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Method for classifying multiqubit states via the rank of the coefficient matrix
and its application to four-qubit states
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We construct coefficient matrices of size 2� by 2n−� associated with pure n-qubit states and prove the
invariance of the ranks of the coefficient matrices under stochastic local operations and classical communication
(SLOCC). The ranks give rise to a simple way of partitioning pure n-qubit states into inequivalent families
and distinguishing degenerate families from one another under SLOCC. Moreover, the classification scheme via
the ranks of coefficient matrices can be combined with other schemes to build a more refined classification
scheme. To exemplify we classify the nine families of four qubits introduced by Verstraete et al. [Phys.
Rev. A 65, 052112 (2002)] further into inequivalent subfamilies via the ranks of coefficient matrices, and
as a result, we find 28 genuinely entangled families and all the degenerate classes can be distinguished up to
permutations of the four qubits. We also discuss the completeness of the classification of four qubits into nine
families.
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I. INTRODUCTION

Quantum entanglement plays a crucial role in quantum
information theory, with applications to quantum teleportation,
quantum cryptography, and quantum computation [1]. The
equivalence under stochastic local operations and classical
communication (SLOCC) induces a natural partition of quan-
tum states. The central task of SLOCC classification is to
classify quantum states according to a criterion that is invariant
under SLOCC.

SLOCC entanglement classification has been the subject
of intensive study during the last decade [2–20]. For three
qubits, there are six SLOCC equivalence classes of which two
are genuinely entanglement classes: GHZ and W [2] and four
degenerate classes can be distinguished by the local ranks (i.e.,
ranks of single-qubit reduced density matrices obtained by
tracing out all but one qubit [2]). For four or more qubits, there
are infinite SLOCC classes and it is highly desirable to partition
the infinite classes into a finite number of families. The key
lies in finding criteria to determine which family an arbitrary
quantum state belongs to. In a pioneering work, Verstraete
et al. [3] obtained nine SLOCC inequivalent families of four
qubits using Lie group theory: Gabcd , Labc2 , La2b2 , Lab3 , La4 ,
La203⊕1̄

, L05⊕3̄
, L07⊕1̄

, and L03⊕1̄03⊕1̄
. It is clear that some families

obtained by Verstraete et al. [3] contain an infinite number
of SLOCC classes and some contain both degenerate classes
and genuinely entangled classes. It is of great importance to
find a more refined partition of four-qubit states such that
the degenerate classes are distinguished from the genuinely
entangled families. Many other efforts have been devoted to
the SLOCC entanglement classification of four qubits [5–13].
More recently, a few attempts have been made toward the
generalization to a higher number of qubits, including odd n

qubits [17], even n qubits [18], symmetric n qubits [14–16],
and general n qubits [19,20].

This paper is organized as follows. We first construct
coefficient matrices of size 2� by 2n−� associated with pure n-

qubit states and prove the invariance of the ranks of coefficient
matrices under SLOCC in Sec. II. In Sec. III, we present
a recursive formula which allows us to easily calculate the
ranks of coefficient matrices of n-qubit biseparable states. We
next show that the degenerate families of general n qubits
are inequivalent to one another under SLOCC in Sec. IV.
Section V is devoted to the classification of four qubits via
the ranks of coefficient matrices. Section VI provides the
discussion of the completeness of the nine families obtained
by Verstraete et al. [3]. We finally conclude this paper in
Sec. VII.

II. THE INVARIANCE OF THE RANKS
OF COEFFICIENT MATRICES

Let |ψ〉1···n = ∑2n−1
i=0 ai |i〉 be an n-qubit pure state. We

associate with the state |ψ〉1···n a 2� by the 2n−� coefficient
matrix C1···�,(�+1)···n(|ψ〉1···n) whose entries are the coefficients
a0,a1, . . . ,a2n−1 of the state |ψ〉1···n arranged in ascending lex-
icographical order. To illustrate, we list C1···�,(�+1)···n(|ψ〉1···n)
below as ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 · · · 0︸ ︷︷ ︸
�

0 · · · 0︸ ︷︷ ︸
n−�

· · · a0 · · · 0︸ ︷︷ ︸
�

1 · · · 1︸ ︷︷ ︸
n−�

a0 · · · 1︸ ︷︷ ︸
�

0 · · · 0︸ ︷︷ ︸
n−�

· · · a0 · · · 1︸ ︷︷ ︸
�

1 · · · 1︸ ︷︷ ︸
n−�

...
...

...
a1 · · · 1︸ ︷︷ ︸

�

0 · · · 0︸ ︷︷ ︸
n−�

· · · a1 · · · 1︸ ︷︷ ︸
�

1 · · · 1︸ ︷︷ ︸
n−�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

In the binary form of the coefficient matrix in Eq. (1), bits
1 to � and � + 1 to n are referred to as the row bits and column
bits, respectively. If � = 0, C∅,1···n(|ψ〉1···n) reduces to the row
vector (a0, . . . ,a2n−1), and if � = n, C1···n,∅(|ψ〉1···n) reduces to
the column vector (a0, . . . ,a2n−1)T .

Let {q1,q2, . . . ,qn} be a permutation of {1,2, . . . ,n}. Let
Cq1···q�,q�+1···qn

(|ψ〉1···n) be the 2� × 2n−� coefficient matrix of
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the state |ψ〉1···n, which is constructed from the coefficient
matrix C12···�,�+1···n in Eq. (1) by taking the corresponding
permutation. Here q1, . . . ,q� are the row bits and q�+1, . . . ,qn

are the column bits. Indeed, we only need to specify the row
bits, as the column bits would simply be the rest of the bits.
In the sequel, we will omit the subscripts q�+1, . . . ,qn and
simply write Cq1···q�

, whenever the column bits are clear from
the context.

It is known that two n-qubit pure states |ψ〉1···n and |ψ ′〉1···n
are equivalent to each other under SLOCC if and only if
there are local invertible operators A1, A2, . . ., and An such
that [2]

|ψ ′〉1···n = A1 ⊗ A2 ⊗ · · · ⊗ An|ψ〉1···n. (2)

In terms of coefficient matrices, it can be verified that the
following result holds: For any two SLOCC equivalent n-
qubit pure states |ψ〉1···n and |ψ ′〉1···n, their coefficient matrices
Cq1···q�

satisfy the equation:

Cq1···q�
(|ψ ′〉1···n)

= (
Aq1 ⊗ · · · ⊗ Aq�

)
Cq1···q�

(|ψ〉1···n)
(
Aq�+1 ⊗ · · · ⊗ Aqn

)T
,

(3)

where A1,A2, . . . , and An are the local operators in Eq. (2).
Conversely, if there are local invertible operators A1,A2, . . . ,
and An such that Eq. (3) holds true for some Cq1···q�

, then
|ψ〉1···n and |ψ ′〉1···n are equivalent under SLOCC.

It immediately follows from Eq. (3) that the rank of any
coefficient matrix of an n-qubit pure state is invariant under
SLOCC. This leads to the following theorem.

Theorem 1. If two n-qubit pure states are SLOCC equivalent
then their coefficient matrices Cq1···q�

given above have the
same rank.

Restated in the contrapositive the theorem reads: If two
coefficient matrices Cq1···q�

associated with two n-qubit pure
states differ in their ranks, then the two states belong
necessarily to different SLOCC classes.

Coefficient matrices constructed above turn out to
be closely related to reduced density matrices. We let
ρ12···n(|ψ〉1···n) = |ψ〉1···n1···n〈ψ | be the density matrix of an
n-qubit pure state |ψ〉1···n, and we let ρq1···q�

be the �-qubit
reduced density matrix obtained from ρ12···n by tracing out
n − � qubits. As has been previously noted for bipartite
systems of dimensions d × d, a reduced density matrix has a
full rank factorization in terms of the corresponding coefficient
matrix and its conjugate transpose [22]. This factorization also
holds for n-qubit states [23]:

ρq1···q�
(|ψ〉1···n) = Cq1···q�

(|ψ〉1···n)C†
q1···q�

(|ψ〉1···n), (4)

where C† is the conjugate transpose of C. An important
relationship between reduced density matrices and SLOCC
polynomial invariants can be obtained by taking the determi-
nants of both sides of Eq. (4) for even n and for � = n/2,
yielding

det ρq1···qn/2 (|ψ〉1···n) = ∣∣det Cq1···qn/2 (|ψ〉1···n)
∣∣2

. (5)

Here det Cq1···qn/2 (|ψ〉1···n) is a SLOCC polynomial invariant
of degree 2n/2 for even n qubits and its absolute value can
be used as an entanglement measure [24]. Thus we have the
following:

Theorem 2. For even n-qubit pure states, the determinants
of n/2-qubit reduced density matrices are the squares of the
SLOCC polynomial invariants of degree 2n/2, with the absolute
values of the latter quantifying n/2-qubit entanglement of the
even n-qubit states after tracing out the other n/2 qubits.

As an example, when n = 4 we have det ρ12 = |L|2,
det ρ13 = |M|2, and det ρ14 = |N |2, where L, M , and N

are polynomial invariants of degree 4 [25]. When n = 6,
there are 10 three-qubit reduced density matrices and 10
polynomial invariants of degree 8: D1

6, . . . ,D
10
6 [24]. For

reduced density matrix ρ123 and polynomial invariant D1
6,

we have det ρ123 = |D1
6 |2. Similar equations hold for other

reduced density matrices and polynomial invariants with
appropriate permutations of qubits.

Remark 1. (i) The determinants of reduced density matrices
are invariant under SLOCC. (ii) It is worth noting that Eq. (5)
holds for bipartite systems of dimensions d × d as well [22].

As a particular case of Eq. (4), when qi = i we have
ρ1···n(|ψ〉1···n) = C1···n(|ψ〉1···n)C†

1···n(|ψ〉1···n). By virtue of
Eq. (4), the rank of the �-qubit reduced density matrix and
the rank of the corresponding coefficient matrix are the same.
In light of Theorem 1, we have the following result.

Corollary. The ranks of �-qubit reduced density matrices
obtained by tracing out n − � qubits are invariant under
SLOCC.

This is particularly true for the local ranks [2]. Note also
that any complex matrix has a singular value decomposition,
with the number of nonzero singular values equal to the rank
of the matrix. This means that the number of nonzero singular
values of any coefficient matrix of an n-qubit pure state is
invariant under SLOCC.

III. A RECURSIVE FORMULA FOR THE RANKS
OF N-QUBIT BISEPARABLE STATES

In principle, we can calculate the ranks of coefficient matri-
ces for n-qubit biseparable pure states by direct calculations.
However, in practice, this is rather cumbersome from the
computational point of view, and as n becomes large, this
might pose a serious problem. In order to avoid this difficulty,
we propose a simple recursive formula for the ranks of n-qubit
biseparable states.

Suppose that a biseparable n-qubit pure state |ψ〉1···n is of
the form |ψ〉1···n = |φ〉j1···jk

⊗ |ϕ〉jk+1···jn
with |φ〉j1···jk

being
a k-qubit state and |ϕ〉jk+1···jn

being an (n − k)-qubit state.
We let Cq1···q�

(|ψ〉1···n) be the coefficient matrix associated
with the state |ψ〉1···n. We let Cq∗

1 ···q∗
s
(|φ〉j1···jk

) be the 2s

by 2k−s coefficient matrix associated with the k-qubit state
|φ〉j1···jk

. Here {q∗
1 , . . . ,q∗

s } = {q1, . . . ,q�} ∩ {j1, . . . ,jk} are
the row bits, and by convention, the rest of the k − s bits
are the column bits. Moreover, we let Cq ′

1···q ′
t
(|ϕ〉jk+1···jn

) be
the 2t by 2n−k−t coefficient matrix associated with the (n −
k)-qubit state |ϕ〉jk+1···jn

. Here {q ′
1, . . . ,q

′
t } = {q1, . . . ,q�} ∩

{jk+1, . . . ,jn} are the row bits, and by convention, the rest
of the n − k − t bits are the column bits. It can be verified that

Cq1···q�

(|φ〉j1···jk
⊗ |ϕ〉jk+1···jn

)
= Cq∗

1 ···q∗
s

(|φ〉j1···jk

) ⊗ Cq ′
1···q ′

t

(|ϕ〉jk+1···jn

)
. (6)

In view of the fact that the rank of the Kronecker product of two
matrices is the product of their ranks, we arrive at the following
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TABLE I. Ranks of coefficient matrices of three-qubit pure states.

�����������Families

Ranks of

CA CB CC

A-B-C 1 1 1
A-BC 1 2 2
B-AC 2 1 2
C-AB 2 2 1
ABC 2 2 2

recursive formula for the ranks of coefficient matrices of an
n-qubit biseparable state:

rank
(
Cq1···q�

(|φ〉j1···jk
⊗ |ϕ〉jk+1···jn

))
= rank

(
Cq∗

1 ···q∗
s

(|φ〉j1···jk

))
rank

(
Cq ′

1···q ′
t

(|ϕ〉jk+1···jn

))
. (7)

The formula above allows us to calculate recursively
the ranks of coefficient matrices of n-qubit biseparable
states in terms of the ranks of coefficient matrices of k-
qubit states and (n − k)-qubit states. To illustrate the use
of the recursive formula, we start with the initial values
rank(CA(|φ〉A)) = 1 and rank(C∅(|φ〉A)) = 1. It is known
that a two-qubit pure state can be either of the form A–B

(separable) or the form AB (EPR). Using the recursive
formula, we find rank(CA(|φ〉A|ϕ〉B)) = rank(CA(|φ〉A)) ×
rank(C∅(|ϕ〉B)) = 1. On the other hand, a direct calculation
shows that rank(CA(|ϕ〉AB)) = 2. Using the results obtained
above, we can find the ranks of coefficient matrices of three-
qubit pure states. Consider, for example, rank(CC(|φ〉B |ϕ〉AC))
for biseparable states being of the form B-AC. Using
the recursive formula, we have rank(CC(|φ〉B |ϕ〉AC)) =
rank(C∅(|φ〉B)) × rank(CC(ϕ〉AC)) = 2. In a similar fashion,
we can fill in the rest of the entries in Table I, except those in
the last row which can be obtained by direct calculations. Pro-
ceeding in this way, we can construct Tables II and III for the
ranks of coefficient matrices for four and five qubits.

TABLE II. Ranks of coefficient matrices of four-qubit pure states.

�������Families

Ranks of

CA CB CC CD CAB CAC CAD

A-B-C-D 1 1 1 1 1 1 1
A-B-CD 1 1 2 2 1 2 2
A-C-BD 1 2 1 2 2 1 2
A-D-BC 1 2 2 1 2 2 1
B-C-AD 2 1 1 2 2 2 1
B-D-AC 2 1 2 1 2 1 2
C-D-AB 2 2 1 1 1 2 2
A-BCD 1 2 2 2 2 2 2
B-ACD 2 1 2 2 2 2 2
C-ABD 2 2 1 2 2 2 2
D-ABC 2 2 2 1 2 2 2
AB-CD 2 2 2 2 1 4 4
AC-BD 2 2 2 2 4 1 4
AD-BC 2 2 2 2 4 4 1
ABCDa 2 2 2 2 �2 �2 �2

aABCD can be further partitioned under SLOCC in terms of the
ranks of CAB , CAC , and CAD .

TABLE III. Ranks of coefficient matrices of five-qubit pure
states.

���������Families

Ranks of

Cα Cβγ (β 
=γ )

i-j -k-�-m 1b 1c

i-j -k-�m 1, if α = i,j,k 1, if β,γ = i,j,k

2, otherwise or β,γ = �,m

2, otherwise

i-jk-�m 1, if α = i 1, if β,γ = j,k

2, otherwise or β,γ = �,m

2, if β = i or γ = i

4, otherwise

i-j -k�m 1, if α = i or j 1, if β,γ = i,j

2, otherwise 2, otherwise

i-jk�m 1, if α = i 2, if β = i or γ = i

2, otherwise 2, 3, or 4, otherwise

ij -k�m 2b 1, if β,γ = i,j

2, if β,γ = k,�,m

4, otherwise

ijk�m 2b 2, 3, or 4c

a{i,j,k,�,m} is any permutation of {A,B,C,D,E}.
bα = i,j,k,�,m.
cβ,γ = i,j,k,�,m.

Note that in Tables I and II the ranks of only 2n−1 − 1
coefficient matrices are shown. This is due to the fact
that interchanging two row (respectively, column) bits or
exchanging the row and column bits of a coefficient matrix
does not alter the rank of the matrix, since the former is
equivalent to interchanging two rows (respectively, columns)
of the matrix and the latter is equivalent to transposing the
matrix. Ignoring C∅ and C1···n which always have rank 1, this
amounts to totally 2n−1 − 1 potentially different coefficient
matrices. For example, the ranks of CBA and CBC are not
shown in Table II, since CAB and CBA differ by the interchange
of two rows, and CBC is the transpose of CAD . As illustrated
in Tables I–III, the ranks of coefficient matrices permit the
partitioning of the space of the pure states into inequivalent
families under SLOCC (i.e., two states belong to the same
family if and only if the ranks of coefficient matrices are all
equal). In particular, degenerate families of three, four, and
five qubits are inequivalent from one another under SLOCC.

IV. DEGENERATE FAMILIES OF GENERAL N QUBITS
ARE SLOCC INEQUIVALENT TO ONE ANOTHER

The recursive formula above further gives rise to a
criterion for biseparability of an n-qubit pure state. In-
deed, we note that Eq. (7) holds particularly true for
{q1, . . . ,q�} = {j1, . . . ,jk}. In this case, the coefficient ma-
trices Cq∗

1 ···q∗
s

and Cq ′
1···q ′

t
reduce to a column vector and a

row vector, respectively, and therefore both of them have
rank 1. It follows that rank(Cq1···q�

(|φ〉q1···q�
⊗ |ϕ〉q�+1···qn

)) =
1. Conversely, if rank(Cq1···q�

(|ψ〉1···n)) = 1 for an n-qubit
pure state |ψ〉1···n, then |ψ〉1···n is biseparable, being of the
form |ψ〉1···n = |φ〉q1···q�

⊗ |ϕ〉q�+1···qn
. This can be seen as
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follows. For simplicity, we assume qi = i with i = 1, . . . ,n.
If rank(C12···�(|ψ〉1···n)) = 1, then all columns of C12···� are
proportional to each other and each column can be written
into the form (a0bj ,a1bj , . . . ,a2�−1bj )T . Hence, |ψ〉1···n can
be written as |ψ〉1···n = |φ〉1···� ⊗ |ϕ〉(�+1)···n with |φ〉1···� =∑2�−1

i=0 ai |i〉1···� and |ϕ〉(�+1)···n = ∑2n−�−1
j=0 bj |j 〉(�+1)···n. This

leads to the following biseparability criterion for n-qubit pure
states.

Biseparability criterion for n-qubit pure states. For any
coefficient matrix Cq1···q�

associated with an n-qubit pure
state |ψ〉1···n, rank(Cq1···q�

(|ψ〉1···n)) = 1 if and only if |ψ〉 is
biseparable, being of the form |ψ〉1···n = |φ〉q1···q�

⊗ |ϕ〉q�+1···qn

(see also [21,23]).
Invoking the fact that an n-qubit pure state is entangled

if it is not full separable, we have the following criterion to
identify n-qubit entangled (respectively, genuinely entangled)
pure states: An n-qubit pure state is entangled (respectively,
genuinely entangled) if and only if the rank of at least one
of its coefficient matrices is (respectively, the ranks of its all
coefficient matrices are) greater than 1.

Note that all the above criteria can be rephrased in terms
of the ranks of �-qubit reduced density matrices obtained by
tracing out n − � qubits [26] or the number of nonzero singular
values of coefficient matrices.

Theorem 1 together with the biseparability criterion above
yield the following theorem.

Theorem 3. Degenerate families of general n qubits are
inequivalent to one another under SLOCC and they can be
distinguished in terms of the ranks of coefficient matrices (or in
terms of the ranks of �-qubit reduced density matrices obtained
by tracing out n − � qubits).

The validity of Theorem 3 can be seen as follows. Given
an n-qubit pure state, a partition P of the n particles is a
collection of disjoint sets in such a way that the particles within
any one set are entangled and any two particles from different
sets are not entangled. Suppose F1 and F2 are two different
degenerate families with partitions P1 and P2, respectively.
Without loss of generality, we assume that there exists a
set S such that S ∈ P1 and S 
∈ P2. Then the states in F1

can be written in the biseparable form |φ〉S |ϕ〉S̄ , where S̄ is
the set of all particles except those in S. According to the
biseparability criterion above, rank(CS) = 1 for states in F1.
Since the states in F2 cannot be written in the above biseparable
form, rank(CS) > 1 for states in F2 . In light of Theorem 1, the
two degenerate families are inequivalent to each other under
SLOCC.

In addition, we remark that degenerate families of general
n qubits can also be distinguished from one another under
SLOCC in terms of the ranks of �-qubit reduced density
matrices obtained by tracing out n − � qubits or the number
of nonzero singular values of coefficient matrices.

V. SLOCC CLASSIFICATION OF FOUR QUBITS
VIA THE RANKS OF COEFFICIENT MATRICES

Suppose that the states |ψ〉 and |ψ ′〉 of four qubits are
SLOCC equivalent to each other, then there are local invertible
operators A1, A2, A3, and A4 such that [2]

|ψ ′〉 = A1 ⊗ A2 ⊗ A3 ⊗ A4|ψ〉. (8)

For a four-qubit state |ψ〉 = ∑15
i=0 ai |i〉, we consider three

coefficient matrices CAB , CAC , and CAD as follows:

CAB =

⎛
⎜⎝

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

⎞
⎟⎠ , (9)

CAC =

⎛
⎜⎝

a0 a1 a4 a5

a2 a3 a6 a7

a8 a9 a12 a13

a10 a11 a14 a15

⎞
⎟⎠ , (10)

CAD =

⎛
⎜⎝

a0 a4 a2 a6

a1 a5 a3 a7

a8 a12 a10 a14

a9 a13 a11 a15

⎞
⎟⎠ . (11)

The coefficient matrices above satisfy the following equations:

CAB(|ψ ′〉) = A1 ⊗ A2CAB(|ψ〉)(A3 ⊗ A4)T , (12)

CAC(|ψ ′〉) = A1 ⊗ A3CAC(|ψ〉)(A2 ⊗ A4)T , (13)

CAD(|ψ ′〉) = A1 ⊗ A4CAD(|ψ〉)(A3 ⊗ A2)T . (14)

It follows from Eqs. (12)–(14) that if two four-qubit states
are SLOCC equivalent then their coefficient matrices CAB

(and also CAC and CAD) have the same rank. Conversely, if
one of the coefficient matrices CAB , CAC , and CAD differ in the
ranks, then the two four-qubit states are SLOCC inequivalent.
Let family FCAB

rAB
be the set of all four-qubit states with the same

rank rAB of the coefficient matrix CAB . Here rAB ranges over
the values 1, 2, 3, and 4. Clearly, each one of the nine families
introduced by Verstraete et al. [3] can be further divided into
four SLOCC inequivalent subfamilies corresponding to the
four possible values of rAB . In a similar manner, we can define
the families FCAC

rAC
and FCAD

rAD
. One can obtain a more refined

partition by further dividing the families FCAB
rAB

, FCAC
rAC

, and FCAD
rAD

into subfamilies FCABCACCAD
rABrACrAD

= FCAB
rAB

∩ FCAC
rAC

∩ FCAD
rAD

. Clearly,

the subfamilies FCABCACCAD
rABrACrAD

and F
CABCACCAD

r ′
ABr ′

ACr ′
AD

are SLOCC

inequivalent when rABrACrAD 
= r ′
ABr ′

ACr ′
AD .

We now further partition the nine families introduced by
Verstraete et al. [3] into SLOCC inequivalent subfamilies via
the rank of coefficient matrix. For convenience, we rewrite the
families Gabcd and Labc2 as

Gabcd = α(|0〉 + |15〉) + β(|3〉 + |12〉) + γ (|5〉 + |10〉)
+ δ(|6〉 + |9〉), (15)

Labc2 = α′(|0〉 + |15〉) + β ′(|3〉 + |12〉) + γ ′(|5〉 + |10〉)
+ |6〉. (16)

In Table IV, we show the subfamilies FCAB
rAB

, FCAC
rAC

, and
FCAD

rAD
of Gabcd . As illustrated in Table V, Gabcd can be further

partitioned into nine genuinely entangled subfamilies and three
biseparable subfamilies (marked with “*”) via rAB , rAC , and
rAD (subfamilies not listed in the table are empty). For simplic-
ity, the detailed descriptions of the subfamilies are not shown
as they can be easily obtained by taking the intersections of
the corresponding descriptions in Table IV. Tables VI and VII
illustrate the partitions of the other eight families introduced
by Verstraete et al. into inequivalent subfamilies. In total, we
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TABLE IV. The subfamilies F CAB
rAB

, F CAC
rAC

, and F CAD
rAD

of Gabcd .

Subfamily Description

F
CAB

1 α = β = 0 & γ = ±δ 
= 0 | α = ±β 
= 0 & γ = δ = 0

F
CAB

2 α = β = 0 & γ 
= ±δ | γ = δ = 0 & α 
= ±β | α = ±β 
= 0 & γ = ±δ 
= 0

F
CAB

3 α = ±β 
= 0 & γ 
= ±δ | γ = ±δ 
= 0 & α 
= ±β

F
CAB

4 α 
= ±β & γ 
= ±δ

F
CAC

1 α = γ = 0 & β = ±δ 
= 0 | α = ±γ 
= 0 & β = δ = 0

F
CAC

2 α = γ = 0 & β 
= ±δ | β = δ = 0 & α 
= ±γ | α = ±γ 
= 0 & β = ±δ 
= 0

F
CAC

3 α = ±γ 
= 0 & β 
= ±δ | β = ±δ 
= 0 & α 
= ±γ

F
CAC

4 α 
= ±γ & β 
= ±δ

F
CAD

1 α = δ = 0 & β = ±γ 
= 0 | α = ±δ 
= 0 & β = γ = 0

F
CAD

2 α = δ = 0 & β 
= ±γ | β = γ = 0 & α 
= ±δ | α = ±δ 
= 0 & β = ±γ 
= 0

F
CAD

3 α = ±δ 
= 0 & β 
= ±γ | β = ±γ 
= 0 & α 
= ±δ

F
CAD

4 α 
= ±δ & β 
= ±γ

find 28 genuinely entangled subfamilies and all the degenerate
classes can be distinguished up to permutations of the four
qubits (i.e., A-B-C-D, A-B-CD, AB-CD, |0〉A|W 〉BCD , and
|0〉A|GHZ〉BCD).

VI. DISCUSSION OF THE COMPLETENESS OF THE NINE
FAMILIES OBTAINED BY VERSTRAETE ET AL.

The family Lab3 in Ref. [3] was defined as

Lab3 = a(|0000〉 + |1111〉) + a + b

2
(|0101〉 + |1010〉)

+ a − b

2
(|0110〉 + |1001〉)

+ i√
2

(|0001〉 + |0010〉 + |0111〉 + |1011〉). (17)

In later work, Chterental et al. [3] obtained nine SLOCC
inequivalent families of four qubits using invariant theory. Let

TABLE V. SLOCC classification of Gabcd via rAB , rAC , and rAD .
The subfamilies marked with “*” are biseparable.

rAB rAC rAD Subfamily description

222 F
CAB

2 ∩ F
CAC

2 ∩ F
CAD

2

244 F
CAB

2 ∩ F
CAC

4 ∩ F
CAD

4

333 F
CAB

3 ∩ F
CAC

3 ∩ F
CAD

3

344 F
CAB

3 ∩ F
CAC

4 ∩ F
CAD

4

424 F
CAB

4 ∩ F
CAC

2 ∩ F
CAD

4

434 F
CAB

4 ∩ F
CAC

3 ∩ F
CAD

4

442 F
CAB

4 ∩ F
CAC

4 ∩ F
CAD

2

443 F
CAB

4 ∩ F
CAC

4 ∩ F
CAD

3

444 F
CAB

4 ∩ F
CAC

4 ∩ F
CAD

4

144∗ F
CAB

1 (i.e., AB-CD)

414∗ F
CAC

1 (i.e., AC-BD)

441∗ F
CAD

1 (i.e., AD-BC)

L′
ab3

be defined by

L′
ab3

= a(|0000〉 + |1111〉) + a + b

2
(|0101〉 + |1010〉)

+ a − b

2
(|0110〉 + |1001〉)

+ i√
2

(|0001〉 + |0010〉 − |0111〉 − |1011〉), (18)

that is, L′
ab3

is obtained by replacing the two “+” signs of
the last two terms in the formula of Lab3 by “−” signs
[6]. It is claimed that there is a perfect correspondence
between the nine families obtained by Verstraete et al. (with
Lab3 replaced by L′

ab3
) and the nine families obtained by

Chterental et al. [6]. Note that the formula of L′
ab3

has also
been adopted in Ref. [11]. Since both Verstraete et al. and
Chterental et al. claimed that the nine families obtained in
their work are inequivalent to each other, a detailed study of
the relation between Lab3 and L′

ab3
can provide insights into

the completeness of their classifications.

A. Lab3 (a = 0) is SLOCC equivalent to L′
ab3

(a = 0)

It is readily verified that the following equation holds
between L′

ab3
(a = 0) and Lab3 (a = 0):

L′
ab3

(a = 0) = I ⊗ I ⊗ iσz ⊗ iσzLab3 (a = 0), (19)

where I is the identity and σz = diag{1,−1}.
It follows from Eq. (19) that Lab3 (a = 0) and L′

ab3
(a = 0)

are SLOCC equivalent. In particular, setting b = 0 yields
that the states i√

2
(|0001〉 + |0010〉 − |0111〉 − |1011〉) and

i√
2
(|0001〉 + |0010〉 + |0111〉 + |1011〉) are equivalent under

SLOCC.

B. L′
ab3

(a �= 0) [respectively, Lab3 (a �= 0)] is SLOCC
inequivalent to Lab3 (respectively, L′

ab3
)

We first show that the family L′
ab3

(a 
= 0) is SLOCC
inequivalent to the family Lab3 . In Table VIII we show the
partition of L′

ab3
into SLOCC inequivalent subfamilies via
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TABLE VI. SLOCC classification of Labc2 via rAB , rAC , and rAD . The subfamilies marked with “*” are biseparable.

rAB rAC rAD Subfamily description

233 α′ = β ′ = 0 & γ ′ 
= 0

244 α′ = ±β ′ 
= 0 & γ ′ = 0

323 α′ = γ ′ = 0 & β ′ 
= 0

332 α′ 
= 0 & β ′ = γ ′ = 0

333 α′ = ±β ′ = ±γ ′ 
= 0

344 γ ′ = 0 & α′β ′ 
= 0 & α′ 
= ±β ′ | γ ′ 
= 0 & α′ = ±β ′ 
= 0 & α′ 
= ±γ ′

424 β ′ = 0 & α′ = ±γ ′ 
= 0

434 β ′ = 0 & α′γ ′ 
= 0 & α′ 
= ±γ ′ | β ′ 
= 0 & α′ = ±γ ′ 
= 0 & α′ 
= ±β ′

442 α′ = 0 & β ′ = ±γ ′ 
= 0

443 α′ = 0 & β ′ 
= ±γ ′ & β ′γ ′ 
= 0 | α′ 
= 0 & β ′ = ±γ ′ 
= 0 & α′ 
= ±β ′

444 γ ′ 
= 0 & α′ 
= ±β ′ & β ′ 
= 0 & α′ 
= ±γ ′ & α′ 
= 0 & β ′ 
= ±γ ′

111∗ α′ = β ′ = γ ′ = 0 (i.e., A-B-C-D)

rAB , rAC , and rAD . Consulting Tables VII and VIII, and using
the fact that the subfamilies with different ranks of coefficient
matrices are SLOCC inequivalent to each other, it suffices to
consider the following six cases.

Case 1. L′
ab3

(a = b 
= 0) is SLOCC inequivalent to
Lab3 (b = −3a 
= 0).

In this case, we can resort to Dxy , a degree 6 polynomial
invariant of four qubits [25] (see the Appendix for the
expression of Dxy). Indeed, it can be verified that if |ψ〉 and
|ψ ′〉 are any two SLOCC equivalent states, that is, they satisfy
Eq. (2), then the following equation holds:

Dxy(|ψ ′〉) = Dxy(|ψ〉)
[

4∏
i=1

detAi

]3

. (20)

It follows from Eq. (20) that for any two SLOCC equivalent
states |ψ〉 and |ψ ′〉, either Dxy(|ψ ′〉) and Dxy(|ψ〉) both vanish
or neither vanishes.

A direct calculation shows that

Dxy = − 1
32 (a − b)3 (a + b)3 (21)

for both Lab3 and L′
ab3

. The desired result then follows by
noting that Dxy = 16a6 
= 0 for Lab3 (b = −3a 
= 0) whereas
Dxy = 0 for L′

ab3
(a = b 
= 0).

Case 2. L′
ab3

(a = −b 
= 0) is SLOCC inequivalent to
Lab3 (b = 3a 
= 0).

This case can be dealt with similarly as case 1 by noting
that Dxy = 16a6 
= 0 for Lab3 (b = 3a 
= 0) whereas Dxy = 0
for L′

ab3
(a = −b 
= 0).

Case 3. L′
ab3

(b = −3a 
= 0) is SLOCC inequivalent to
Lab3 (b = −3a 
= 0).

In this case, the semi-invariants defined in Ref. [7] turn
out to be useful. More specifically, for any four-qubit state
|ψ〉 = ∑15

i=0 ci |i〉, the semi-invariants F1 and F2 are defined
in Ref. [7] as

F1(ψ) = (c0c7 − c2c5 + c1c6 − c3c4)2,

− 4(c2c4 − c0c6)(c3c5 − c1c7), (22)

F2(ψ) = (c8c15 − c11c12 + c9c14 − c10c13)2

− 4(c11c13 − c9c15)(c10c12 − c8c14). (23)

TABLE VII. SLOCC classifications of Lab3 , La2b2 , La4 , La203⊕1̄
, L05⊕3̄

, L07⊕1̄
, and L03⊕1̄03⊕1̄

via rAB , rAC , and rAD . The subfamilies marked
with “*” are biseparable.

Family rAB rAC rAD Subfamily description Family rAB rAC rAD Subfamily description

La2b2 333 ab = 0 & a 
= b Lab3 222 a = b = 0 (i.e., |W 〉ABCD)
424 a = ±b 
= 0 344 ab = 0 & a 
= b

434 ab 
= 0 & a 
= ±b 424 a = b 
= 0
212∗ a = b = 0 (i.e., A-C-BD) 434 b = −3a 
= 0

La4 323 La4 (a = 0) 442 a = −b 
= 0
434 La4 (a 
= 0) 443 b = 3a 
= 0

La203⊕1̄
333 La203⊕1̄

(a 
= 0) 444 ab 
= 0 & b 
= ±a & b 
= ±3a

222∗ a = 0 (i.e., |0〉A|W 〉BCD) L05⊕3̄
333 L05⊕3̄

L07⊕1̄
333 L07⊕1̄

L03⊕1̄03⊕1̄
222∗ |0〉A|GHZ〉BCD
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TABLE VIII. SLOCC classification of L′
ab3

via rAB , rAC , and rAD .

rAB rAC rAD Subfamily description

222 a = b = 0 (i.e., |W 〉ABCD)

344 ab = 0 & a 
= b

424 ∅
434 a = b 
= 0 | b = −3a 
= 0

442 ∅
443 a = −b 
= 0 | b = 3a 
= 0

444 ab 
= 0 & b 
= ±a & b 
= ±3a

Let |φ〉 be any four-qubit state SLOCC equivalent to Lab3

[i.e., they satisfy Eq. (2)]. Let

A1 =
(

α1 α2

α3 α4

)
. (24)

A tedious but straightforward calculation yields

F1(φ) = 1

2
(a2 − b2)α4

1

[
4∏

i=2

detAi

]2

, (25)

F2(φ) = 1

2
(a2 − b2)α4

3

[
4∏

i=2

detAi

]2

. (26)

In view of Eqs. (25) and (26) and the fact that A1 is invertible,
it follows at once that if |φ〉 is SLOCC equivalent to Lab3 (a 
=
±b), then the following equation holds:

|F1(φ)| + |F2(φ)| 
= 0. (27)

Let |ϕ〉 be any state SLOCC equivalent to L′
ab3

[i.e.,
they satisfy Eq. (2)]. Again, a tedious but straightforward
calculation yields

F1(ϕ) = −1

2
√

2
iα3

1(−i
√

2(3a2 + b2)α1 + 8a(a2 − b2)α2)

×
[

4∏
i=2

detAi

]2

, (28)

F2(ϕ) = −1

2
√

2
iα3

3(−i
√

2(3a2 + b2)α3 + 8a(a2 − b2)α4)

×
[

4∏
i=2

detAi

]2

. (29)

When a(a2 − b2) 
= 0, consider the operator,

A∗
1 =

(
α1

i
√

2(3a2+b2)
8a(a2−b2) α1

0 α4

)
, (30)

where α1α4 
= 0. Clearly,A∗
1 is invertible. In view of Eqs. (28)–

(30), it follows that there exists a state |ϕ∗〉 equivalent to
L′

ab3
(a(a2 − b2) 
= 0) under local invertible operators A∗

1, A2,
A3, and A4, such that

|F1(ϕ∗)| + |F2(ϕ∗)| = 0. (31)

From Eqs. (27) and (31), |ϕ∗〉 is SLOCC inequivalent to
the state Lab3 (a 
= ±b). Therefore, L′

ab3
(a(a2 − b2) 
= 0) is

SLOCC inequivalent to Lab3 (a 
= ±b). In particular, L′
ab3

(b =
−3a 
= 0) is SLOCC inequivalent to Lab3 (b = −3a 
= 0).

Case 4. L′
ab3

(b = 3a 
= 0) is SLOCC inequivalent to
Lab3 (b = 3a 
= 0).

This case can be treated analogously to case 3.
Case 5. L′

ab3
(a 
= 0 & b = 0) is SLOCC inequivalent to

Lab3 (ab = 0 & a 
= b).
In Ref. [10], we proved that Lab3 (a = 0 & b 
= 0) and

Lab3 (a 
= 0 & b = 0) are SLOCC inequivalent. A proof
analogous to that of Ref. [10] shows that L′

ab3
(a = 0 & b 
= 0)

and L′
ab3

(a 
= 0 & b = 0) are SLOCC inequivalent. Using
the fact that Lab3 (a = 0 & b 
= 0) is SLOCC equivalent to
L′

ab3
(a = 0 & b 
= 0) [see Eq. (19)] yields that L′

ab3
(a 
=

0 & b = 0) is SLOCC inequivalent to Lab3 (a = 0 & b 
= 0).
Furthermore, an argument analogous to case 3 shows that
L′

ab3
(a 
= 0 & b = 0) is inequivalent to Lab3 (a 
= 0 & b = 0).

Indeed, we can further conclude that Lab3 (a = 0) and
Lab3 (a 
= 0) are SLOCC inequivalent and L′

ab3
(a = 0) and

L′
ab3

(a 
= 0) are SLOCC inequivalent.
Case 6. L′

ab3
(ab 
= 0 & a 
= ±b & b 
= ±3a) is SLOCC

inequivalent to Lab3 (ab 
= 0 & a 
= ±b & b 
= ±3a).
This case can be treated analogously to case 3.
As a consequence, L′

ab3
(a 
= 0) is SLOCC inequivalent

to Lab3 . An analogous argument shows that Lab3 (a 
= 0) is
SLOCC inequivalent to L′

ab3
.

C. The relation between L′
ab3

and Lab3 under permutations

Let |γ 〉 be the state of the subfamily L′
ab3

(a 
= 0 & b = 0),
|η〉 be the state of the subfamily L′

ab3
(b = 3a 
= 0), |ϑ〉 be

the state of the subfamily L′
ab3

(b = −3a 
= 0), and |ν〉 be
the state of the subfamily L′

ab3
(ab 
= 0 & a 
= ±b & b 
=

±3a). We argue that the above four subfamilies are SLOCC
inequivalent to Lab3 under any permutation of qubits. This can
be seen as follows. Let (i,j ) be the transposition of qubits
i and j . A tedious calculation shows that the permutations
giving rise to different |γ 〉 are κ1 = I , κ2 = (1,3), κ3 = (1,4),
κ4 = (1,2)(1,3), κ5 = (1,2)(1,4), and κ6 = (1,4)(1,2)(1,3).
Similarly, the permutations giving rise to different |η〉,
|ϑ〉, and |ν〉 are π1 = I , π2 = (1,2), π3 = (1,3), π4 =
(1,4), π5 = (1,3)(1,2), π6 = (1,4)(1,2), π7 = (1,2)(1,3),
π8 = (1,2)(1,4), π9 = (1,2)(1,3)(1,2), π10 = (1,2)(1,4)(1,2),
π11 = (1,4)(1,2)(1,3), and π12 = (1,4)(1,2)(1,3)(1,2). The
result that κi |γ 〉(i = 1, . . . ,6), πj |η〉, πj |ϑ〉, and πj |ν〉(j =
1, . . . ,12) are all SLOCC inequivalent to Lab3 then follows by
calculating the ranks rAB , rAC , and rAD of κi |γ 〉, πj |η〉, πj |ϑ〉
and πj |ν〉, and using an argument analogous to that of case 3
in the previous section.

Remark 2. By using Tables VII and VIII, one can verify
that (1,4)L′

ab3
(a = b 
= 0) is SLOCC equivalent to Lab3 (a =

0 & b 
= 0) under the invertible local operator σx ⊗ σz ⊗
iI ⊗ σy , and (1,3)L′

ab3
(a = −b 
= 0) is SLOCC equivalent

to Lab3 (a = 0 & b 
= 0) under the invertible local operator
σx ⊗ σz ⊗ σy ⊗ iI .

D. L′
ab3

(a �= 0) is SLOCC inequivalent to the other eight
families by Verstraete et al.

Here we show that L′
ab3

(a 
= 0) is not only SLOCC
inequivalent to Lab3 but also SLOCC inequivalent to the other
eight families by Verstraete et al. For simplicity, we only show
that L′

ab3
(a = −b 
= 0) is SLOCC inequivalent to the other
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eight families obtained by Verstraete et al. From Table VIII,
rABrACrAD = 443 for L′

ab3
(a = −b 
= 0). Consulting

Tables V–VII, and using the fact that the subfamilies
with different ranks of coefficient matrices are SLOCC
inequivalent to each other, it suffices to show that
L′

ab3
(a = −b 
= 0) is SLOCC inequivalent to the subfamilies

with rABrACrAD = 443 of Gabcd and Labc2 .
To show that L′

ab3
(a = −b 
= 0) is SLOCC inequivalent

to the subfamily with rABrACrAD = 443 of Gabcd , we use
the degree 6 polynomial invariant Dxy given in Eq. (20). It is
readily seen from Eq. (21) that Dxy = 0 for L′

ab3
(a = −b 
= 0).

A simple calculation shows that

Dxy = (αβ − γ δ)(αβ + γ δ)(α2 + β2 − γ 2 − δ2) (32)

for Gabcd [as defined in Eq. (15)]. It is readily seen from
Eq. (32) that Dxy 
= 0 for the subfamily with rABrACrAD =
443 of Gabcd and then the desired result follows.

Next we show that L′
ab3

(a = −b 
= 0) is SLOCC inequiv-
alent to the subfamily with rABrACrAD = 443 of Labc2 [as
defined in Eq. (16)]. A calculation shows that

Dxy = (α′β ′)2(α′2 − γ ′2 + β ′2) (33)

for Labc2 . From Table VI, we distinguish the following two
cases.

Case 1. α′ 
= 0 & β ′ = ±γ ′ 
= 0 & α′ 
= ±β ′.
In this case Dxy 
= 0 and then the desired result follows.
Case 2. α′ = 0 & β ′ 
= ±γ ′ & β ′γ ′ 
= 0.
In this case Dxy = 0. We can resort to the semi-invariants

given in Eqs. (22) and (23). Let |ϕ〉 be any state SLOCC
equivalent to L′

ab3
(a = −b 
= 0) with A1 given by Eq. (24). A

tedious but straightforward calculation yields

F1(|ϕ〉) = −2a2α4
1

[
4∏

i=2

detAi

]2

, (34)

F2(|ϕ〉) = −2a2α4
3

[
4∏

i=2

detAi

]2

. (35)

In view of Eqs. (34) and (35) and the fact that A1 is invertible,
it follows at once that if |ϕ〉 is SLOCC equivalent to L′

ab3
(a =

−b 
= 0), then the following equation holds:

|F1(ϕ)| + |F2(ϕ)| 
= 0. (36)

The desired result then follows by noting that F1 = F2 = 0 for
Labc2 with α′ = 0 & β ′ 
= ±γ ′ & β ′γ ′ 
= 0.

As a consequence, L′
ab3

(a = −b 
= 0) is SLOCC inequiva-
lent to the nine families obtained by Verstraete et al. [3].

The discussion suggests that the partition in Ref. [3] is
incomplete. For completeness, one may add the family L′

ab3
to

the family Lab3 in Ref. [3]. An analogous argument shows that
the partition in Ref. [6] is incomplete as well, and for complete-
ness, one may add the family Lab3 to the family 6 in Ref. [6].

VII. CONCLUSION

We have recast the necessary and sufficient condition for
two n-qubit states to be equivalent under SLOCC into an
equivalent form in terms of the coefficient matrices associated
with the states. As a direct consequence of the new necessary
and sufficient condition, we have shown that the rank of

the coefficient matrix as well as the rank of the �-qubit
reduced density matrix is invariant under SLOCC. We have
also presented a recursive formula for the calculation of the
rank of coefficient matrix of an n-qubit biseparable state. The
recursive formula further gives rise to a biseparability criterion
in terms of the rank of coefficient matrix to determine if an
arbitrary n-qubit pure state is biseparable. The invariance of
the rank of coefficient matrix together with the biseparability
criterion reveals that all the degenerate families of general n

qubits are inequivalent under SLOCC.
We have then classified four-qubit states under SLOCC

via the ranks of coefficient matrices and the nine families
introduced by Verstraete et al. were further partitioned into
inequivalent subfamilies. In particular, we have found 28
genuinely entangled families and all the degenerate classes
can be distinguished up to permutations of the four qubits.
We have performed a detailed study of the relation between
the family Lab3 and the family L′

ab3
with corrections to the

signs of the last two terms in the formula of Lab3 via the
ranks of coefficient matrices. By using a degree 6 polynomial
invariant and two semi-invariants of four qubits, we have
found that L′

ab3
(a = 0) is SLOCC equivalent to L′

ab3
(a = 0)

whereas L′
ab3

(a 
= 0) is SLOCC inequivalent to Lab3 (a 
=
0). We have also demonstrated that L′

ab3
(a 
= 0 & b = 0),

L′
ab3

(b = ±3a 
= 0), and L′
ab3

(ab 
= 0 & a 
= ±b & b 
= ±3a)
are SLOCC inequivalent to Lab3 under any permutation of
qubits, whereas L′

ab3
(a = ±b 
= 0) are SLOCC equivalent to

Lab3 (a = 0 & b 
= 0) under some permutations. This suggests
that the partition of four-qubit states into the nine families by
Verstraete et al. is incomplete, and for completeness, one may
simply add the family L′

ab3
to the family Lab3 .
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APPENDIX

Following [25], Dxy can be constructed as

Dxy =
∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

d31 d32 d33

∣∣∣∣∣∣ , (A1)

where the entries of Dxy are given by

d11 = a0a3 − a1a2,

d12 = a0a7 − a1a6 − a2a5 + a3a4,

d13 = a4a7 − a5a6,

d21 = a0a11 − a1a10 − a2a9 + a3a8,

d22 = a0a15 − a1a14 − a2a13 + a3a12

+ a4a11 − a5a10 − a6a9 + a7a8, (A2)

d23 = a4a15 − a5a14 − a6a13 + a7a12,

d31 = a8a11 − a9a10,

d32 = a8a15 − a9a14 − a10a13 + a11a12,

d33 = a12a15 − a13a14.
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