anomalous
reduction in mean-square charge radius seen for isomeric states
with a large number of unpaired nucleons [36]. A wealth of
such states exist in 178−182Ta and these studies will significantly
add to the quantitative information available. Furthermore, the
study of these isomers in near-spherical bismuth nuclei will
allow the origin of the effect (be it rigidity of deformation
or diffuseness of the nuclear surface) to be investigated [85].
The same effect may be responsible for the odd-N or even-N
staggering of δ〈r2〉, seen across the nuclear chart, but still
poorly understood from a qualitative point of view.

E. Very heavy and superheavy nuclei

The properties of superheavy nuclei are a road map towards
the limit of nuclear existence. They also offer an uncharted
ground where atomic and nuclear models can be tested, but
more often than not, studies on these elements suffer from their
exotic nature and their absence from nature. As these elements
may only be produced in the laboratory and studied in very
limited quantities, almost no information is available on their
atomic structure.

In an effort to reach towards the transfermic nuclei, a first
step is to bridge the gap from the stable elements to uranium.
An international effort is currently underway at radioactive ion
beam facilities to study the nuclei from actinium to fermium
[1]. New facilities are also under construction where more
systematic studies will be performed [86]. Those studies will
eventually require atomic calculations, similarly as was done
for the case of astatine mentioned above, in the search for
atomic levels and subsequently in the measurement campaigns
on δ〈r2〉.

For most (super) heavy elements, accurate IS calculations
still remain a challenge. Although a reasonable agreement
between experimental and calculated IS parameters was found
for singly charged Os− ions [63] and Po atoms [30], additional
computations are needed to shed insight into the effects of a
(nearly) open 5f shell for the actinides and beyond. At present,
the MCDF method seems to be most suitable for performing
such computations, and especially for the elements for which
only limited or no atomic data are available yet.

For fermium (Z = 100), for example, first successful
measurements on the low-lying level structure were recently
based on prior MCDF computations [87]. Using a sample of
2.7 × 1010 atoms of the isotope 255Fm with a half-life of 20.1
hours only, two atomic levels were found at wave numbers
25 099.8 ± 0.2 and 25 111.8 ± 0.2 cm−1 and assigned as
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5, with a remarkable agreement
between the experiment and calculations. Moreover, partial
lifetimes were determined from the saturation characteristics
and helped assign the corresponding terms, by comparing the
transition probabilities. While a similar relative accuracy as
for the level energies cannot be expected in general for most
other properties, these and more recent computations clearly
show the capabilities and potential of the MCDF method for
complex shell structures [88].

VI. SUMMARY AND CONCLUSION

As discussed above, the quest for accurate IS calculations
and parameters cannot be separated from the shell structure
and electronic transitions that are utilized in laser spectroscopy.
Simple shell structures with just one or two electrons outside
of closed shells and some higher charge state of the ions
typically increase the stability of the electrons and, hence, may
help reduce the computational effort (for instance, the size of
the wave functions to obtain a required accuracy). However,
this applies only as long as QED effects are negligible or
remain moderate [89]. Moreover, s–p and p–s transitions
are generally simpler than transitions with open d and f

shells; these rather general rules may suggest to explore laser
transitions in the future where, as far as lasers are available, the
constraints from atomic structure theory are taken into account
in the preparation and setup of new experiments.

From an experimental point of view, transitions are nor-
mally selected on the basis of signal counts per ion sensitivity.
Also, they are selected for the ability to extract the nuclear
properties with precision. For example, each hyperfine struc-
ture needs to (i) be large enough to be resolvable, (ii) posses
a level with a large electronic field gradient for an accurate
determination of the quadrupole moment, and (iii) involve
states with J > 1/2 for the determination of the nuclear spin.
Measuring a transition with relatively large isotope shifts (but
experimental errors still much the same) would increase the
precision of the extracted δ〈r2〉, but this advantage is lost
if the calculation of the field factor is less certain. Optical
transitions are generally chosen to be from the ground state
for reasons of natural population. However, the method of
in-cooler optical pumping enables transitions from low-lying
ionic metastable states to be studied [27], while long-lived
atomic metastable states may be quasiresonantly populated
in the charge exchange process. Experimental beam time is
extremely valuable, but even if a transition is spectroscopically
weaker, a selected remeasurement of just a few of the more
intensely produced isotopes would enable the consistency of

the calculated atomic factors to be assessed via a King plot (as
for Y, Po).

Several elements have too few naturally occurring iso-
topes for an experimental calibration of the atomic factors
(and even these values are nuclear model dependent). Only
some examples have been mentioned here, where radioactive
studies have recently been made or are still in progress. In
the case of manganese, yttrium, tantalum, polonium, and
astatine, further experiments are planned to take place in the
near future. Atomic factor calculations are critical for the
reliable extraction of nuclear mean-square charge radii and
the conclusions which are drawn from them. For manganese,
studies will be extended to more neutron-rich isotopes, looking
for the predicted new subshell closures at N = 32 and N = 34
and an onset of collectivity around N = 40. Nuclear δ〈r2〉
values are a key indicator of these phenomena. Several
existing measurements will be repeated using a transition
in the neutral atom (see Table I) and the atomic factor
calculations compared with those for the ionic transition. High
deformation in the vicinity of 80Zr will be probed via the
exploration of neutron-deficient yttrium isotopes. A useful
insight into the nature of the deformation (its rigidity or
softness) can be obtained through a quantitative comparison
with quadrupole-moment–derived estimates. Measurements of
nuclear isomeric and ground states of just a few tantalum
isotopes will greatly increase the limited data available on
multi-quasiparticle isomers. It is hoped that this will then
encourage attempts to model the anomalous reductions seen in
the isomeric charge radii. These are only a few examples of the
experiments that will be carried out within the next couple of
years alone, at ISOLDE, TRIUMF, and JYFL, respectively. In
each case, a reliable calibration of the mass shift (as well as the
field shift) is essential for a full analysis of the experimental
data.

We hope that the present work and discussion will stimulate
improved IS calculations, either by using enlarged MCDF
wave functions [70,71], many-body perturbation calculations
[58,90], or even a more sophisticated QED treatment [91].
Especially for heavy and superheavy elements, only a system-
atic treatment of all major relativistic, QED, and correlation
effects will enable one to extract useful information from
laser spectroscopy about the structure, interactions, and charge
distributions of radioactive nuclei.
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