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In principle, a quantum system could be used to simulate another quantum system. The purpose of such a
simulation would be to obtain information about problems which are difficult to simulate on a classical computer
due to the exponential increase of the Hilbert space with the size of the system and which cannot be readily
measured or controlled in an experiment. The system will interact with the surrounding environment and with
the other particles in the system, and be implemented using imperfect controls, making it subject to noise. It has
been suggested that noise does not need to be controlled to the same extent as it must be for general quantum
computing. However, the effects of noise in quantum simulations are not well understood and how best to treat
them in most cases is not known. In this paper we study an existing quantum algorithm for simulating the
one-dimensional Fano-Anderson model using a liquid-state NMR device. We examine models of noise in the
evolution using different initial states in the original model. We also add interacting spins to simulate a realistic
situation where an environment of spins is present. We find that states which are entangled with their environment,
and sometimes correlated but not necessarily entangled, have an evolution which is described by maps which are
not completely positive. We discuss the conditions for this to occur and also the implications.
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I. INTRODUCTION

Simulating quantum systems with quantum systems is
one of the primary reasons there is a great deal of interest
in building a quantum computing device. The difficulty of
simulating quantum systems on a classical computer, mainly
due to the exponential increase of the Hilbert space with
system size, was Feynman’s motivation for proposing the
idea that a quantum system might perform this task much
more efficiently [1]. Lloyd showed later that some quantum
systems could be manipulated to represent the evolution of
other quantum systems using only local interactions [2].

There are many problems of interest in quantum mechanics
which have no known analytical solution. Thus for a wide
range of physical systems simulation is a valuable tool for
solving quantum-mechanical problems. Classical simulation
of such systems can quickly become intractable as the number
of particles increases. The resources required to perform such
a task increase exponentially with the size of the system. For
example, in order to represent the state of N two-state particles
a 2N vector is required and for its evolution the unitary operator
will be a 2N × 2N matrix [2,3]. However, a quantum simulator
would require only N particles to simulate such a system
[2,4]. In this sense, it is conjectured to provide exponential
speedup over classical simulation [5], but that is not the only
advantage; other problems such as the sign problem from
quantum Monte Carlo algorithms for fermionic systems or the
exchange-correlation functionals in density-functional theory
[6,7], will not be present in a quantum simulation. Therefore,
many difficult problems in particle physics, condensed matter
systems, and quantum field theory and chemistry, among
others, could be tackled [5,6,8–21].

Quantum simulations have received a great deal of recent
attention, since they are feasible without the need for a
universal quantum computing device. The question of the
universality of Hamiltonians has been addressed to a great ex-
tent [22–31], and algorithms have been developed to simulate
specific systems [4,6,12,19,32–43]. In addition, experiments
have been designed and implemented [16,44–50]. Still, a great

deal of work remains to be done. Currently available quantum
simulating devices are built with relatively few controllable
particles. These devices are, after all, quantum systems that
inevitably interact with the surrounding environment and
therefore are subject to noise. Just as with quantum computing,
this is an important issue when it comes to scalability. It
is therefore necessary to study how the interactions affect a
quantum simulation.

The purpose of the present work is to study the effects
of noise in an existing algorithm proposed for a quantum
simulation and to take away from this example as much general
understanding as we can. The primary noise considered is
prior unknown correlations or entanglement within the system
and between the simulated system and the environment. We
study the evolution of different initial states, including ideal
ones and states in which errors are present due to mistakes
in preparation and/or interactions with particles in the system,
and find the dynamical maps that represent the evolution. The
algorithm we explore was proposed and developed by Ortiz
et al. [6] to simulate the one-dimensional Fano-Anderson
model. To examine various behaviors of the system with
initial correlations, we first provide a background for the
quantum simulation in Sec. I A, which focuses on the different
sources of noise that can affect the experiments. Section I B
provides a brief review of open system quantum dynamics
and discusses dynamical maps and their main characteristics,
including requirements for positivity and complete positivity;
the purpose is to use dynamical maps to describe general
errors in simulations. Section II contains a brief explanation
of the algorithm used, including the modifications we made
to represent noise in the system. Finally, our results, given in
Sec. IV, are divided in two parts: those states for which the
Bloch vector has a component only along the z direction, and
those which have some small component along x and a main
one along z. We will also discuss why this is important. These
two last subsections are subsequently divided into simulations
performed with no external noise and simulations carried out
in the presence of noise. For the purpose of comparison, the
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parameters of the system were obtained from Ref. [6] and were
used for all the considered scenarios.

A. Quantum simulations

There are two main classifications of quantum simulators.
The universal quantum simulator (UQS) [51] (also referred
to as digital [52]), i.e., a quantum computer, represented by
the standard circuit model given the set of universal gates
that act on a collection of two-state systems [23,53,54].
The term universal infers that the quantum computer would
be able to simulate any arbitrary quantum system [55,56],
which implies universal quantum computation is possible.
A universal quantum computer would be Lloyd’s idea of
a universal quantum simulator [56]. However, this device
has not been built yet. So researchers have designed and
implemented devices consisting of smaller, but controllable,
quantum systems specifically intended to represent other
quantum systems. These constitute the second type of quantum
simulators, called specialized quantum simulators (SQSs)
[51,57] or analog quantum simulators [52,58]. The latter are
not intended for quantum computation nor as a universal
simulator. Rather, they are able to simulate a smaller but
interesting class of physical models. Quantum evolution
in these systems is not necessarily carried out through a
Trotter decomposition nor quantum gates; instead, they operate
continuously in time subject to external controls [56]. Many
interesting advances and simple simulations have already been
performed using these specialized systems [16,18,39,44,45,
47–49,59–62] examples of which include ultracold atoms, ion
traps, quantum dots, atoms in optical lattices, coupled cavities,
photons, electrons floating on He films, and NMR devices
among others [4,16,18,19,33,45,46,50,52,60,63]. Although
the above-mentioned are the two predominant classifications,
there exists the possibility of a nonuniversal digital quantum
simulator and a universal analog quantum simulator. The
nonuniversal digital simulator, or special purpose quantum
computer, would carry the Hamiltonian evolution through a
Trotter decomposition but does not require a universal set of
gates and therefore error correction and fault-tolerant operation
are not guaranteed [56]. On the other hand, the universal analog
simulator would not be subject to Trotterization but would be
a system capable of simulating any other quantum system. A
universal set of controls is not yet available for this kind of
device [56]. Further details on these classifications can be
found in Ref. [56].

Quantum simulators are open systems that are subject to
unwanted interactions with an environment that can have a
detrimental effect on the outcome. One may suppose that
error correction and/or prevention can be used for accurate
implementation, but the traditional methods will often not
apply to SQSs [56]. Inaccurate unitary transformations are
potential sources of noise as well, since they can affect the
outcome of the experiment [6]. Therefore, having precise
control over the system is the main problem of interest when
performing a quantum simulation [3,64].

All steps, preparation, evolution, and measurement, can
cause some degree of error [6,17] as well as unwanted
interactions with other particles in the simulator, etc. It was
initially suggested that decoherence in quantum simulations

may not need to be treated in the same strict sense as in
quantum computation [2], because noise in the simulating
device might be able to be identified with noise in the simulated
system. Nevertheless, the nature of the interactions of the
simulator with the bath may not be the same as those of
the system of interest and thus error prevention techniques
of some sort will almost certainly be required. These include
error-correcting codes (QECC) [65–70], decoherence-free
subspaces and noiseless subsystems (DNS) [71–76] (see
also [77,78] for reviews), and/or dynamical decoupling (DD)
[63,79–89]. However, even if error correction is available, it
means an increase in resource requirements and can represent
a problem with scalability [3,4,58,90,91] and efficiency. There
exist algorithms and observables which have an inherent
robustness to errors [92], but this is not the case for all systems
and all errors.

One may also attempt to simulate the interactions of a
quantum system with a specific reservoir. Refs. [34,40,93]
propose the simulation of systems that interact with an
engineered bath that is modelled using other components in the
quantum simulator (ancilla qubits in [40,93] and LC resonators
in [34]). In Refs. [34,40] the experiments are proposed in order
to simulate both, Markovian and non-Markovian dynamics.
Furthermore, an experimental setup to study open system
dynamics is proposed in [18]. It includes qubits that are
prepared to represent the system and other qubits to represent
the environment. In this way noisy preparation of states and
operations can be implemented. These kinds of setups can be
included in the classification open system quantum simulators,
also provided in [56]. The form in which the evolution of the
system is carried out would determine whether the simulator
is digital or analog. The final state of the system in these
types of devices can be determined by tracing out envi-
ronmental degrees of freedom, thus obtaining the evolution
under noisy gates or controls. In the Markovian regime this
would correspond to nonunitary Lindblad operators [56]. It is
noteworthy that the bath is also part of the simulator in the
above-mentioned references. This does not guarantee that the
simulation is not subject to imperfect controls and/or noise
otherwise not taken into account. For example, the modeling
of the environment could be imperfect.

Previous research aimed at understanding the effects of
noise and errors in quantum simulations includes the work by
Dür et al., who propose an algorithm to generate many-body
interactions from two-body interaction Hamiltonians [94] and
study the influence of noise due to timing errors and two-body
interactions in the Markovian regime and suggest methods to
reduce its influence. Ajoy et al. study the effects of imperfect
couplings on the simulation of a state transfer through a
spin chain and find that the final state presents phase errors
when the above-mentioned parameters deviate from their ideal
values [42].

Our work examines primarily unwanted interactions within
the system. We use an existing algorithm developed by Ortiz
et al. in [6] which was originally proposed without considering
possible errors in the implementation. We focus on improper
preparation of the initial state and couplings to other particles
within the system. There is no question that the initial state
is important because the outcome of the simulation depends
on it. A factor to consider is when errors are caused by
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initial entanglement; because dynamical decoupling cannot
remove those errors, since these controls rely on local unitary
transformations to eliminate Hamiltonian interactions with a
bath. Local unitary controls cannot change the entanglement
between the system and the bath.

Experimentally, it has been observed that two different state
preparation methods may not yield the same result and can
have a profound effect on the outcome [95]. We observe the
characteristics of the dynamical map (which will be described
in more detail in the next section) that describe the evolution
of different initial states and determine their positivity or
complete positivity. Until recently, discussions of the evolution
of an open quantum system were limited to completely positive
maps. However, work by Pechukas [96] and more recently, by
Shaji and Sudarshan [97] have provided demonstrations that
a map does not need be completely positive for the end result
to represent a physical state. It fact, the map does not even
need to be positive; it must only be positive on a given domain
in order to possibly represent a physical mapping. In certain
circumstances dynamical maps can provide information about
correlations in the initial state of the system, which could
provide useful information about the effects of noise and
interactions in quantum simulations. Furthermore, there are
many sets of operators in the operator-sum decomposition
which give rise to the same map. This is true of completely
positive maps [98,99] as well as maps which are not completely
positive [100].

B. Noise in quantum systems, completely
and non-completely positive maps

The density matrix, or density operator, represents our
knowledge of the quantum state of a system. In general, any
density operator must satisfy the following conditions in order
to represent a physical state [101]:

ρ = ρ†, it is Hermitian, (1)

ρ � 0, it is positive semidefinite,

i.e., its eigenvalues are non-negative, (2)

Tr(ρ) = 1, it has trace 1,

i.e., the sum of the probabilities is 1. (3)

The evolution of a closed system is described by a unitary
transformation, as

ψ(t) = U (t)ψ(0),

where U (t) = exp (−iH t). It follows that

ρ(t) = U (t)ρ(0)U (t)†.

The density operator is often written as an expansion of
pure states,

ρ =
∑

j

pj |j 〉〈j |,

where the pj are the probabilities associated with each of the
states |j 〉. If one of the probabilities is equal to 1 and the rest
are 0, then the state is pure. For two-state systems we can write
the density operator in terms of the 2 × 2 unit matrix and the

Pauli operators

ρ = 1
2 (1l + �a · �σ ),

where the coefficients ai are the projections along the x, y,
and z directions of the so-called Bloch vector. This provides
a representation of the quantum state, which is a geometric
representation of the states of the qubits in terms of a sphere
with radius 1. (For higher-dimensional systems, this is referred
to as the polarization vector, coherence vector, or generalized
block vector. See [102–108] and references therein.) The
magnitude of the Bloch vector is constrained by the condition√

a2
x + a2

y + a2
z � 1, and |�a| = 1 represents a pure state. Thus

any state on the surface of the Bloch sphere is a pure state. A
mixed state is represented by a vector with |�a| < 1. With this
notation it is possible to have a visual representation of the
quantum states at different times.

A system S that is coupled to an environment E with Hilbert
spaces HS and HE , respectively, can be considered a larger
isolated system whose initial state is described by ρSE(0).
The time evolution of this system is then given by the joint
evolution of the system and environment

ρSE(t) = U (t)ρSE(0)U (t)†.

We are often only interested in the evolution of the system, S.
Tracing out the environmental degrees of freedom provides us
with the reduced dynamics of the system

ρS(t) = TrE[ρSE(t)] = TrE[USE(t)ρSE(0)U †
SE].

Once we obtain the reduced dynamics of S, we can find the
map that transforms the initial state ρ(0) into the final state
ρ(t). To obtain the “dynamical map” it is convenient to write
the N × N density operator ρ as a N2 × 1 column vector that
is transformed into another N2 × 1 column vector through the
N2 × N2 supermatrix A,

ρ ′
r
′
s
′ (t) = Ar

′
s
′
,rsρrs(0), (4)

where A describes the most general evolution of ρ [109]. In
matrix notation

ρ
′ = Aρ. (5)

Because ρ must be mapped to another positive ρ
′
, the

following conditions are imposed on A [101]:

Ar
′
s
′
,rs = (As

′
r
′
,sr )∗, A preserves Hermiticity, (6)∑

rsr
′
s
′
x∗

r xsArs,r
′
s
′ y∗

r
′ ys

′ � 0, A preserves positivity, (7)

∑
r

Arr,r
′
s
′ = δr

′
s
′ , A is trace preserving. (8)

These conditions ensure that the conditions Eqs. (1)–(3) on
the density operator are satisfied for the final state if they are
satisfied for the initial state. The second condition implies
that the eigenvalues of the final density operator are all non-
negative. This condition is called the positivity condition and
a map that satisfies this condition it is said to be positive.

By interchanging indices of A, we obtain another N2 × N2

supermatrix B [101],

Brr
′
,ss

′ ≡ Ars,r
′
s
′ . (9)
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The 1 × N2 rows of A become the N × N block matrices
of B. The following conditions are imposed on B so that it
represents a physical map:

Brr
′
,ss

′ = (Br
′
r,s

′
s)

∗, B is Hermitian, (10)∑
rsr

′
s
′
x∗

r yr
′ Brr

′
,ss

′ xsy
∗
s
′ � 0, B is positive semidefinite, (11)

∑
r

Brr
′
,rs

′ = δr
′
s
′ , B is trace preserving. (12)

From these we may write

ρ(t) = B[ρ(0)]. (13)

If B is decomposed into its eigenvectors and eigenvalues, the
action of the map can be represented as follows:

B[ρ(0)] =
∑

α

λαζαρ(0)ζ †
α,

where λα ∈ R are the eigenvalues. The Hermiticity of ρ ′ is
guaranteed by the restriction given in Eq. (10) [109], so that
B must be Hermitian. The matrix A is required to transform
ρ(0) into another Hermitian state ρ(t), but A is not necessarily
Hermitian itself. The final state will be positive. When all of the
eigenvalues of B are positive, the map is said to be a completely
positive map. (See Ref. [110] and references therein.) If B has
a negative eigenvalue but still transforms any positive ρ(0)
into a positive ρ(t), then B is a positive but not a completely
positive map.

Noncompletely positive (NCP) maps have been measured
using quantum process tomography (QPT) [111,112], which
has caused the specifics of QPT to be questioned [113]. But the
possibility that a map which is not a completely positive map
can transform a valid quantum state into another valid state
has brought a great deal of interest in studying the conditions
for complete positivity. This is in addition to the interest in
NCP maps due to the partial transpose as an indicator of
entanglement [114,115].

In 1994, Pechukas showed that complete positivity con-
strains a system to product states of the form ρSE = ρS ⊗ ρE ,
where ρE is a fixed state of the bath [96,116], which excludes
correlations and therefore excludes many physical situations.
Alicki in Ref. [117] argued that there is no general definition
for the reduced quantum dynamics beyond the weak coupling
regime; therefore, when the system is in an initially correlated
state with the environment, linear assignment maps have no
unique definition [113], and linearity would only be preserved
for states that are invariant under the transformation [117].
Pechukas replied in Ref. [116] and agreed that open system
reduced dynamics can be nonlinear. However, Rodriguez-
Rosario et al. examine the assignment maps and argue against
giving up linearity by noting that the assignment maps can
be linear if the conditions of consistency or positivity are
relaxed, and favor relaxing the positivity condition [113]. A
quantum system that interacts with the environment before
our prescribed t = 0 can be described by completely positive
dynamics if the environment does not re-act on the system
[109], i.e., the coupling is weak and/or the initial state is in a
particular form [96].

As mentioned above, when the map is completely positive,
the eigenvalues of B in Eq. (13) can be taken to all be positive.
When they are, Eq. (13) can be rewritten as

ρ(t) = B[ρ(0)] =
∑

α

λαζαρ(0)ζ †
α =

∑
α

Cαρ(0)C†
α, (14)

where Cα = √
λαζα . Equation (14) is sometimes known

as the Kraus representation or operator-sum decomposition
[118], although it was originally discussed in this context
by Sudarshan et al. [101]. Jordan et al. demonstrated that
entanglement in the initial state of the system can lead to
noncompletely positive maps that still transform a positive ρ

into another positive ρ
′
[119]. Rodriguez-Rosario et al. found

that for purely classical correlations, the “quantum discord”
(defined below) vanishes, and this is a sufficient condition for
completely positive reduced dynamics [120]. Later, Shabani
and Lidar demonstrated that the quantum discord was also a
necessary condition for complete positivity [121]. Quantum
discord was introduced by Ollivier and Zurek in 2001, it is
defined as a “measure of the quantumness of the correlations”
[122] and is calculated as follows:

δ(S : E) = H (E) − H (S,E) + H
(
S|{	E

j

})
, (15)

H (x) = H (ρx) = Tr[ρx logd (ρx)] is the Von Neumann en-
tropy, where d is the base of the logarithm, specified by the
dimension of the system. And H (S|{(	E

j }) is the conditional
entropy, defined as the entropy of the system with respect to a
set of projective measurements performed on the environment.
Quantum discord provides a measure of the nature of corre-
lations; it vanishes for classical correlations and is maximum
when there is entanglement.

II. BACKGROUND

As mentioned before, the extent to which the noise from
the environment can be included in a quantum simulation
is dependent on both the simulating and simulated systems.
Of course, it would useful to have some previous knowledge
of the system-bath interactions. However, this is often not
the case. Here we study the effects of unwanted noise in
a quantum simulation using an algorithm that simulates the
one-dimensional Fano-Anderson model. In this case we have
a realistic model of the interaction and use the dynamical
maps of the system to describe the noisy evolution. Starting
with different initial states of the system and bath, we reduce
the dynamics to a two-particle model system. The algorithm
requires the two particles to be initialized in a particular state.
Due to interactions with external qubits in the simulating
device, these initial conditions may be imperfect. In addition,
if the particles are allowed to interact for some small time
before the beginning of the actual algorithm, the particles
could begin in a correlated or entangled state. We consider the
possibility of errors in the preparation of one of the particles
in the system as well as the possibility of correlations between
particles. We added a visualization of the evolution of the
Bloch vector in order to provide an intuitive picture of the
differences in the initial states and how they evolve. It is
useful to note that, regardless of the noncomplete positivity
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of some of the maps obtained, the final state is a physical
state and the system is a realistic physical model with realistic
couplings. The significance of these results will be discussed
in the conclusions. We now describe our methods and
results.

A. Quantum algorithm

Negrevergne et al. proposed an algorithm for the quantum
simulation of the one-dimensional Fano-Anderson model [15].
This model consists of an impurity described by an energy ε

surrounded by a ring of n spinless fermions having energies
εki

. The fermions interact with the impurity, which is also
a spinless fermion, through a hopping potential V [6,15].
The diagonalized wave-number representation of the Fano-
Anderson Hamiltonian is given by [6,15]

H =
n∑

i=0

εki
c
†
ki
cki

+ εb†b + V

n−1∑
i=0

(c†ki
b + b†cki

)δki0. (16)

The system is mapped via Jordan-Wigner transformation to
the spin system to obtain [6]

H̄ = ε

2
σ 1

z + εk0

2
σ 2

z + V

2

(
σ 1

x σ 2
x + σ 1

y σ 2
y

)
. (17)

Negrevergne et al. consider an NMR device for their simu-
lation as do we, but the model is not limited to this type of
device.

The simulator has an NMR drift Hamiltonian of the form [6]

Hd = 1

2

((
ε + εk0

)
2

−
√(

ε − εk0

2

)2

+ V 2

)
σ 1

z

+ 1

2

((
ε + εk0

)
2

+
√(

ε − εk0

2

)2

+ V 2

)
σ 2

z . (18)

The schematic representation of the system with two particles
can bee seen in Fig. 1.

The control Hamiltonian for spins in the system is

Hc(t) =
∑

j

[
αxj

σx + αyj
σy

] +
∑
ij

αi,j σ
i
zσ

j
z , (19)

where the α are controllable. The last term is considered
controllable because it can be turned on and off with the x

and y rotations.
To obtain the representation of the Hamiltonian in Eq. (17),

the following control sequence can be applied to Eq. (18) [6]:

U = ei π
4 σ 2

x e−i π
4 σ 1

y e−i θ
2 σ 1

z σ 2
z ei π

4 σ 1
y ei π

4 σ 1
x

× e−i π
4 σ 2

x e−i π
4 σ 2

y ei θ
2 σ 1

z σ 2
z e−i π

4 σ 1
x ei π

4 σ 2
y . (20)

FIG. 1. Schematic representation of the simulated system. Qubit
1 is used to simulate the resonant impurity and qubit 2 represents a
fermion site. The two particles interact via the potential V .

The goal is to see whether the initial state of the impurity has
changed over time and, if so, how much. For this purpose, we
use the time correlation function C(t) = b(t)b(0)†, which in
spin operator representation becomes C(t) = eiH̄ tσ 1

−e−iH̄ t σ 1
+

[6], where σ+ = σx + iσy and σ− = σx − iσy . The time
correlation function provides information about the overlap
of the initial and final states of the impurity.

To study the behavior of this system, we will use the
same form of the Hamiltonian in Eq. (17) to perform the
unitary evolution on different initial states of the system,
i.e., independent of any noise which may be present in the
system. We perform the same operation regardless of prior
interactions. We then obtain the reduced dynamics of the state
of the impurity site (qubit 1) and then obtain the dynamical
map that describes the evolution. We also calculate the time
correlation function for the purpose of comparing the results
of the different situations to those of an ideal scenario. In this
way we observe the effects of the noise and possible errors in
the outcome of the simulation.

B. Simulation with noise

To represent noise in the system, we include other qubits in
the environment surrounding the system of interest and modify
the control Hamiltonian. We examine two different models of
noise:

(1) First, we added two spins and had them interacting via
zz coupling with the particle that represents the state of the
fermion site (see Fig. 2):

HNMR = 1

2

((
ε + εk0

)
2

−
√((

ε − εk0

)
2

)2

+ V 2

)
σ 1

z

+ 1

2

((
ε + εk0

)
2

+
√((

ε − εk0

)
2

)2

+ V 2

)
σ 2

z

+ Jzz

4
σ 2

z σ 3
z + Jzz

4
σ 2

z σ 4
z + Jzz

4
σ 3

z σ 4
z . (21)

(2) Next, we added an extra particle, which interacts in the
same fashion (zz coupling) with both particles that represent
the system of interest—the resonant impurity and the fermion

FIG. 2. Schematic representation of the simulated system. Qubit
1 is used to simulate the resonant impurity and Qubit 2 represents a
fermion site. The two particles interact via the potential V . Qubit 2
interacts with two external spins (qubits 3 and 4) through the coupling
term Jzz.
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FIG. 3. Schematic representation of the simulated system. Qubit
1 is used to simulate the resonant impurity and qubit 2 represents a
fermion site. The two particles interact via the potential V , and with
an external spin (qubit 3) through the coupling term Jzz.

site (see Fig. 3):

HNMR = 1

2

((
ε + εk0

)
2

−
√((

ε − εk0

)
2

)2

+ V 2

)
σ 1

z

+ 1

2

((
ε + εk0

)
2

+
√((

ε − εk0

)
2

)2

+ V 2

)
σ 2

z

+ Jzz

4
σ 1

z σ 3
z + Jzz

4
σ 2

z σ 3
z , (22)

where Jzz represents the zz coupling constant. We used the
same control sequence from Eq. (20) to obtain Eq. (17), to rep-
resent a situation in which the extra qubits are environmental.
We therefore suppose these environmental spins are unknown
and are only detectable through their effects on the system.

III. RESULTS

In this section we describe the results of the simulations for
the two different modifications to the Hamiltonian as well as
different initial states.

A. States with Bloch vector in the z direction

We first consider states with only a z component to their
Bloch vectors. These form a special class of states due to the
commutativity of the zz Hamiltonian with these initial states.
This can be seen in Fig. 4, which represents the evolution of the
Bloch vector at different times. The final state is spin directed
along the z axis, but its magnitude changes in time.

1. Noiseless quantum simulation

Here we consider the cases where no bath is present
but different initial states are considered. Three cases are
considered, corresponding to three types of different initial
states used in the simulation:

A.1 Pure states

|ψ(0)〉 = |00〉,|01〉,|10〉,|11〉. (23)

Density operator calculated as ρ(0) = |ψ(0)〉〈ψ(0)|.
A.2 Entangled states

|ψ(0)〉 = α0|01〉 + α1|10〉, (24)

where α2
0 + α2

1 = 1, and the density operator is given by
ρ(0) = |ψ(0)〉〈ψ(0)|.

(a) t=0 (b) t=0.3

(c) t=0.6 (d) t=0.9

FIG. 4. (Color online) Evolution of the Bloch vector of the
reduced dynamics of qubit 1 in the initial state ρ1 = |0〉〈0| as a
function of time.

A.3 Correlated states

ρ(0) = (1 − p)
(
ρI

1 ⊗ ρI
2

) + p
(
ρII

1 ⊗ ρII
2

)
, (25)

where ρI
1 and ρI

2 are the density operators corresponding to
some initial state of the impurity (“spin-down,” occupied) and
fermion (“spin-up,” unoccupied), respectively, and ρII

1 and
ρII

2 correspond to the other initial state of the impurity (“spin-
up”/unoccupied) and fermion (“spin-up”/unoccupied).
We represented the initial state of the impurity in terms of its
x, y, and z projections of the Bloch vector. The magnitude
of each component of the projections ai can be obtained by
performing the partial trace over everything else except qubit
1, as ai = Tr[σi(ρS(0))].

First consider an initial density operator

ρS(0) = 1
2 (1l + �ai · �σi).

In this case, case A.1,

ρS(0) = 1
2 (1l + a3σz),

where a3 represents a real constant that is equal to, or less than,
the radius of the Bloch sphere (i.e., 0 � a3 � 1). It represents
the projection along the z axis. The final state was obtained
through the reduced dynamics of ρS after the evolution:

ρS(t) = Tr{ρS(0)[U (t)ρ(0)U (t)†]}.

When the initial states ρS(0) only had a z component, the final
states ρS(t) only had a z component as well:

ρS(t) = 1
2 (1l + b3σz),

where b3 is another real constant that is subject to 0 � b3 � 1.
The value of b3 depends on a3 and on the parameters ε, εki

,
V , and t . When states with only a z component are input, the
final states also have only a z component. This is consistent
with the hopping model where the “spin-down” corresponds
to the state being occupied. The evolution is described by the
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FIG. 5. (Color online) Eigenvalues of the dynamical map B of the
reduced dynamics of qubit 1. The initial state of the closed system
is |ψ〉 = |01〉. This is an example of an initially pure state (case
A.1) with zero quantum discord. The parameters of the Hamiltonian
are ε = −8 meV, ε = −2 meV, V = 4 meV. The evolution was
carried out for the time interval �t ∈ [0.1,0.9]. There are four sets of
eigenvalues, but due to the form of the dynamical map, two of these
sets appear to overlap with the other two sets, which is the reason
why only two lines show on the graph.

dynamical map

B =

⎛
⎜⎜⎜⎝

1+b3
2 0 0 0

0 1+b3
2 0 0

0 0 1−b3
2 0

0 0 0 1−b3
2

⎞
⎟⎟⎟⎠ . (26)

The eigenvalues of the map are plotted as functions of time in
Fig. 5.

We note that the dynamical map for maximally entangled
states (case A.2) in which only z components are considered
for the initial states of both particles in the system has the same
form as that in Eq. (26). In Fig. 5, the eigenvalues of the map
correspond to a completely positive evolution. We found that
this was the case for maximally entangled states with nonva-
nishing quantum discord, but only when the individual states
of the particles are eigenvalues of the Fano-Anderson Hamil-
tonian. We found this to be the case for states of the form pre-
sented as case A.3 under the same conditions mentioned above.

We therefore note, for later reference, that in these cases all
states have only a z component in the initial and final states of
the system. Thus there is only this standard interpretation of the
hopping model Hamiltonian when there is no external noise.

2. Simulation with noise from spin bath

In this section we present the results for systems governed
by the Hamiltonians in Eqs. (21) and (22). The goal is to
simulate a two-body problem, so we used the same control
sequence in Eq. (20). However, the initial state of a “bath” of
two particles was included in the total system Hamiltonian.
As in the simulation that had no external noise, we chose
different initial configurations. Explicitly, including the bath
qubits these are:

A.4 Pure states

|ψ(0)〉 = |0011〉,|0111〉,|1011〉,|1111〉, (27)

and density operator ρ(0) = |ψ(0)〉〈ψ(0)|.
A.5 Entangled states

|ψ(0)〉 = α0|0111〉 + α1|1011〉, (28)

where α2
0 + α2

1 = 1, and the density operator is given by
ρ(0) = |ψ(0)〉〈ψ(0)|.

A.6 Correlated states

ρ(0) = [
(1 − p)

(
ρI

1 ⊗ ρI
2

) + p
(
ρII

1 ⊗ ρII
2

)]
⊗(|1〉〈1|) ⊗ (|1〉〈1|). (29)

The fact that the states only had a component in the z

direction and only interact with the bath via zz couplings gives
results very similar to the ones in the previous section. The
initial state of qubit 1 (the impurity) can again be written in
Pauli notation as

ρS(0) = TrEρ(0) = 1
2 (1l + a3σz). (30)

The final state is obtained by tracing over the bath degrees of
freedom,

ρ1(t) = TrE[U (t)ρ(0)U (t)†] = 1
2 (1l + b3σz), (31)

where b3 is another constant.
The most general dynamical map has the same form as the

map in Eq. (26),

B =

⎛
⎜⎜⎜⎜⎝

1+b3
2 0 0 0

0 1+b3
2 0 0

0 0 1−b3
2 0

0 0 0 1−b3
2

⎞
⎟⎟⎟⎟⎠ . (32)

We observed that the coupling Jzz affects the rate of change
of the state of qubit 1, which is shown in the results for the
calculation of the time correlation function. In Figs. 6 and 7, the
eigenvalues of B are plotted with the couplings to the particles
of the spin bath being Jzz = 8 and Jzz = 1

10 , respectively.
Figures 5, 6, and 7 show the evolution of the same initial

state, but each has a different environment. Being states
initially in the z direction, the dynamics are completely positive
since the interaction with the bath is a zz coupling. However,
it does change the hopping rate. In Fig. 6 this is particularly
noticeable due to the choice of the coupling. The state of
the impurity does not transfer as quickly due to the strong
correlations generated by the interaction with the spin bath.
In Fig. 7 the situation is different. In this case the eigenvalues
remained the same, regardless of the strength of the coupling
with the environment. This is because the additional spin
interacts with both particles in the system with the same
coupling strength, producing an overall shift in the energy
parameters of the system.

3. Weak, intermediate, and strong coupling regimes

The time for the transfer of the initial state of the system
is clearly affected by the strength of the coupling. To better
understand the effect of interactions with external spins, Fig. 8
represents the evolution of a state where both qubits 1 and 2 are
initially aligned along the z axis. The “weak,” “intermediate,”
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FIG. 6. (Color online) Eigenvalues of the dynamical map of the
reduced dynamics of qubit 1. In the open system two qubits are
interacting via zz coupling with qubit 2 with coupling constant Jzz =
8 meV. The initial state of the system and bath is given by ψ = |0111〉
(case A.4). The system parameters are ε = −8 meV, ε = −2 meV,
and V = 4 meV. The evolution is carried out for the time interval
t ∈ [0.1,0.9]. The dynamical map of the reduced dynamics for this
configuration is also completely positive. Similarly to the case of
Fig. 5, there are two sets of eigenvalues which overlap.

and “strong,” regimes are defined in terms of the strength of
the coupling to the bath Jzz compared to the parameters of the
system which were obtained from [6]. The coupling strength
has an effect on the transfer rate. In the “strong” regime,
where the coupling strength is larger than the parameters of
the system, the evolution is much slower. The “weak” regime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

E
ig

en
va

lu
es

Time (arb. units)

λ1

λ2

λ3

λ4

FIG. 7. (Color online) Eigenvalues of the dynamical map of the
reduced dynamics of qubit 1. The system is open. An additional
qubit is interacting via zz coupling with qubits 1 and 2 with coupling
constant Jzz = 1/10 meV. The initial state of the system and bath is
|ψ〉 = |011〉 (case A.4 with only one additional qubit). The system
parameters are ε = −8 meV, ε = −2 meV, and V = 4 meV. The
evolution is carried out for the time interval t ∈ [0.1,0.9]. This
configuration was the same as in Fig. 5, because the couplings to
the third qubit both had the same magnitude, which results in a shift
in the values of the energies, but the relative sizes of the parameters
remain unchanged.
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FIG. 8. (Color online) Time correlation function of the reduced
dynamics of qubit 1. Qubit 2 is interacting via zz coupling with
qubits 3 and 4. The coupling strengths are Jzz = 1 meV in the “weak”
regime, Jzz = 6 meV in the “intermediate” regime, and Jzz = 9 meV
in the “strong” regime. The initial state of the system and bath is
|ψ〉 = |0111〉 (case A.4). The system parameters are ε = −8 meV,
ε = −2 meV, and V = 4 meV, for times t ∈ [0.1,0.9].

approximates the evolution of the system when no interaction
with an external bath is present, thus making it more difficult
to detect errors.

B. Arbitrary initial direction of the Bloch vector

Noise in the initialization of the state could result in a
direction for the Bloch vector which is not in the z direction
(see Fig. 9). States that have an x or a y component to
their polarization vector, or Bloch vector, exhibit precession
and approximate more accurately what happens in a real
experimental situation. This is often observed in an NMR
device under general circumstances and leads to noise in the
system. Here we consider an initial state with a component of
the Bloch vector in the x direction. Clearly a y component is
not necessary and only specifies a different initial condition
for the angle since the system will precess.

1. Noiseless quantum simulation

The initial states were chosen to have a component in the x

direction; the components in x and z were selected such that
the magnitude of the Bloch vector is close to 1, emulating a
small error in the initialization. Explicitly, the different initial
configurations were:

B.1 States in which qubit 1 has a component in the x

direction

ρ1(0) = 1
2 (1l + a1σx + a3σz)

and
ρ2(0) = 1

2 (1l − α3σz).

B.2 Correlated states in which the initial state is a convex
combination of states; one (or both) of the possible states of
qubit 1 has a component in the x direction (state for qubit 1 in
case B.1),

ρ(0) = [
(1 − p)

(
ρI

1 ⊗ ρI
2

) + p
(
ρII

1 ⊗ ρII
2

)]
,
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where ρ1 is the state of the impurity, ρ2 is the state of the

fermion and the ai are subject to 0 �
√

a2
1 + a2

3 � 1.
The final state of the impurity was, once again, obtained

by doing a partial trace over the degrees of freedom of the
fermion

ρ(t) = TrE[Uρ(0)U †] = 1
2 (1l + b1σx + b2σy + b3σz). (33)

The map B is given by

B =

⎛
⎜⎜⎜⎜⎝

1+b3
2 0 0 −ib2

a1

0 1+b3
2

b1
a1

0

0 b1
a1

1−b3
2 0

ib2
a1

0 0 1−b3
2

⎞
⎟⎟⎟⎟⎠ . (34)

The eigenvalues of B are given by

λ1 =
a1 −

√
4b2

1 + a2
1b

2
3

2a1
, λ2 =

a1 +
√

4b2
1 + a2

1b
2
3

2a1
, λ3 =

a1 −
√

4b2
2 + a2

1b
2
3

2a1
, λ4 =

a1 +
√

4b2
2 + a2

1b
2
3

2a1
, (35)

where

b1 =
{

cos

(
1

2
t
(
ε + εk0

))
cos

(
1

2
t

√
4V 2 + (

ε − εk0

)2
)

− sin

(
1

2
t
(
ε + εk0

))[ (ε − ε) sin
(

1
2 t

√
4V 2 + (

ε − εk0

)2)√
4V 2 + (

ε − εk0

)2

]}
a1,

b2 =
{

− sin

(
1

2
t
(
ε + εk0

))
cos

(
1

2
t

√
4V 2 + (

ε − εk0

)2
)

− cos

(
1

2
t
(
ε + εk0

))[ (ε − ε) sin
(

1
2 t

√
4V 2 + (

ε − εk0

)2)√
4V 2 + (

ε − εk0

)2

]}
a1

and

b3 = 2(−1 + a3)V 2 + a3(ε − ε)2 + (1 + a3)V 2 cos
(

1
2 t

√
4V 2 + (ε − ε)2

)
4V 2 + (ε − ε)2

. (36)

(a) t=0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4 (f) t=0.5

(g) t=0.6 (h) t=0.7

FIG. 9. (Color online) Animation of the evolution of the Bloch
vector of the reduced dynamics of qubit 1 in the initial state ρ1 =
1
2 (1l + 0.2σx + 0.97σz).

Note that if a1 �→ 0, then b1 and b2 are 0. The factor a1 in the
denominator of the eigenvalues is eliminated using l’Hospital’s
rule, and that yields

λ1 = 1 − b3

2
, λ2 = 1 + b3

2
,

(37)

λ3 = 1 − b3

2
, λ4 = 1 + b3

2
,

which are the same as the eigenvalues of the map in Eq. (26).
The eigenvalues of B when a1 > 0 are shown in Fig. 10.
In Fig. 10, the dynamics of the system are positive but not

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

E
ig

en
va

lu
es

Time (arb. units)

λ1

λ2

λ3

λ4

FIG. 10. (Color online) Eigenvalues of the dynamical map of the
reduced dynamics of qubit 1. The initial states of the qubits in the
closed system are ρ1 = 1

2 (1l + 0.2σx + 0.97σz) and ρ2 = 1
2 (1l − σz)

(case B.1). The parameters of the Hamiltonian are ε = −8 meV,
ε = −2 meV, V = 4 meV. The evolution is carried out for the time
interval t ∈ [0.1,0.9].
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completely positive. This system is not in contact with a bath
or reservoir, but it consists of two particles. This is a case of
errors in initial state preparation. The general observation that
can be made from these results is that when the initial state has
a component of the Bloch vector in x or y as well as one in z,
the result is an NCP map.

2. Simulation with noise from the spin bath

The results in this section are generated from adding the
qubits in the spin bath and using the following initial states:

B.3 States in which qubit 1 has a component in the x

direction in an open system,

ρ(0) = ρ1(0) ⊗ ρ2(0) ⊗ (|1〉〈1|) ⊗ (|1〉〈1|), (38)

where

ρ1(0) = 1
2 (1l + a1σx + a3σz) (39)

and

ρ2(0) = 1
2 (1l − α3σz). (40)

The reduced dynamics of S are given by

ρ(t) = TrE[U (t)ρ(0)U (t)†] = 1
2 (1l + b1σx + b2σy + b3σz),

(41)

with a B map of the same for as that in Eq. (34),

B =

⎛
⎜⎜⎜⎜⎝

1+b3
2 0 0 −ib2

a1

0 1+b3
2

b1
a1

0

0 b1
a1

1−b3
2 0

ib2
a1

0 0 1−b3
2

⎞
⎟⎟⎟⎟⎠ . (42)

Once again, the noise, which has the form of purely zz

couplings, caused variations in the parameters, mostly in the
rate of change of the state of qubit 1. The eigenvalues for a
system with two spins interacting with the fermion only and
for one spin interacting with both particles in the system are
presented in Figs. 11 and 12.

In Figs. 11 and 12 the reduced dynamics are not completely
positive. This is due to the initial state of the impurity site (qubit
1) having a component of its Bloch vector in the x direction.
The algorithm was designed to have an initial state where one
of the two state systems is in the up state and the rest are in
the down state. Dynamical maps obtained through quantum
process tomography can present discrepancies if the initial
states are prepared through different experimental methods
[95]. Thus the x component represents a preparation error
which gives rise to an NCP map like in the previous case. Note
that Fig. 12 is very similar to Fig. 10. In Fig. 12 the two qubits
in the system are interacting with an external spin. Because, as
mentioned before, this interaction is due to a zz coupling to the
bath of the same strength for both particles, it represents only a
shift in the energy parameters of the entire system. Therefore,
the dynamics are the same in both cases. However, in Fig. 11
only qubit 2 is interacting with two external spins, and there is
an effect on the eigenvalues of the dynamical map. The speed
at which the system changes under the given Hamiltonian is
affected; this can be verified with the time correlation function
presented in the following section.
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FIG. 11. (Color online) Eigenvalues of the dynamical map for
the reduced dynamics of qubit 1. The initial states of the particles
in the system are ρ1 = 1

2 (1l + 0.2σx + 0.97σz) and ρ2 = 1
2 (1l − σz).

The initial states of the particles that compose the spin bath are ρ3 =
1
2 (1l − σz) and ρ4 = 1

2 (1l − σz). The total state of the bath is an example
of case B.3. The Hamiltonian parameters are ε = −8 meV, ε =
−2 meV, V = 4 meV. The coupling to the bath has strength Jzz = 6
meV. The evolution is carried out in the time interval t ∈ [0.1,0.9].

C. Time correlation function

Negrevergne et al. calculated the time correlation function
C(t) = b(t)b(0)† and plotted the result |G|2 = Tr[ρ(t)ρ(0)]
as a function of time. Since we want to calculate the
effects of noise and different initial states, we followed the
same procedure for the different situations. The results are
summarized in the graphs of Figs. 13, 14, and 15. In Fig. 13,
there is a slight difference between the results of the original
system compared to those under which errors could arise
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FIG. 12. (Color online) Eigenvalues of the dynamical map for
the reduced dynamics of qubit 1. The initial states of the particles
in the system are ρ1 = 1

2 (1l + 0.2σx + 0.97σz) and ρ2 = 1
2 (1l − σz).

The initial state of the additional qubit is ρ3 = 1
2 (1l − σz). This is

another form of case B.3, except that there is only one additional qubit
acting as the bath. The Hamiltonian parameters are ε = −8 meV, ε =
−2 meV, V = 4 meV. The coupling to the additional qubit has
strength Jzz = 1

10 meV. The evolution of the system is evaluated for
the time interval t ∈ [0.1,0.9].
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FIG. 13. (Color online) Time correlation function of the reduced
dynamics of qubit 1. The Hamiltonian parameters are ε = −8 meV,
ε = −2 meV, V = 4 meV, for time interval t ∈ [0.1,1]. These results
represent the evolution of the closed system, the system where qubit 2
interacts with two additional qubits, the system in which an additional
qubit that interacts with qubits 1 and 2. This was done when qubit 1
was in the initial states ρ = |0〉〈0| and ρ = 1

2 (1l + 0.2σx + 0.97σz),
as indicated above.

due to noise and unknown initial states. The coupling to the
environment affects how fast or slow qubit 1 evolves. However,
if the coupling to the bath is weak, these errors are not as
prominent.

When the initial state had a component in x, the resulting
correlation functions were very close to the original problem.
This is important because a small error like this one may not
be easily identified in the time correlation function. In Fig. 14
we show how the coupling to a spin bath can affect the rate
of change of the evolution. As mentioned before, these results
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FIG. 14. (Color online) Time correlation function of the reduced
dynamics of qubit 1. The system parameters are ε = −8 meV, ε =
−2 meV, V = 4 meV in the time interval t ∈ [0.1,0.9]. The results
correspond to the closed system and the system that interacts with two
additional qubits, coupled only to qubit 2. The initial state of qubit 1
is ρ = |0〉〈0| for one set of results, and ρ = 1

2 (1l + 0.2σx + 0.97σz)
for the other.
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FIG. 15. (Color online) Time correlation function of the reduced
dynamics of qubit 1. The system parameters are ε = −8 meV, ε =
−2 meV, V = 4 meV evaluated in the time interval t ∈ [0.1,0.9]. The
result represents the time correlation function of the closed system
compared to the correlation function of the reduced dynamics of qubit
1 in the initial state ρ = 1

2 (1l + a1σx + a3σz) for different values of
a1 and a3.

only include zz couplings. The strength of the couplings were
adjusted in order to see the effects more clearly.

Because quantum simulations are performed on quantum
systems, where access to complete information about the state
at all times is not available, correlations with the bath can be by
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FIG. 16. (Color online) Time correlation function of the reduced
dynamics of qubit 1. The system parameters are ε = −8 meV, ε =
−2 meV, V = 4 meV evaluated in the time interval t ∈ [0.1,0.9].
The results for the time correlation function of the reduced dynamics
of qubit 1 for: a closed system where the two qubits are in a pure
state (case A.1 label ×); a system where the initial state is a correlated
one with ρI

1 = 1
2 (1l + 0.2σx + 0.97σz), ρII

1 = 1
2 (1l + σz), ρI

2 = ρII
2 =

1
2 (1l − σz), and p = 1

2 (case B.2 label −); a system where the initial
state is a correlated one with ρI

1 = 1
2 (1l + 0.2σx + 0.97σz), ρII

1 =
1
2 (1l − 0.2σx − 0.97σz), ρI

2 = 1
2 (1l − σz), ρII

2 = 1
2 (1l + σz), and p = 1

2
(case B.2 label 
); a system where the initial state is a correlated one
(case A.3) where ρI

1 = 1
2 (1l + σz), ρII

1 = 1
2 (1l − σz), ρI

2 = 1
2 (1l − σz),

ρII
2 = 1

2 (1l + σz), and p = 1
9 (©); a system where the initial state is

a maximally entangled one (case A.5) and qubit 2 is interacting with
two additional qubits with coupling strength Jzz = 1

10 meV (♦).
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detected by differences in the rate of change of the evolution. In
Fig. 15, we increased a1, the component of the Bloch vector in
x, to see how it affects the final result. When the x component
of the Bloch vector is increased, we can see shifts in the time
correlation function. The greater a1 is, the larger the observed
shift. This could be useful for detecting possible errors in state
preparation.

In Fig. 16 we show the effects of initial correlations and
entanglement on the time correlation function. When the
initial state of the system is in the z direction, the maps are
completely positive. However, the presence of entanglement
and correlations is more evident in the time correlation function
than a pure initial state. It is also more evident than in the
case where the initial state has an x component. Maximally
entangled states (case A.5) and correlated states exhibited the
most pronounced deviations from the original results presented
in Ref. [6]. Thus in an experiment, we expect these are more
easily detected. However, deviations from complete positivity
are not significantly reflected in the results. This leads us to
believe that NCP maps which arise from small deviations in
the initial preparation will not be easily detected.

IV. CONCLUSIONS

Interactions of quantum systems with a surrounding envi-
ronment are undesirable for reliable quantum simulations and
for quantum information processing in general. In order to
enable the reduction or correction of noise, it is imperative
that we try to understand and control or suppress the noise
from the environment. Most research in error correction and
fault tolerance has so far been devoted to universal quantum
computing (and therefore universal quantum simulators) [56].
Lloyd’s suggestion to use the noise to simulate the interaction
of the system with the environment is clearly useful only in
special cases. For some analog simulators, substantial isolation

has been achieved [18]. However, noises remain in this system
and in others.

It is known that interactions with the environment can lead
to correlations that can result in noncompletely positive maps.
We found that such maps are not rare in our study of a
very simple model of a quantum system of fermions which
can readily be simulated on a quantum computing device, or
a dedicated quantum simulator. This Fano-Anderson model
exhibits maps which are not completely positive for a variety
of initial states, some of which were entangled and some with
other nontrivial quantum correlations in the sense of nonzero
quantum discord. They were shown to arise for even a fairly
small transverse component to an initial density matrix which
is supposed to have its Bloch vector aligned along the z axis.
Thus fairly small experimental errors can lead to maps which
are not completely positive in a rather simple experiment.
These types of noise also cause relatively small errors in the
final outcome of the measurement.

Initially correlated states, if they are not so identified but
are instead identified improperly as arising from completely
positive maps, may encourage an experimenter to try to
employ dynamical decoupling controls to eliminate errors.
These controls will be ineffective in these cases, since local
unitary transformations will not remove initial correlations or
entanglement.

We have used a very specific and simple model to illustrate
the effects of noise on the system, including the presences
of maps which are not completely positive. However, it is
important to emphasize that these effects are quite general and
will be present in some form in many other quantum systems,
including a wide class of quantum simulations.
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